
  

  

Abstract—In this paper, a simulated annealing algorithm 

tuned non-real-valued sliding surface is developed to enhance 

the transience and steady-state response of sine wave inverters. 

Even if the customary sliding surface (CSS) has the insensitivity 

to system uncertainties, the model of a reduced order exists in 

sliding action, thus yielding deficient system dynamics. By 

employing the non-real-valued sliding surface (NRVSS), the 

entire system dynamics can be established. Unfortunately, the 

occurrence of the chatter phenomenon is frequent and the 

harmonic distortion of sine wave inverter output is also high. To 

effectively reject the effect of the chatter, the NRVSS control 

gains can be optimally tuned via the simulated annealing 

algorithm (SAA). The proposed methodology has been 

implemented for the actual sine wave inverter controlled by a 

digital signal processor (DSP). Experimental results of the 

closed-loop system represent that the proposed methodology can 

provide fast transient response, low total harmonic distortion 

(THD) and the attenuation of steady-state error and chatter. 

 
Index Terms—Non-real-valued sliding surface (NRVSS), 

chatter phenomenon, sine wave inverter, simulated annealing 

algorithm (SAA), total harmonic distortion (THD).  

I. INTRODUCTION 

Sine wave inverters have received more and more attention 

and are spaciously applied in energy conversion systems 

[1]-[4]. High-quality AC output voltage of low THD and fast 

dynamic response must be supplied by the sine wave inverter 

using feedback controller [5]-[7]. To finish these 

requirements, several control techniques have been reported, 

such as wavelet transform technique, mu-synthesis controller, 

deadbeat control, and repetitive control [8]-[11]. But, they are 

hard in realization and complicated in calculation. For the 

sake of more robust control systems, sliding mode control 

(SMC) can be adopted because of the insensitivity to system 

uncertainties [12-15]. The main SMC operation conception is 

to drive the system states toward a predetermined surface 

(reaching phase), i.e., the sliding surface or switching 

manifold defined in state space. In case the sliding surface is 

met, such a surface (sliding phase) will manage the system 

response and accordingly the strong robustness to the 

uncertainty or perturbation can be fulfilled [16]-[18]. The 

sliding mode controlled sine wave inverters have been 

provided in published literature [19], [20]. A single 
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sliding-surface function is presented to perform the all control 

aims, but the transient and steady-state response are poor [21]. 

By employing the multi-loop control, the improved control 

method is proposed. However, nonzero steady-state error 

occurs [22]. A discrete SMC scheme with application to servo 

systems has been developed, and then this scheme is 

successfully used in PWM inverters. Fast transient response 

can be produced, but the distorted output-voltage is seen in 

the presence of nonlinear loading [23], [24]. The discrete 

feedforward sliding mode controlled inverter is presented and 

the transience and steady state are satisfactory. It is 

noteworthy that the chatterer exists around sliding surface 

[25]. A discrete integral SMC scheme is developed for 

uninterruptible power supply inverters. The chatter cannot be 

eliminated even if less steady-state error is obtained [26]. A 

combination of sliding and fuzzy control has been proposed 

for boost converters. There is good performance in transient 

behavior. However, the implementation of this approach is 

complex [27]. For the use of the boost regulators, the 

improved fuzzy sliding-mode is introduced to handle system 

uncertainties. Though this methodology has good steady-state 

response, the dynamic response is slow [28]. The sliding 

mode fuzzy logic controller is presented to get better transient 

and steady-state performance, but the chatter phenomenon 

still exists [29]. As above-these, as in sliding motion the 

customary sliding surface (CSS) yields reduced-order 

dimension, incurring deficient dynamics. To gain the entire 

system dynamics, the non-real-valued sliding surface 

(NRVSS) is introduced and then a whole dimension can be 

achieved [30], [31]. However, the chatter still appears around 

the NRVSS. The chatter may generate tear and wear to system 

components, leading to high harmonic distortion of sine wave 

inverter output. Simulated annealing algorithm (SAA) has 

been widely used in the fields of engineering [32]-[34] and is 

particularly suitable for solving difficult optimal problems 

[35]-[37]. The optimal control gains of the NRVSS can be 

tuned by SAA, thus diminishing the chatter. Finally, the 

proposed methodology is corroborated by the single-phase 

sine wave inverter, and is digitally realized using a digital 

signal processor. The efficacy and advantages of using the 

proposed methodology has been confirmed by experimental 

results. 

