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Abstract—In the usual deep neural network optimization 

process, the learning rate is the most important hyper 

parameter, which greatly affects the final convergence effect. 

The purpose of learning rate is to control the stepsize and 

gradually reduce the impact of noise on the network. In this 

paper, we will use a fixed learning rate with method of decaying 

loss to control the magnitude of the update. We used Image 

classification, Semantic segmentation, and GANs to verify this 

method. Experiments show that the loss decay strategy can 

greatly improve the performance of the model. 

 
Index Terms—Deep learning, optimization. 

 

I. INTRODUCTION 

While deep neural networks have achieved amazing suc-

cesses in a range of applications, how to understand its in-

ternal principles is still an open and active area of research. In 

order to train a model, we need to set a series of hyper pa-

rameters, a simple way is to use grid search to find the best 

value, no doubt it will greatly increase the training time. 

Maybe we’ll choose parameters based on our own empirical, 

but it’s too difficult to beginners, and this is one of the rea-

sons why deep learning is called black box. 

For learning rate, a typical training strategy is piecewise 

constant strategy [1], until [2], [3] proposed that cyclical 

learning rates can effectively accelerate convergence, after 

that [4] proposed trapezoid schedule can be further improved. 

Understanding that adapting the learning rate is a good thing 

to do, particularly on a per parameter basis dynamically, led 

to the development of a family of widely-used optimizers 

including [5], [6]. However, a persisting commonality of 

these methods is that they are parameterized by a “pesky” 

fixed global learning rate hyperparameter which still needs 

tuning. 

In this paper, we’re going to use an unprecedented way to 

solve this problem, which we named “Loss Decay”. By 

applying a dynamic weight to the loss (Also called cost, it 

usually can be derived from the cost function in the model 

training phase.) can avoid gradient vanishing/exploding. Fig. 

1 provides a comparison of test accuracies from a loss decay 

and normal training regime for Cifar-10, both using a 

network that is extremely deep and no skip connections. The 

loss decay strategy experiment uses a linear decrease 

schedule (see Fig. 2(a)) from 2 to 0, it can be concluded from 

the experiment that the loss decay strategy can effectively 

propagate the gradient and improve performance when the 

model becomes deeper. The contributions of this paper are: 

 We propose to use loss decay strategy to adjust the 

gradient size, it can make the model converge at a fixed 

learning rate. 
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 Loss decay strategy can speed up convergence and 

improve model accuracy, we demonstrate its superiority 

through image classification, semantic segmentation, 

and GANs. 

 

 
(a): The network is 40 layers and no residual connection. 

 

 
(b): The network is 50 layers and no residual connection. 

Fig. 1. Loss decay represents the method proposed in this paper, it can be 
seen from the figure that the effect is more obvious when the network depth 

increases. 

 

II. BACKGROUND 

Since deep learning entered the field of vision in 2012, 

researchers have been challenging various fields, such as 

object recognition from images [7]; speech recognition [8]; 

natural language processing [9], whether it is the network 

structure [10] or the optimization algorithm [5], [11] has a 

great improvement. 

But we still face the "alchemy" problem, one of which is 

that the deep neural network has many hyper parameters need 

to be adjusted. In nearly all gradient descent algorithms the 

choice of learning rate remains central to efficiency; 

Reference [12] asserts that it is “often the single most 

important hyper-parameter and that it always should be 

tuned.” This is because choosing to follow your gradient 

signal by something other than the right amount, either too 

much or too little, can be very costly in terms of how fast the 

overall descent procedure achieves a particular level of 

objective value. 

Forget the Learning Rate, Decay Loss 
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(a): Linear decrease schedule designed for the loss in this paper. 

 

 
(b): Comparison of gradient weight invariance and linear decrease when 

fixed poly decay strategy 

Fig. 2. “LD” stands for linear decrease strategy, “ poly” represents poly-
nomial learning rate decay strategy. 

