



Abstract—In the usual deep neural network optimization

process, the learning rate is the most important hyper

parameter, which greatly affects the final convergence effect.

The purpose of learning rate is to control the stepsize and

gradually reduce the impact of noise on the network. In this

paper, we will use a fixed learning rate with method of decaying

loss to control the magnitude of the update. We used Image

classification, Semantic segmentation, and GANs to verify this

method. Experiments show that the loss decay strategy can

greatly improve the performance of the model.

Index Terms—Deep learning, optimization.

I. INTRODUCTION

While deep neural networks have achieved amazing suc-

cesses in a range of applications, how to understand its in-

ternal principles is still an open and active area of research. In

order to train a model, we need to set a series of hyper pa-

rameters, a simple way is to use grid search to find the best

value, no doubt it will greatly increase the training time.

Maybe we’ll choose parameters based on our own empirical,

but it’s too difficult to beginners, and this is one of the rea-

sons why deep learning is called black box.

For learning rate, a typical training strategy is piecewise

constant strategy [1], until [2], [3] proposed that cyclical

learning rates can effectively accelerate convergence, after

that [4] proposed trapezoid schedule can be further improved.

Understanding that adapting the learning rate is a good thing

to do, particularly on a per parameter basis dynamically, led

to the development of a family of widely-used optimizers

including [5], [6]. However, a persisting commonality of

these methods is that they are parameterized by a “pesky”

fixed global learning rate hyperparameter which still needs

tuning.

In this paper, we’re going to use an unprecedented way to

solve this problem, which we named “Loss Decay”. By

applying a dynamic weight to the loss (Also called cost, it

usually can be derived from the cost function in the model

training phase.) can avoid gradient vanishing/exploding. Fig.

1 provides a comparison of test accuracies from a loss decay

and normal training regime for Cifar-10, both using a

network that is extremely deep and no skip connections. The

loss decay strategy experiment uses a linear decrease

schedule (see Fig. 2(a)) from 2 to 0, it can be concluded from

the experiment that the loss decay strategy can effectively

propagate the gradient and improve performance when the

model becomes deeper. The contributions of this paper are:

 We propose to use loss decay strategy to adjust the

gradient size, it can make the model converge at a fixed

learning rate.

Manuscript received September 12, 2018; revised April 28, 2019.

Jiakai Wei is with the Hunan University of Technology, China (e-mail:

16408400236@stu.hut.edu.cn).

 Loss decay strategy can speed up convergence and

improve model accuracy, we demonstrate its superiority

through image classification, semantic segmentation,

and GANs.

(a): The network is 40 layers and no residual connection.

(b): The network is 50 layers and no residual connection.

Fig. 1. Loss decay represents the method proposed in this paper, it can be
seen from the figure that the effect is more obvious when the network depth

increases.

II. BACKGROUND

Since deep learning entered the field of vision in 2012,

researchers have been challenging various fields, such as

object recognition from images [7]; speech recognition [8];

natural language processing [9], whether it is the network

structure [10] or the optimization algorithm [5], [11] has a

great improvement.

But we still face the "alchemy" problem, one of which is

that the deep neural network has many hyper parameters need

to be adjusted. In nearly all gradient descent algorithms the

choice of learning rate remains central to efficiency;

Reference [12] asserts that it is “often the single most

important hyper-parameter and that it always should be

tuned.” This is because choosing to follow your gradient

signal by something other than the right amount, either too

much or too little, can be very costly in terms of how fast the

overall descent procedure achieves a particular level of

objective value.

Forget the Learning Rate, Decay Loss

Jiakai Wei

International Journal of Machine Learning and Computing, Vol. 9, No. 3, June 2019

267doi: 10.18178/ijmlc.2019.9.3.797

(a): Linear decrease schedule designed for the loss in this paper.

(b): Comparison of gradient weight invariance and linear decrease when

fixed poly decay strategy

Fig. 2. “LD” stands for linear decrease strategy, “ poly” represents poly-
nomial learning rate decay strategy.

JK. Wei [13] shows that the “random gradient” method

which multiply the gradient by a random number from 0 to 1

can effectively avoid the oscillation of the optimization

process. But they did not propose a theoretical explanation,

and multiplying the gradient by a random number is too

mysterious. This paper gave us the initial inspiration, we will

compare this method in subsequent section.