 

II. PROPOSED METHODOLOGY FOR SINE WAVE INVERTER 

A. Modeling of Sine Wave Inverter 

Fig. 1 displays the block diagram of a sine wave inverter, 
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followed by a LC filter. The full bridge inverter is the 

important core of the system, chopping the input of the direct 

current into a series of pulse width modulation pulses in 

accordance with the modulation signal. The second-order LC 

filter is capable of expelling high-frequency components of 

the chopped output-voltage inv . The direct current power 

source can be regarded as the supply of an ideal constant 

voltage. The load can be resistive load or step load change, or 

even nonlinear load.  
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Fig. 1. Block diagram of sine wave inverter. 

 

From the Fig. 1, the dynamic equation of the inverter with 

LC filter can be represented by  
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Suppose the switching frequency be high enough and the 

dynamics of the inverter can be regarded as a constant gain 

pwmK . Hence, the linear model of sine wave inverter can be 

plotted in Fig. 2. 
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Fig. 2. Linear model of sine wave inverter. 

 

Define the capacitor voltage ov  and its derivative ov  as 

the state variables, the state equations can be written as 
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Fig. 3. Block diagram of proposed sine wave inverter. 

 

Fig. 3 shows the block diagram of the proposed sine wave 

inverter. In order to assure a sinusoidal output-voltage, the 

capacitor voltage is sensed, thus governing the 

voltage-feedback loop. 

Let or vve −=1  and 12 ee = , we can obtain the error 

differential equations as follows: 
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 is the interference and u  

stands for the control law.  

B. Customary Sliding Surface (CSS) 

The customary sliding surface can be chosen as  

ker( )C =                                       (4) 

where nmC   and mCrank =)( . 

Then, the closed-loop dynamics can be established as 
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where A  and B  are system matrix and control matrix, 

respectively. 

As can be seen in (4) and (5), a )( mn −  reduced-order 

dimension yields and the performance of the system is 

therefore degraded. To gain the entire system dynamics, the 

NRVSS can be designed below. 

C. Non-Real-valued Sliding Surface (NRVSS) 

Assume that there are complex conjugate pairs ( vv  ,  and 

zz  , ) in the following equations. 

)(5.0 vvu +=                                   (6) 

)(5.0 zzx +=                                   (7) 

where 
mCvv  , and 

nCzz  , . 

Substituting (6) and (7) into (5), the real model (5) becomes 

the sum of two complex models  

BvAzz +=                                      (8) 

BvzAz +=                                     (9) 

A non-real-valued sliding surface can be constructed as 

0== z                                     (10) 

 Tmxxmxxz  11=                   11) 

where nmC  . 

The sliding function matrix can be separated as  
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where )(
1

mnm
C

−
  and mmC 2 . 

The system matrix can be derived as 
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Define iyxz +=  and then we can obtain following 

equations: 
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From (14), the n2  dimensional model can be achieved as 
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The control law can be formulated as 
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where ezu  signifies the equivalent control and swzu  

represents the sliding control. 

In case iwuv += , the (6) and (16) leads to 
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Construct iNM += , the (17) can be rewritten as 
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By the use of the )(5.0 zzy −= , the differential equation 

can be obtained as 

BwAyy +=                                      (19) 

Therefore, a n2  dimensional model is produced and the 

dynamics deficient in the CSS design can be regained as 

follows: 
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Eventually, swzez iwuv +=  is substituted for u . But, the 

chatter still exists in (16) and to effectively diminish the 

chatter, the SAA is employed to tune the control gains of the 

NRVSS. As the SAA is executed, a global minimum can be 

guaranteed to be reached with high probability. The artificial 

thermal noise is gradually reduced in time. A control 

parameter, i.e., computational temperature T  can handle the 

magnitude of the interferences of the energy function )(xE . 