 

JK. Wei [13] shows that the “random gradient” method 

which multiply the gradient by a random number from 0 to 1 

can effectively avoid the oscillation of the optimization 

process. But they did not propose a theoretical explanation, 

and multiplying the gradient by a random number is too 

mysterious. This paper gave us the initial inspiration, we will 

compare this method in subsequent section. 

In ordinary training process, we usually use the stochastic 

gradient descent method or its variants as the optimization 

algorithm. These methods are widely used in various models, 

but its shortcomings are also obvious, the learning rate must 

be shrunk to compensate for even stronger curvature, as a 

result, learning can become extremely slow. In this paper, we 

will apply a dynamic loss decay weight to resist the stronger 

curvature while keeping the learning rate constant. From this 

we hope we can avoid the problem caused by the increase of 

𝑔𝛵𝐻𝑔  during training, exploring the relationship between 

learning rate and gradient, and propose a theoretical analysis.  

A. Implementation Method 

Gradient descent is an optimization method that uses the 

slope as computed by the derivative to move in the direction 

of greatest negative gradient to iteratively update a variable. 

That is, given an initial point 𝑥0, gradient descent proposes 

the next point to be: 

 𝑥 = 𝑥0 − 𝜂
𝑑𝐿

𝑑𝑥0

  (1) 

When η is the learning rate, it can be seen that our method 

changed the size of  
𝑑𝐿

𝑑𝑥0
. There is an easy way to implement 

this method, loss (cost) is calculated in most machine 

learning frameworks [14], [15], changing the weight of loss is 

equal to changing the weight of the gradient if there are 

without special training tricks. Since the derivation process 

will indirectly lead to changes in the gradient, and the 

purpose of the decay loss is also to adjust the gradient, 

gradient weights are used instead of loss in the following 

sections. So we use gradient decay strategy to instead of loss 

decay for paper’s preciseness. 

 

III. EXPERIMENT AND ANALYSIS 

In this section, we will use a lot of space on image 

classification to explain our method, and then we will verify 

our conclusions on semantic segmentation and GANs. 

A. Image Classification 

As we all know, deep neural networks (DNNs) are a 

complex and non-convex function, Goodfellow et al. [16] 

introduced neural network optimization states: 

In the late stage of optimization, learning will become very 

slow despite the presence of a strong gradient because the 

learning rate must be shrunk to compensate for even stronger 

curvature. 

 

 
(a): Improved weighting strategy for death convergence. 

 
(b): Network results on two improved schedules. 

Fig. 3. Further investigation into death convergence. 

 

In Fig. 2(b), when using linear decrease strategy (Fig. 2(a)), 

the model has a very amazing boost at about the last 10 

epochs when using a fixed learning rate schedule, we called it 

“Death Convergence”. When we look back equation 1, both 

the learning rate and gradient determine the next update, but 

in this paper, we find that the gradient is more effective than 

the learning rate, because decay learning rate will cause the 
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convergence be slower, but decay gradient will alleviate this 

problem. Jiakai. Wei [13] explains that applying weights to 

gradients can slow down the problems caused by hessian 

matrix with ill-conditioning. 

 

 
(a): new weighting strategy for death convergence. 

 
(b): Network results on new weighting strategy. 

 
(c): comparison of three different methods. 

 
(d): comparing the relationship between gradient weight strategy and 

learning rate strategy. 

Fig. 4. Further investigation into gradient weight strategy. 

According to the linear decrease rule in Fig. 2(a), the 

gradient weights of the last 10 epoch are between 0.2 and 0. 

For further exploration, we designed a long tail relaxation 

schedule and linear decrease schedule with a maximum value 

of 3, as shown in Fig. 3. But it didn’t bring any effect, the 

model still improved rapidly in the last 10 epochs, regardless 

of the weight of the last 10 epochs. In order for researchers to 

simply reproduce the phenomenon of death convergence, we 

will provide the pytorch [17] version code in 

https://github.com/leemathew1998/GradientWeight. 

