
  

 

Abstract—The basic idea of secret sharing is that a dealer  

distributes a piece of information about a secret to each 

participant in such a way that authorized subsets of 

participants can reconstruct the secret but unauthorized 

subsets of participants cannot determine the secret. We propose 

a new secret sharing scheme realizing general access structures, 

which is based on authorized subsets. The proposed scheme is 

perfect and can reduce the number of shares distributed to one 

specified participant. In the implementation of secret sharing 

schemes for general access structures, an important issue is the 

number of shares distributed to each participant. We can apply 

the proposed scheme to the same access structure recursively.  

That is, the proposed scheme can reduce the number of shares 

distributed to another participant once again by applying the 

proposed scheme recursively. We apply the proposed scheme to 

all access structures on five participants in order to evaluate the 

efficiency of the proposed scheme.  

 

Index Terms—Secret sharing scheme, general access 

structure, (𝒌, 𝒏)-threshold scheme. 

 

I. INTRODUCTION 

In 1979, Blakley and Shamir independently introduced the 

concept of secret sharing [1], [2]. In Shamir's 

(𝑘, 𝑛)-threshold scheme [1], every group of 𝑘  participants 

can recover the secret 𝐾 , but no group of less than 𝑘 

participants can get any information about the secret from 

their shares. The collection of all authorized subsets of 

participants is called the access structure. A (𝑘, 𝑛)-threshold 

scheme can only realize particular access structures that 

contain all subsets of 𝑘 or more participants. 

Secret sharing schemes realizing more general access 

structures than that of a threshold scheme were studied by 

numerous authors. Koyama proposed secret sharing schemes 

for multi-groups [3]. Simmons studied secret sharing 

schemes realizing multilevel access structures [4], [5]. 

Subsequently, Tassa proposed a hierarchical threshold 

scheme using polynomial derivatives [6]. Farrás and Padró 

formalized the concept of hierarchical access structure [7]. 

Secret sharing schemes based on graph access structures 

were also proposed [8]-[10]. These schemes obtain the 

optimal information rates for some access structures, but 

these schemes cannot be applied to many access structures. 

On the other hand, Ito, Saito and Nishizeki proposed a 

secret sharing scheme for general access structures and 

showed an explicit share assignment algorithm for any access 
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structure [11]. Their scheme can realize an arbitrary access 

structure by assigning one or more shares to each participant. 

Benaloh and Leichter proposed a secret sharing scheme for 

general access structures based on a monotone-circuit [12]. 

Secret sharing schemes which have an explicit assignment 

algorithm for any access structure are categorized by two 

types. One type is schemes based on unauthorized subsets 

[11], [13], [14]. Another type is schemes based on authorized 

subsets [12], [15], [16].  

In the implementation of secret sharing schemes for 

general access structures, an important issue is the number of 

shares distributed to each participant. Obviously, a scheme 

constructed of small shares is desirable. However, in general, 

the proposed secret sharing schemes for general access 

structures are impractical in this respect when the size of the 

access structure is very large. 

In this paper, we modify Benaloh and Leichter's scheme 

[12] and propose a new secret sharing scheme realizing 

general access structures, which is based on authorized 

subsets. The proposed scheme is perfect and can reduce the 

number of shares distributed to one specified participant. We 

can apply the proposed scheme to the same access structure 

recursively. That is, the proposed scheme can reduce the 

number of shares distributed to another participant once 

again by applying the proposed scheme recursively. We show 

that the proposed scheme is more efficient than or equal to 

Benaloh and Leichter's scheme [12] for any access structure. 

Furthermore, we show that the proposed scheme is more 

efficient than or equal to Ito, Saito and Nishizeki's scheme 

[11] for all 180 access structures on five participants. 

