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Abstract—Object shape detection and localization 

techniques that utilize snake deformable models are one of the 

most promising image detection techniques. The binary edge 

maps, derived from the original image, are basically the class 

acted upon by the snake to extract the desired features. As a 

result, high and low energy content pixels are obtained. The 

high energy pixels are the pixels that reflect the object borders 

of a given image. This paper addresses a new external force 

that is calculated from the energy diffusion of high content 

pixels and is used to balance the internal forces of the snake. 

The proposed scheme showed better results in terms of 

computation speed and capture range than standard snake 

models. On the basis of the concavity convergence, analogous 

results are achieved in the proposed scheme compared with 

standard models. 

 
Index Terms—Algorithms, computer vision, deformable 

models, feature extraction, image edge detection. 

 

I. INTRODUCTION 

Snakes are parametric curves that are initialized in the 

image plane and are allowed to evolve under the influence 

of internal and external forces to converge towards specific 

features in the image. The internal forces are computed from 

the snake to control its elasticity and consistency whereas 

the external forces are computed from the image. Extra 

constraint forces might be added to drive the image to 

converge to specific shapes in higher level image processing. 

The next subsection will present the different types of 

snakes that were developed and their advantages. 

Snake Algorithm 

Kass et al. [1], proposed that snakes are a class of active 

contours that consist of a set of points represented 

parametrically by their position vector. These points are 

allowed to move in the image domain by functional energy 

minimization so that they converge to the region of interest. 

The functional energy to be minimized is basically 

formed from two parts: internal and external components. 

The internal energy component 
intE  is calculated by 

iterative processes such as the Kass method, whereas the 

external component 
extE  is computed using the desired 

features of the image. 
intE  governs the shape and elasticity 

of the snake, whereas 
extE  is used to attract the snake to the 

desired borders. Moreover, the internal energy component 

will give rise to bending forces that control the bending 
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ability of the snake, and elasticity forces that hold the snake 

together during its movement. The external energy 

component will give rise to attractive forces that drive the 

snake to the desired feature. Additionally, an extra term of 

the energy minimization equation is the constraint energy 

Econ term. This term should be imposed either by the user or 

by higher level processes to control the convergence of the 

snake to the feature. The functional energy relation is 

expressed as 

         
1

0

 int ext conE E v s E v s E v s ds        (1) 

where  v s  is the parametric representation of the snake 

[x(s), y(s)], and  0,1s ]. 

Since the early introduction of snake algorithms, 

researchers have proposed different external forces to attract 

the snake to the desired features in a given image. For 

example, Cohen and Cohen [2], [3] proposed a potential 

force to attract the snake into the suggested features. This 

force is obtained by minimizing the homogenous energy 

equation as 

     
' '

1 2 0w v w v P v                        (2) 

The boundary conditions are      0 ,? ,?v v v , and  1v , 

and 1w  and 2w  are constants representing the elasticity and 

rigidity of the curve, respectively. The potential force is 

represented as follows [2], [3]: 

  
1

0

P v s ds                                     (3) 

where 

    
2

,P v s I x y                            (4) 

and  ,I x y  is the image intensity. 

The potential force used in (3) is the chamfer distance 

function or the Euclidian distance map. In general the 

distance potential function can be defined as [2] 

      P v s g d v s                            (5) 

where   d v s  is the distance map function. 

On the contrary, Cohen and Cohen [2], [3] found that the 

forces derived from (3) are insufficient for attracting a snake 

from far distances to the edges. Furthermore, the snake 

curve will tend to shrink if it is not subjected to 

counterbalance forces. As a solution, they proposed a 

second force term as a pressure force that would expand the 

snake outwards or inwards. The combination of both the 
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potential and pressure forces will guide the snake to the 

desired features and reduce the effect of noise during the 

movement of the curve. Therefore, the total forces acting on 

the snake are given as follows [2], [3]: 

    1 2

p
F k n s k v s

p

 
     

                       (6) 

where  n s  is a unit normal vector to the snake at point 

 v s
 
and 

1k and 
2k
 
are the constants chosen such that 

2k  is 

slightly larger than 
1k  for the snake to stop at the strong 

edges.  

Another area of concern is the concavity convergence 

issue. Xu and Prince [4]-[6] proposed the gradient vector 

flow (GVF) field to solve the proper initialization 

assumptions for the potential fields under concern. 