In ordinary training process, we usually use the stochastic

gradient descent method or its variants as the optimization

algorithm. These methods are widely used in various models,

but its shortcomings are also obvious, the learning rate must

be shrunk to compensate for even stronger curvature, as a

result, learning can become extremely slow. In this paper, we

will apply a dynamic loss decay weight to resist the stronger

curvature while keeping the learning rate constant. From this

we hope we can avoid the problem caused by the increase of

𝑔𝛵𝐻𝑔 during training, exploring the relationship between

learning rate and gradient, and propose a theoretical analysis.

A. Implementation Method

Gradient descent is an optimization method that uses the

slope as computed by the derivative to move in the direction

of greatest negative gradient to iteratively update a variable.

That is, given an initial point 𝑥0, gradient descent proposes

the next point to be:

 𝑥 = 𝑥0 − 𝜂
𝑑𝐿

𝑑𝑥0

 (1)

When η is the learning rate, it can be seen that our method

changed the size of
𝑑𝐿

𝑑𝑥0
. There is an easy way to implement

this method, loss (cost) is calculated in most machine

learning frameworks [14], [15], changing the weight of loss is

equal to changing the weight of the gradient if there are

without special training tricks. Since the derivation process

will indirectly lead to changes in the gradient, and the

purpose of the decay loss is also to adjust the gradient,

gradient weights are used instead of loss in the following

sections. So we use gradient decay strategy to instead of loss

decay for paper’s preciseness.

III. EXPERIMENT AND ANALYSIS

In this section, we will use a lot of space on image

classification to explain our method, and then we will verify

our conclusions on semantic segmentation and GANs.

A. Image Classification

As we all know, deep neural networks (DNNs) are a

complex and non-convex function, Goodfellow et al. [16]

introduced neural network optimization states:

In the late stage of optimization, learning will become very

slow despite the presence of a strong gradient because the

learning rate must be shrunk to compensate for even stronger

curvature.

(a): Improved weighting strategy for death convergence.

(b): Network results on two improved schedules.

Fig. 3. Further investigation into death convergence.

In Fig. 2(b), when using linear decrease strategy (Fig. 2(a)),

the model has a very amazing boost at about the last 10

epochs when using a fixed learning rate schedule, we called it

“Death Convergence”. When we look back equation 1, both

the learning rate and gradient determine the next update, but

in this paper, we find that the gradient is more effective than

the learning rate, because decay learning rate will cause the

International Journal of Machine Learning and Computing, Vol. 9, No. 3, June 2019

268

convergence be slower, but decay gradient will alleviate this

problem. Jiakai. Wei [13] explains that applying weights to

gradients can slow down the problems caused by hessian

matrix with ill-conditioning.

(a): new weighting strategy for death convergence.

(b): Network results on new weighting strategy.

(c): comparison of three different methods.

(d): comparing the relationship between gradient weight strategy and

learning rate strategy.

Fig. 4. Further investigation into gradient weight strategy.

According to the linear decrease rule in Fig. 2(a), the

gradient weights of the last 10 epoch are between 0.2 and 0.

For further exploration, we designed a long tail relaxation

schedule and linear decrease schedule with a maximum value

of 3, as shown in Fig. 3. But it didn’t bring any effect, the

model still improved rapidly in the last 10 epochs, regardless

of the weight of the last 10 epochs. In order for researchers to

simply reproduce the phenomenon of death convergence, we

will provide the pytorch [17] version code in

https://github.com/leemathew1998/GradientWeight.

1) Theoretical analysis

It can be noted in Fig. 3(b) that the phenomenon of death

convergence does not occur exactly on the last 10 epochs, but

it seems to start inadvertently. The following assumption is

crucial to the analysis:

Assumption: We can assume that when the gradient is

enough reduced to break the current training deadlock, death

convergence can be turned on.