 

II. PRELIMINARIES 

A. Secret Sharing Scheme 

Let 𝒫 = {𝑃1, 𝑃2, … , 𝑃𝑛 }  be a set of 𝑛  participants. Let 

𝐷(∉ 𝒫) denote a dealer who selects a secret and distributes a 

share to each participant. Let 𝒦 and 𝒮 denote a secret set and 

a share set, respectively. For sets 𝐴  and 𝐵 , we denote a 

difference set by 𝐴 − 𝐵. The access structure Γ(⊂ 2𝒫) is the 

family of subsets of 𝒫 which contains the sets of participants 

qualified to recover the secret. For any authorized subset 

𝐴 ∈ Γ , any superset of 𝐴 is also an authorized subset. Hence, 

the access structure should satisfy the monotone property: 

 

𝐴 ∈ Γ, 𝐴 ⊂ 𝐴′ ⊂ 𝒫 ⟹ 𝐴′ ∈ Γ. 
 

Let  Γ0 be a family of the minimal sets in Γ, called the 

minimal access structure. Γ0 is denoted by 

 

Γ0 = {𝐴 ∈ Γ ∶  𝐴′ ⊄ 𝐴 for all 𝐴′ ∈ Γ − {𝐴}}. 
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For any access structure Γ , there is a family of sets 

Γ̅ = 2𝒫 − Γ. Γ̅ contains the sets of participants unqualified to 

recover the secret. The family of maximal sets in Γ̅ is denoted 

by Γ̅1.  That is, 

 

Γ̅1 = {𝐵 ∈  Γ̅ ∶  𝐵 ⊄ 𝐵′ for all 𝐵′ ∈  Γ̅ − {𝐵}}. 
 

Let 𝑝𝒦 be a probability distribution on 𝒦. Let 𝑝𝒮(𝐴) be a 

probability distribution on the shares 𝒮(𝐴) given  to a subset 

𝐴 ⊂ 𝒫 . Usually a secret 𝐾  is chosen from 𝒦  with the 

uniform distribution. A secret sharing scheme is perfect if 

 

𝐻(𝐾|𝐴) = {
0            (if 𝐴 ∈ Γ) 
𝐻(𝐾)    (if 𝐴 ∉ Γ),

 

 

where 𝐻(𝐾) and 𝐻(𝐾|𝐴) denote the entropy of 𝑝𝒦  and the 

conditional entropy defined by the joint probability 

distribution 𝑝𝒦×𝒮(𝐴), respectively. 

In general, the efficiency of a perfect secret sharing 

scheme is measured by the information rate 𝜌 [17] defined as 

 

𝜌 = min{𝜌𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛}, 
 

𝜌𝑖 =
log|𝒦|

log |𝒮(𝑃𝑖)|
                   

 

where 𝒮(𝑃𝑖) denotes the set of possible shares that 𝑃𝑖 might 

receive. Obviously, a high information rate is desirable. A 

perfect secret sharing scheme is ideal  if 𝜌 = 1. Throughout 

the paper, 𝑝 is a large prime, and  let 𝑍𝑝 be a finite field with 

𝑝 elements. In this paper,  we assume 𝒦 = 𝒮 = 𝑍𝑝. 

B. Shamir's Threshold Scheme 

Shamir's (𝑘, 𝑛)-threshold scheme is described as follows 

[1]: 

1) A dealer 𝐷 chooses 𝑛 distinct nonzero elements of 𝑍𝑝, 

denoted by 𝑥1, 𝑥2, ⋯ , 𝑥𝑛. The values 𝑥𝑖 are public. 

2) Suppose 𝐷 wants to share a secret 𝐾 ∈ 𝑍𝑝, 𝐷 chooses 

𝑘 − 1  elements 𝑎1, 𝑎2, ⋯ , 𝑎𝑘−1  from 𝑍𝑝 

independently with the uniform distribution. 

3) 𝐷  distributes the share 𝑠𝑖 = 𝑓(𝑥𝑖) to 𝑃𝑖(1 ≤ 𝑖 ≤ 𝑛), 

where 

 

𝑓(𝑥) = 𝐾 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑘−1𝑥𝑘−1 

 

is a polynomial over 𝑍𝑝. 