Unlike classical potential fields, the GVF field cannot be 

thought of as a negative gradient of a potential field because 

it is formulated directly from the conditions of balance 

forces. The main idea of GVF is to produce a smooth field 

at regions with small edge map gradients and to maintain 

the strength of the gradient of the edge map in the vicinity 

of the edges. This vector field is defined parametrically as 

[4], [5] 

     , , , ,V x y u x y v x y                              (7) 

which minimizes the following energy equation  

  2 22 2  E u v f V f dxdy     ∬              (8) 

The second term in (8),i.e., 2 2
f V f  , verifies the 

main concept of GVF: at regions of high edges, the map 

gradient f  dominates the field: at regions where 0f  , 

the diffusion field V will dominate. To minimize the energy 

equation, the filed V should satisfy the following 

homogenous linear Euler partial differential equations [4], 

[5]: 

  2 2 2 0x x yu u f f f                            (9) 

  2 2 2 0y x yv v f f f                    (10) 

A finite difference method was used to solve (9) and (10) 

iteratively to reach the steady state condition which is the 

desired diffusion field. The computational complexity of the 

GVF is considered high compared with the distance field [4]. 

On MATLAB code using the SGI Indego-2 machine, the 

computation time for the same image shape is measured as 

420 seconds for the GVF algorithm compared with 155 

seconds for the distance fields. 

GVF provided a smooth varying field in regions far from 

the edges and maintained the edge gradient in regions near 

the edges. As a result, a better capture range and a smoother 

field transition are obtained, particularly in the concave 

region. 

A drawback of the GVF method is reported in the regions 

of narrow edges in a given image. This method has a 

tendency to over smooth the field between opposite edges. 

To improve this performance, generalized GVF (GGVF) 

was proposed by Xu and Prince [7]. Both μ and  2 2

x yf f  

which are given in (9) and (10) are replaced by a nonlinear 

function of f . 

Although GVS and GGVF are considered very popular 

methods, one of the negative aspects of these methods is 

their inability to automatically handle the segmentation and 

initialization of multiple objects. Chunming et al. [7] 

addressed this limitation and proposed the edge preserving 

GVF (EPGVF). The external force in EPGVF is segmented, 

and a snake curve is initialized in each segment within the 

capture range of the associated object [7], [8].  

Diverse snake algorithms have been proposed for 

different image processing applications such as 

segmentation, shape detection, and building extraction [9], 

[13]. 

In this paper, a new external force algorithm for driving 

the snack to the desired borders is proposed. This force is 

calculated using the isotropic energy diffusion of high 

intensity pixels on the basis of the extracted edge maps of 

the image. Isotropic and anisotropic diffusion techniques are 

widely used in image processing applications. Image 

smoothing, reconstruction, edge detection, and denoising 

are common practices in the image processing fields [14], 

[15]. However, deriving the isotropic diffusion in this paper 

highlights the contribution of this work towards traditional 

diffusion methods. The edge map can be computed by 

different gradient methods [16], [17] or by calculating the 

image local energy [18], [20].  

The results of this paper show that isotropic potential 

fields are comparable to the GVF and EPGVF in terms of 

convergence. On the contrary, it has a remarkable 

improvement over GVF in terms of the capture range. 

Furthermore, the computational complexity of the proposed 

method surmounts both the GVF and the EPGVF. 

Section II presents the derivation and the optimization of 

the proposed potential field. Section III shows experimental 

setup and results. Section IV concludes. 

 

II. LOCAL ENERGY DIFFUSION FORCE FORMULATION 

A.  Energy Diffusion 

The local energy or edge maps extracted from the image 

contain the point sources, which represent the edges and the 

corners of the object (Fig. 1). Each point source applied at 

time t = 0 and location (xi, yi) in the image space can be 

mathematically represented by assuming that it is an energy 

source: 

     i i i iE E x x y y t                      (11) 

where 
iE  is the energy level (or intensity) of the point 

source at location  ,i ix y , and  

 
1,

 0, elsewhere

i

i

 
  


  



                     (12) 

On the basis of such assumptions, each point source will 

then start diffusing the energy in the image space. The 

diffusion process of the energy is governed by the following 
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2D homogenous diffusion equation (general energy 

equation): 

     2 , ,1, , 0
x y t

x y t
D t




 
    

              (13) 

with the initial conditions representing the instantaneous 

energy at each point source given as 

 , ,0 where 2,  1, ,ix y E i N                   (14) 

In this proposed method, D, which is the diffusion factor, 

is assumed constant to initiate a linear isotropic diffusion 

process. Other assumptions may be taken if D is not 

assumed constant.  

 

 
Fig. 1. (a) Binary edge map and; (b) zoomed image showing the point 

source pixels. 

 

Equation (13) is a well-known energy diffusion equation 

that describes the diffusion of energy in lossless media. The 

solution to this equation varies according to the boundary 

and initial conditions provided: such problems are called 

boundary or initial value problems. 