1) Theoretical analysis 

It can be noted in Fig. 3(b) that the phenomenon of death 

convergence does not occur exactly on the last 10 epochs, but 

it seems to start inadvertently. The following assumption is 

crucial to the analysis: 

Assumption: We can assume that when the gradient is 

enough reduced to break the current training deadlock, death 

convergence can be turned on. 

The most common training method is when the model 

stops converge is to decay the learning rate, which factor is 

typically 0.1. When decay two or three times, the model 

becomes unable to converge through the decay learning rate, 

normally, this means that training can be stop. In this paper, 

by using gradient weight strategy, the model can automati-

cally decide the time to start death convergence, this also 

reduced the burden on researchers. To explain the death 

convergence, we can start with the second-order Taylor series 

expansion of the cost function: 

 𝑓 𝑥 ≈ 𝑓 𝑥0 −  𝜂𝑔𝛵𝑔 + 
1

2
𝜂2𝑔𝛵𝐻𝑔 (2) 

Goodfellow et al. [16] states: There are three terms here: 

the original value of the function, the expected improvement 

due to the slope of the function, and the correction we must 

apply to account for the curvature of the function. In many 

cases, the gradient norm does not shrink significantly 

throughout learning, but the 𝑔𝛵𝐻𝑔 term grows by more than 

an order of magnitude. 

When the model has been oscillating without any 

performance improvement, it can be considered that 𝑔𝛵𝐻𝑔 is 

already large enough to affect convergence. The result is that 

learning becomes very slow despite the presence of a strong 

gradient, and the model will continue to oscillate. For that the 

gradient weighting strategy has come to the fore, on the 

premise of no loss of convergence speed, it not only reduces 

the instability caused by gradient noise, but also makes the 

model break the current deadlock and converge further. 

This raises a problem: Whether this method can be 

approximated to adjust the learning rate? The answer is 

negative. In Fig. 4(d), we apply the linear decrease schedule, 

which used on the loss, to the learning rate, it can be seen that 

there is a significant difference between them, and it is also 

verified that the gradient weight strategy does not improve by 

indirectly adjusting the learning rate.  

Or a more direct explanation: In the normal training 

process, we only change the learning rate, and the value of the 

weight decay is a constant, but in this paper, we change the 

weight so that the gradient gradually decreases while the 

value of the weight decay is constantly changing. This little 

change has also triggered our thinking. Why do we need a 

constant value for weight decay instead of a changed value? 
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Why weight decay does not change with the learning rate? In 

the future, these issues can be studied in depth. 

2) Comparison of results 

Based on the above analysis, we have designed a new 

weighting strategy in Fig. 4(a), Fig. 4(b) shows a comparison 

of this method with the piecewise constant learning rate 

schedule. From the figure we can see that the model with the 

gradient weight strategy can converge better, the final result 

is 1% better than the piecewise constant learning rate sche-

dule. Fig. 4(c) shows the convergence of the model we 

specified in 50 epochs, we can see that the death convergence 

played a decisive role in the final stage, leading the second 

place by nearly 2%. 

B. Semantic Segmentation 

Semantic segmentation with the goal to assign semantic 

labels to every pixel in an image [18] is one of the funda-

mental topics in computer vision. Deep convolutional neural 

networks [19] based on the Fully Convolutional Neural 

Network [20] show striking improvement over systems re-

lying on hand-crafted features [21]-[23] on benchmark tasks. 

 

 
Fig. 5. Model performance when used PSPNet for test. 

 

   
 

 
   

    

    

    

    
Fig. 6. Visualization result on maps and cityscapes, from left to right are input, original method, gradient weight, ground truth respectively. 
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This experiment contains 20 foreground object classes and 

one background class, dataset [18] contains 1,464 (train), 

1,449 (val), and 1,456 (test) pixel-level annotated images. 