The most common training method is when the model

stops converge is to decay the learning rate, which factor is

typically 0.1. When decay two or three times, the model

becomes unable to converge through the decay learning rate,

normally, this means that training can be stop. In this paper,

by using gradient weight strategy, the model can automati-

cally decide the time to start death convergence, this also

reduced the burden on researchers. To explain the death

convergence, we can start with the second-order Taylor series

expansion of the cost function:

 𝑓 𝑥 ≈ 𝑓 𝑥0 − 𝜂𝑔𝛵𝑔 +
1

2
𝜂2𝑔𝛵𝐻𝑔 (2)

Goodfellow et al. [16] states: There are three terms here:

the original value of the function, the expected improvement

due to the slope of the function, and the correction we must

apply to account for the curvature of the function. In many

cases, the gradient norm does not shrink significantly

throughout learning, but the 𝑔𝛵𝐻𝑔 term grows by more than

an order of magnitude.

When the model has been oscillating without any

performance improvement, it can be considered that 𝑔𝛵𝐻𝑔 is

already large enough to affect convergence. The result is that

learning becomes very slow despite the presence of a strong

gradient, and the model will continue to oscillate. For that the

gradient weighting strategy has come to the fore, on the

premise of no loss of convergence speed, it not only reduces

the instability caused by gradient noise, but also makes the

model break the current deadlock and converge further.

This raises a problem: Whether this method can be

approximated to adjust the learning rate? The answer is

negative. In Fig. 4(d), we apply the linear decrease schedule,

which used on the loss, to the learning rate, it can be seen that

there is a significant difference between them, and it is also

verified that the gradient weight strategy does not improve by

indirectly adjusting the learning rate.

Or a more direct explanation: In the normal training

process, we only change the learning rate, and the value of the

weight decay is a constant, but in this paper, we change the

weight so that the gradient gradually decreases while the

value of the weight decay is constantly changing. This little

change has also triggered our thinking. Why do we need a

constant value for weight decay instead of a changed value?

International Journal of Machine Learning and Computing, Vol. 9, No. 3, June 2019

269

https://github.com/leemathew1998/GradientWeight.

Why weight decay does not change with the learning rate? In

the future, these issues can be studied in depth.

2) Comparison of results

Based on the above analysis, we have designed a new

weighting strategy in Fig. 4(a), Fig. 4(b) shows a comparison

of this method with the piecewise constant learning rate

schedule. From the figure we can see that the model with the

gradient weight strategy can converge better, the final result

is 1% better than the piecewise constant learning rate sche-

dule. Fig. 4(c) shows the convergence of the model we

specified in 50 epochs, we can see that the death convergence

played a decisive role in the final stage, leading the second

place by nearly 2%.

B. Semantic Segmentation

Semantic segmentation with the goal to assign semantic

labels to every pixel in an image [18] is one of the funda-

mental topics in computer vision. Deep convolutional neural

networks [19] based on the Fully Convolutional Neural

Network [20] show striking improvement over systems re-

lying on hand-crafted features [21]-[23] on benchmark tasks.

Fig. 5. Model performance when used PSPNet for test.

Fig. 6. Visualization result on maps and cityscapes, from left to right are input, original method, gradient weight, ground truth respectively.

International Journal of Machine Learning and Computing, Vol. 9, No. 3, June 2019

270

This experiment contains 20 foreground object classes and

one background class, dataset [18] contains 1,464 (train),

1,449 (val), and 1,456 (test) pixel-level annotated images.

The performance is measured in terms of pixel

intersection-over-union averaged across the 21 classes

(mIOU), but the commonly used extra annotations datasets

[24] will not be used to improve accuracy. Inspired by

Hariharan et al. [25], we use the “poly” learning rate policy

that the current learning rate equals to the base one

multiplying (1 −
𝑖𝑡𝑒𝑟

max ⁡_𝑖𝑡𝑒𝑟
)𝑝𝑜𝑤𝑒𝑟 . We set the base power to

0.9, we use the random mirror for data augmentation.

Inspired by Szegedy et al. [18], we set the momentum to 0.95,

learning rate to 0.001, and experiment with the PSPNet [26].

From Table I and Fig. 6, it is concluded that the gradient

weight strategy can converge faster and better.

But it is very intuitive to feel that the Mean-IOU of this

article does not meet the highest standards, the main reason is

that all the experiments in this article are run on a GTX1060

graphics card. In the future, we will test in a more powerful

GPU.