Spatial Fourier transforms can be applied to provide a 

simple closed form solution by reducing the equation from 

partial differential to an ordinary differential equation. The 

Fourier transform of the nth derivative of a  , ,x y t  

would be given as 

     , , 2 ,ˆ ,
n

n

x x yn
x y t ik k k t

x
  





             (15) 

     , , 2 ,ˆ ,
n

n

y x yn
x y t ik k k t

y
  





             (16) 

By substituting back in (13), we obtain the following: 

     
2 2 2 

2 ,
( , , )

ˆ , 0x yD k
x y

k x t
t

t
y


 




             (17) 

An ordinary differential equation with a solution of the 

form is then obtained: 

      2 2 2ˆ , , . 2 x yx y t A exp D k k t                (18) 

The inverse Fourier transform of (18) will provide the 

solution of the initial value diffusion problem defined in (13) 

and (14) for a point energy source: 

 
 2 2

4, , .e
4

x y

Dt
A

x y t
Dt




 

                         (19) 

By assuming that each point source has an energy value 

iE
 
 and by imposing the condition 

 , , ix y t dxdy E
 



                           (20) 

we found that the value of A would be 
iA E . 

For N point sources the total solution is only the 

superposition given in the following: 

 

    2 2

1

, , e

i iN

tot

i

x x y y

i kx y t
E

k




   


 
 
 

           (21) 

where  ,i ix y , and 
iE  are the position and energy of point 

source i, respectively, and 4k Dt . 

B. System Optimization 

Before going to the final stage of force derivation, it is 

wise at this point to mention that the original image is 

regarded as an initial state of the diffusion process in 

traditional isotropic and anisotropic diffusion partial 

differential equation techniques. The filtered version from 

its temporal evolution is extracted by finite difference 

schemes. One drawback of all finite difference schemes in 

image evolutions is the additional blurring of the object 

borders due to dissipation effects [20], [21]. In this 

application, the isotropic diffusion is applied over the binary 

edge maps. Consequently, the dissipative effects from the 

background over the object borders are eliminated or 

minimized. 

Another blurring source is factor k in (21), which controls 

the spread of the diffusion (Fig. 2(a), Fig. 2 (b), and Fig. 2 

(c)). The low value of k results in narrow diffusion, and a 

relatively high value of k would result in severe blur edges. 

To reduce the blurring effect and maintain a satisfactory 

spread of diffusion, the proposed model was optimized as 

follows: 

The constant 4k Dt  was optimized experimentally. 

The best results were found with 1? 15k  .  

The initial edge map (EM) is super imposed over (21). 

This approach maintains the sharpness of the object borders 

and strengthens the field in the near vicinity of edges.  

Therefore, the total potential will be 

 

    2 2

1

, , e

i iN

tot

i

x x y y

i kx y t EM
k

E




   

 
 
 
 

           (22) 

where EM is the edge map of the image. 

The potential in (22) can be further simplified by 

assuming that each point source has equal energy contents 

i.e., if 

 for 1,iE E i N                             (23) 

Hence, the general form of (22) would be expressed as 

follows: 

 
 ,

1

, ,

id x y
N

tot

k

i

E
x y t EM

k
e

 
  
 



 
   

 
 

               (24) 

where  ,id x y is the distance function between points 

 ,x y  in the image plane and point source i at  ( ),i ix y . 

The potential represented by (24) provides the complete 
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solution and the field can be calculated by taking the 

gradient of  , ,tot x y t : 

 , , ,x y tot x y t     
                      (25) 

The field vector computed using (25) is used as an 

external force to drive the snake toward the object borders 

in the image space. This new proposed scheme is called the 

local energy diffusion force (LEDF) model. 

 

 
(a)   (b) 

 
(c) 

Fig. 2. Diffusion field effect due to increasing k. 

 

III. EXPERIMENTAL SETUP AND RESULTS 

To compare the proposed LEDF model with the standard 

GVF and EPGVF snake models, three images are used. Two 

of the images are edge maps with a resolution of 64 × 64 

pixels each, and the last image is a grayscale image with a 

resolution of 350×350 pixels (Fig. 3). k is assumed as k=12 

for the proposed method and μ is taken as μ=0.2 for the 

GVF method. The number of iterations is fixed to 80 

iterations for both the GVF and EPGVF models. For all in 

hand models, the grayscale image is converted to the edge 

map version by using the well-known Canny edge detection 

method [16], [17]. 

The comparison is based on the computation of the 

required running time to obtain the force field or the speed 

of calculation between the proposed LEDF model and the 

GVF and EPGVF models. 

All running steps were conducted on a computer using 

Intel Core™2 Duo Processor T5550 (1.83GHz), 3GB RAM, 

and Windows Vista/SP2 32- bit operating system. 

A. Complexity of the Computation of the Field 

The proposed LEDF model is not an iterative method. i.e., 

the potential is directly computed from an analytical 

equation that satisfies the energy diffusion criteria. However, 

the computation would be repeated for every point source at 

the borders of the object. On the contrary, the calculation 

would be repeated for each point in the borders domain, and 

all obtained responses will be algebraically summed. 