The performance is measured in terms of pixel 

intersection-over-union averaged across the 21 classes 

(mIOU), but the commonly used extra annotations datasets 

[24] will not be used to improve accuracy. Inspired by 

Hariharan et al. [25], we use the “poly” learning rate policy 

that the current learning rate equals to the base one 

multiplying (1 − 
𝑖𝑡𝑒𝑟

max ⁡_𝑖𝑡𝑒𝑟
)𝑝𝑜𝑤𝑒𝑟 . We set the base power to 

0.9, we use the random mirror for data augmentation. 

Inspired by Szegedy et al. [18], we set the momentum to 0.95, 

learning rate to 0.001, and experiment with the PSPNet [26]. 

From Table I and Fig. 6, it is concluded that the gradient 

weight strategy can converge faster and better. 

But it is very intuitive to feel that the Mean-IOU of this 

article does not meet the highest standards, the main reason is 

that all the experiments in this article are run on a GTX1060 

graphics card. In the future, we will test in a more powerful 

GPU. 

 
TABLE I: THIS EXPERIMENT USES PSPNET101 SETS THE BATCH SIZE IS 4 

AND THE CROP SIZE IS 224×224, RUNNING ON A SINGLE GTX1060 

Method Mean IOU 

Baseline 62.13% 

Gradient Weight 63.56% 

 

C. GAN 

Generative Adversarial Networks (GANs) [27], [28] have 

achieved impressive results in image generation [29], and 

representation learning [30]. The key to GANs’ success is the 

idea of an adversarial loss that forces the generated images to 

be, in principle, indistinguishable from real images. This is 

particularly powerful for image generation tasks, as this is 

exactly the objective that much of computer graphics aims to 

optimize. GANs learn a loss that tries to classify if the output 

image is real or fake, while simultaneously training a 

generative model to minimize this loss. Blurry images will 

not be tolerated since they look obviously fake. Because 

GANs learn a loss that adapts to the data, they can be applied 

to a multitude of tasks that traditionally would require very 

different kinds of loss functions. 

We used the excellent pix2pix [31] network to experiment. 

In Fig. 5, it can be seen clearly that our method can generate 

clearer and more realistic images than usual, especially on the 

map dataset, the color produced by the gradient weight 

strategy is more realistic. In all the experiments in this paper, 

GAN is a very intuitive demonstration of the improvements 

brought by the gradient weight strategy. 

In generating tasks, we accord the method mentioned in 

the paper to do our experiments. We apply the Adam solver 

[32], with learning rate 0.0002, and momentum parameters 

β1 = 0.9, β2 = 0.999, we trained the network for 200 epochs, 

please refer to the original paper for details. 

 

IV. CONCLUSION 

The results in this paper presented the benefits of the 

gradient weight strategy, apply a weight less than 1 to the 

gradient at the end of the training, usually have 1 to 2 percent 

improvement in the field of image classification, 1 percent 

improvement in the field of semantic segmentation, generate 

clearer and more realistic images in GAN, prove the 

feasibility of gradient weight strategy in the field of computer 

vision. And found that this method unique death convergence 

phenomenon can converge faster and better, the experimental 

results prove that it is more effective than adjusting the 

learning rate. 

 

V. LIMITATION AND FUTURE WORK 

The most obvious drawback is that we don't have enough 

machines to get the model to the top performance, but the 

conclusions we have made as far as possible from a fair 

experiment are still convincing. Another drawback is even 

more obvious, that is, we did not present a convincing 

mathematical explanation, just the explanation based on the 

experimental results does not satisfy us. 

This article is far from over, not to mention that the above 

two drawbacks can be improved, we can also design a new 

gradient weight strategy for model training. And it’s not in all 

experiments that this strategy can lead to improvement, for 

example, in GAN experiment, there are many models that 

produce similar or difficult results to determine which model 

is better, but this is also a disadvantage of generative 

adversarial networks itself. In addition, all of the above 

experiments belong to the field of computer vision, and we 

are not sure how it works in other fields. 
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