TABLE I: THIS EXPERIMENT USES PSPNET101 SETS THE BATCH SIZE IS 4

AND THE CROP SIZE IS 224×224, RUNNING ON A SINGLE GTX1060

Method Mean IOU

Baseline 62.13%

Gradient Weight 63.56%

C. GAN

Generative Adversarial Networks (GANs) [27], [28] have

achieved impressive results in image generation [29], and

representation learning [30]. The key to GANs’ success is the

idea of an adversarial loss that forces the generated images to

be, in principle, indistinguishable from real images. This is

particularly powerful for image generation tasks, as this is

exactly the objective that much of computer graphics aims to

optimize. GANs learn a loss that tries to classify if the output

image is real or fake, while simultaneously training a

generative model to minimize this loss. Blurry images will

not be tolerated since they look obviously fake. Because

GANs learn a loss that adapts to the data, they can be applied

to a multitude of tasks that traditionally would require very

different kinds of loss functions.

We used the excellent pix2pix [31] network to experiment.

In Fig. 5, it can be seen clearly that our method can generate

clearer and more realistic images than usual, especially on the

map dataset, the color produced by the gradient weight

strategy is more realistic. In all the experiments in this paper,

GAN is a very intuitive demonstration of the improvements

brought by the gradient weight strategy.

In generating tasks, we accord the method mentioned in

the paper to do our experiments. We apply the Adam solver

[32], with learning rate 0.0002, and momentum parameters

β1 = 0.9, β2 = 0.999, we trained the network for 200 epochs,

please refer to the original paper for details.

IV. CONCLUSION

The results in this paper presented the benefits of the

gradient weight strategy, apply a weight less than 1 to the

gradient at the end of the training, usually have 1 to 2 percent

improvement in the field of image classification, 1 percent

improvement in the field of semantic segmentation, generate

clearer and more realistic images in GAN, prove the

feasibility of gradient weight strategy in the field of computer

vision. And found that this method unique death convergence

phenomenon can converge faster and better, the experimental

results prove that it is more effective than adjusting the

learning rate.

V. LIMITATION AND FUTURE WORK

The most obvious drawback is that we don't have enough

machines to get the model to the top performance, but the

conclusions we have made as far as possible from a fair

experiment are still convincing. Another drawback is even

more obvious, that is, we did not present a convincing

mathematical explanation, just the explanation based on the

experimental results does not satisfy us.

This article is far from over, not to mention that the above

two drawbacks can be improved, we can also design a new

gradient weight strategy for model training. And it’s not in all

experiments that this strategy can lead to improvement, for

example, in GAN experiment, there are many models that

produce similar or difficult results to determine which model

is better, but this is also a disadvantage of generative

adversarial networks itself. In addition, all of the above

experiments belong to the field of computer vision, and we

are not sure how it works in other fields.

ACKNOWLEDGEMENT

Even though there are too many places to improve, but I

still want to thank my classmate Pengsheng Xu for modifying

the mistakes in this article. He was extremely patient and kind,

without his help, I will not be able to complete this article,

when everyone is not optimistic, support me as always. Thus,

I would like to wish him a brilliant career life.

I hope this paper will not be the end of my academic

thinking, although I am still very interested in the whole

machine learning field, the reality is very cruel. If I still insist

on academic research after five years, I will thank myself for

being able to withstand the pressure. If not, I will respect

every decision I make.

REFERENCES

[1] Y. L. Cun, “Efficient backprop,” Neural Networks Tricks of the Trade,

vol. 1524, no. 1, pp. 9–50, 1998.

[2] L. N. Smith, Cyclical Learning Rates for Training Neural Networks.
arXiv:1506.01186, 2015.

[3] L. N. Smith and N. Topin, Super-Convergence: very Fast Training of

Residual Networks Using Large Learning Rates, 2017.
[4] C. Xing, D. Arpit, C. Tsirigotis, and Y. Bengio, A Walk with SGD,

2018.

[5] T. Tieleman and G. Hinton. “Coursera: Neural network for machine
learning,” Lecture 6.5 – RMSProp, 2012.

[6] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for

online learning and stochastic optimization,” Journal of Machine
Learning Research, vol. 12, pp. 2121–2159, 2011.

[7] K. M. He, X. Y. Zhang, S. Q. Ren, and J. Sun, “Deep residual learning

for image recognition,” in Proc. CVPR, 2016, pp. 770–778.
[8] D. Amodei, R. Anubhai, E. Battenberg et al., “Deep speech 2:

End-to-end speech recognition in english and mandarin,” Computer

Science, 2015.
[9] M. T. Luong, H. Pham, and C. D. Manning, “Effective approaches to

attention-based neural machine translation,” Computer Science, 2015.