Therefore, the computational complexity, for N object 

points would be given as O(N). The computational 

complexity of the GVF and the gradient vector flow (VFC) 

are given in the vicinity of  2O N  [22]. 

The time elapsed for the force converging process, for 

every model, is recorded and then averaged for 10 runs. The 

shapes given in Fig. 3 are used in this process, and Table I 

shows the calculated average time. The obtained results 

demonstrate the computational outperformance of the 

proposed model over both the GVF and EPGVF models. 
 

 
(a)  (b) 

 

 
(c) 

Fig. 3. (a) The concave shape, (b) the room shape, and (c) the gray scale 

image. 

TABLE I: TIME RECORDED TO CALCULATE THE FORCES FOR LEDF, GVF, 

AND EPGVF 

model Fig. 3 (a)/ second Fig.3 (b)/ second Fig. 3 (c)/second 

LEDF 0.004 0.0031 0.045 

GVF 0.21 0.23 2.6 

EPGVF 0.29 0.27 3.4 

 

 
(a)                                           (b) 

 
(c)        (d) 

 
  (e)            (f) 

Fig. 4. The field calculated for the shapes in Fig. 3. (a), (b): the LEDF field; 

(c), (d): the GVF field; (e), (f): the EPGVF field. 
 

B. Capture Range and Convergence to Concavities 

The second comparison stage would include the capture 

range and the convergence to concavities. Fig. 4 shows the 

field obtained using the proposed LEDF method compared 

with the GVF and EPGVF methods. The images shown in 

Fig. 3(a); and Fig. 3(b) are also used here for comparison 
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purposes. As shown in Fig. 4, the proposed LEDF method 

produced a high capture range field extending far from the 

object borders compared with the field obtained by the GVF 

or EPGVF.  

This wide capture range would help solve the problems 

associated with curve initialization and convergence. This 

result would clarify the more effective processing technique 

performed in the LEDF model. 

To compare the convergence to concavities parameter, 

Fig. 5(a) and Fig. 5(b) show the snake initialization and its 

convergence progress to the boundaries utilizing the LEDF 

method.  

On the contrary, Fig. 6(a), Fig. 6(b), and Fig. 6(c) show 

the comparison results of the different initialization 

locations for all the mentioned methods.  

 
(a)         (b) 

Fig. 5. (a) Snake initialization and convergence of the LEDF snake for the 

shape in Fig. 3(a). 

       

       

       
         (a)                (b)   (c) 

Fig. 6. (above) The convergence of the LEDF snake for the object in Fig. 

3(b) for different initializations, (middle) the convergence of the GVF 

snake, and (bottom) the convergence of the EPGVF. 

 

 
 

 

 
(a)           (b) 

Fig. 7. Above: (a) the LEDF snake progress and (b) the final snake curve. 

Middle: (a) the GVF snake progress and (b) the final snake curve. Bottom: 

(a) the EPGVF snake progress and (b) the final snake curve. (in all methods, 

the Canny edge detector is used to derive the edge maps). 

 

As inferred from Fig. 6, GVF has failed to converge to 

the object borders in Fig. 6(a), Fig. 6(b) and Fig. 6(c).  

This finding may be attributed to the weak field obtained 

by the GVF method at areas that are far from the object 

borders. The outperformance of the LEDF method would 

support the claim of the effectiveness of the model. 

Finally, the real grayscale image shown in Fig. 3(c) was 

also used to compare the performance of the LEDF in 

contrast to both the GVF and the EPGVF. The results given 

in Fig. 7 (a) and Fig. 7(b) clarify the precise convergence of 

the LEDF over the GVF and EPGVF methods. 
 

IV. FUTURE WORK 

In this paper, the external force field is deployed by a 

simple isotropic closed form solution. This solution 

provided satisfactory snake convergence with great 

improvements in computational complexity. However, this 

isotropic solution may cause border migration at high 

curvature regions. Therefore, the anisotropic solution to the 

diffusion equation achieved via the separation of variables 

may be proposed to mitigate the borders migration. The 

applicability of the anisotropic solution and their 

computational complexity are questions that will be 

answered in future works. 

 

V. CONCLUSION 

In this paper a new external force is proposed for snake 

convergence. The new proposed force is computed from the 

energy diffusion potential. This potential can be calculated 

by considering the edge points as energy sources (point 

sources) and by calculating the diffusion of this energy in 

the image domain. The diffusion equation of the proposed 

model is calculated from a general distance function. The 

computational complexity of the proposed LEDF snake 

increases linearly with the number of point sources available 

in the image; however, the proposed method outperforms 

both the GVF and EPGVF methods. The proposed LEDF 

snake provided a good capture range and was able to 

converge faster into the desired object concavities. Future 

studies will be performed to improve the convergence, and 

the performance of the LEDF snake on more complex 

realistic images. 
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