Boltzmann distribution of the energy difference decides the 

probability of a state change as 

 

TEeP −=                                 (21) 

 

The process of the SAA is briefly described in the 

following and its flowchart is plotted in Fig. 4. 

1) Initializing the system structure and then )0(x  is 

randomized. 

2) Initializing T  with a large value. 

3) Reiterate below: 

a) Reiterate in the following 

i) Applying random interferences to the state xxx += . 

ii) Evaluating )()()( xExxExE −+=  while 0E , 

and then maintain the new state or else agree to the new state 

with the probability TEeP −= ; until the number of 

approved transitions is below a threshold level. 

a) Arrange TTT −= , and until T  is small enough. 
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Fig. 4. Flowchart of the SAA. 
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Fig. 5. Proposed sine wave inverter. 

 

 

Fig. 6. Proposed methodology under step load change (vert.: 100 V/div; vert.: 

20 A/div; hor. : 5 ms/div). 

 

III. EXPERIMENTAL RESULTS  

The proposed system parameters are given in Table I and 

the implemented structure of proposed sine wave inverter is 

also illustrated in Fig. 5. Fig. 6 illustrates the waveform 

obtained using the proposed methodology under the step load 

from no load to full load at a 90 degree firing angle. The 

satisfactory transience with small voltage dip can be observed 

and after the transience, the voltage waveform returns to high 

steady-state precision. Inversely, the waveform obtained 

using the customary sliding surface plotted in Fig. 7 has a 

large voltage dip and there is a slow recovery time. The values 

of filter parameters are assumed in suffering from 10% ~ 

300% of nominal values while the sine wave inverter system 

is under 12 Ω resistor. Fig. 8 and Fig. 9 display the output 

voltage waveform of the sine wave inverter controlled by the 

proposed methodology and the customary sliding surface, 

respectively. The proposed methodology has the insensitivity 

to the parameter variations and load interferences than the 

customary sliding surface. The proposed methodology is 

capable of producing a satisfactory steady-state and dynamic 

response, and displays notable improvement in reducing 

output-voltage distortion under filter parameter variations. 

Because the chatter is successfully diminished, Fig. 10 

represents that the tracking error with the proposed 

methodology is rapidly converged to the origin. But, the 

customary sliding surface controlled sine wave inverter yields 

a large amount of tracking error, as shown in Fig. 11. Table II 

compares the voltage dip between the proposed methodology 

and customary sliding surface. 

TABLE I: SYSTEM PARAMETERS 

DC-link voltage Vd = 200 V  

Filter inductor L = 0.2 mH 

Filter capacitor C = 4 μF 

Resistive load Rfull =12 Ω 

Output voltage and frequency vo = 110 Vrms,  f = 60 Hz 

Switching frequency fs = 12 kHz 

 

 
Fig. 7. Customary sliding surface under step load change (vert. : 100 V/div; 

vert. :  20 A/div; hor. : 5 ms/div). 

 

 
Fig. 8. Proposed methodology under LC parameter variations (vert.: 100 

V/div; hor.: 5 ms/div). 

 

 
Fig. 9. Customary sliding surface under LC parameter variations (vert.: 100 

V/div; hor.: 5 ms/div). 

 

 
Fig. 10. Convergence speed of the proposed methodology. 

 

 
Fig. 11. Convergence speed of the customary sliding surface. 
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TABLE II: VOLTAGE DIP 

Proposed Methodology 

Experiment 

Voltage Dip 

Step Load Change 

22Vrms 

Customary sliding surface 

Experiment 

Voltage Dip 

Step Load Change 

40Vrms 

 

IV. CONCLUSIONS 

This paper presents a SAA-based NRVSS for the 

application of sine wave inverters. The customary SMC is 

intrinsically robust against internal parameter variations and 

external load interferences, but the problem of the deficient 

system model occurs. The NRVSS solves this problem, but 

the chatter still exists. By the use of the SAA, the NRVSS 

control gains can be tuned optimally, thus diminishing the 

chatter. Experimental results show that THD and transient 

response results from a sine wave inverter under the proposed 

system exceed the results achieved under the customary SMC 

system with both linear and nonlinear loading. 
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