[10] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,

“Rethinking the inception architecture for computer vision,” in Proc.

International Journal of Machine Learning and Computing, Vol. 9, No. 3, June 2019

271

[12] Y. Bengio, “Practical recommendations for gradient-based training of

deep architectures,” Neural Networks: Tricks of the Trade, vol. 7700,
pp. 437–478, Springer, 2012.

[13] J. K. Wei, Faster, Better Training Trick — Random Gradient,

arXiv:1808.04293.

[14] M. Abadi, A. Agarwal, P. Barham et al., Tensorflow: Large-scale

Machine Learning on Heterogeneous Distributed Systems, 2015.
[15] T. Q. Chen, M. Li et al., Mxnet: A flexible and Efficient Machine

Learning Library for Heterogeneous Distributed Systems, 2017.

[16] I. Goodfellow, Y. Bengio, and A. Courville. (2016). Deep Learning.
MIT Press. [Online]. Available: http://www.deeplearningbook.org

[17] A. Paszke, S. Gross, S. Chintala et al., Automatic Differentiation in

Pytorch, 2017.
[18] M. Everingham, L. V. Gool, C. K. I. Williams, J. Winn, and A.

Zisserman, “The pascal visual object classes (voc) challenge,”

International Journal of Computer Vision, vol. 88, no. 2, pp. 303–338,
2010.

[19] L. Bottou, Y. Bengio et al., “Gradient-based learning applied to

document recognition,” in Proc. IEEE, 1998.

[20] P. Sermanet, D. Eigen, X. Zhang et al., “Overfeat: Integrated

recognition, localization and detection using convolutional networks,”

in ICLR, 2014.
[21] X. He, R. S. Zemel, and M. Carreira-Perpindn, “Multiscale conditional

random fields for image labeling,” in Proc. CVPR, 2004.

[22] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in Proc. ICLR, 2015.

[23] C. Szegedy, W. Liu et al., “Going deeper with convolutions,” in Proc.

CVPR, 2015.

[24] M. Cordts, M. Omran, S. Ramos et al., “The cityscapes dataset for

semantic urban scene understanding,” in Proc. IEEE Conference on

Computer Vision and Pattern Recognition, 2016, pp. 3213–3223.
[25] B. Hariharan, P. Arbelaez, L. Bourdev, S. Maji, and J. Malik,

“Semantic contours from inverse detectors,” in Proc. ICCV, 2011.

[26] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proc. CVPR, 2017.

[27] I. J. Goodfellow, M. Mirza, B. Xu et al., “Generative adversarial nets,”

in Proc. International Conference on Neural Information Processing
Systems, 2014, pp. 2672–2680.

[28] J. Zhao, M. Mathieu, and Y. LeCun, “Energy-based generative

adversarial network,” in Proc. ICLR, 2017.
[29] E. Denton, S. Chintala, A. Szlam, and R. Fergus, Deep Generative

Image Models Using a Laplacian Pyramid of Adversarial Networks, pp.

1486–1494, 2015.
[30] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and

X. Chen. (2016). Improved techniques for training GANs. Cornell

University. [Online]. Available: https://arxiv.org/pdf/1606.03498.pdf
[31] P. Isola, J.-Y. Zhu, T.-H. Zhou, and A. A. Efros, “Image-to-image

translation with conditional adversarial networks,” Journal of Machine

Learning Research, 2016.
[32] D. Kingma and J. Ba, Adam: A method for stochastic optimization,” in

Proc. ICLR, 2015.

Jiakai Wei was born in Shan Dong, China in 1998.

He is currently a student at the Hunan University of

Technology. He is an undergraduate student. His main
research interest is optimization algorithms.

International Journal of Machine Learning and Computing, Vol. 9, No. 3, June 2019

272

IEEE Conference on Computer Vision and Pattern Recognition, 2016b

pp. 2818–2826.

[11] G. E. Hinton, “A practical guide to training restricted boltzmann
machines,” Momentum, vol. 9, no. 1, pp. 599–619, 2012.

http://www.deeplearningbook.org/