It is known that Shamir's (𝑘, 𝑛) -threshold scheme is 

perfect and ideal [17], [18]. This implies that every 𝑘 

participants can recover the secret 𝐾, but no group of less 

than 𝑘  participants can get any information about the secret.  

The minimal access structure of (𝑘, 𝑛)-threshold scheme is 

described as follows: 

 

Γ0 = {𝐴 ∈ 2𝒫 ∶ |𝐴| = 𝑘}. 

C. Secret Sharing Scheme Based on Complete 

Multipartite Graph 

Let 𝒫 = {𝑃1, 𝑃2, ⋯ , 𝑃𝑛}. Suppose 𝒫 can be partitioned into 

subsets 𝑉1, ⋯ , 𝑉𝑙 and Γ0 can be formed by 

Γ0 = {{𝑥, 𝑦}: 𝑥 ∈ 𝑉𝑖 , 𝑦 ∈ 𝑉𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑙, 𝑖 ≠ 𝑗}. 

Then there is an ideal secret sharing scheme realizing the 

access structure. In this case, we can obtain a complete 

multipartite graph with vertex set 𝒫 and edge set Γ0. Actually, 

we can realize the access structure as follows. 

1) Compute 𝑙  shares 𝑠1, 𝑠2, ⋯ , 𝑠𝑙  by using a 

(2, 𝑙)-threshold scheme with 𝐾 as a secret. 

2) 𝑠𝑖 is assigned to each 𝑃 ∈ 𝑉𝑖 (1 ≤ 𝑖 ≤ 𝑙). 

D. General Secret Sharing Schemes 

For 𝒫 = {𝑃1, 𝑃2, ⋯ , 𝑃𝑛} , 𝐾 ∈ 𝒦  and Γ , Benaloh and 

Leichter’s scheme [12] is described as follows. 

Benaloh and Leichter’s scheme: 

1) Let Γ0 = {𝐴1, 𝐴2, ⋯ , 𝐴𝑚}. For 𝐴𝑖 ∈ Γ0, compute |𝐴𝑖| 
shares 

 

𝑠𝑖,1, 𝑠𝑖,2, ⋯ , 𝑠𝑖,|𝐴𝑖| 

 

by using  an (|𝐴𝑖|, |𝐴𝑖|)-threshold scheme with 𝐾 as a secret 

independently for 1 ≤ 𝑖 ≤ 𝑚. 

2) One distinct share from 

 

𝑠𝑖,1, 𝑠𝑖,2, ⋯ , 𝑠𝑖,|𝐴𝑖| 

 

is assigned to each 𝑃 ∈ 𝐴𝑖 (1 ≤ 𝑖 ≤ 𝑚). 

 

Example 1: For 𝒫 = {𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5} , consider the 

following access structure 

 

Γ0 = {𝐴1, 𝐴2, ⋯ , 𝐴7} 

 

where 

 

𝐴1 = {𝑃1, 𝑃2}, 

𝐴2 = {𝑃1, 𝑃3}, 

𝐴3 = {𝑃2, 𝑃3}, 

𝐴4 = {𝑃1, 𝑃4}, 

𝐴5 = {𝑃2, 𝑃4}, 

𝐴6 = {𝑃3, 𝑃5}, 

𝐴7 = {𝑃4, 𝑃5}. 

 

We shall realize this access structure by Benaloh and 

Leichter's scheme. In this case, shares are distributed as 

follows: 

 

𝑃1 ∶ 𝑠1,1, 𝑠2,1, 𝑠4,1, 

𝑃2 ∶ 𝑠1,2, 𝑠3,1, 𝑠5,1, 

𝑃3 ∶ 𝑠2,2, 𝑠3,2, 𝑠6,1,  

𝑃4 ∶ 𝑠4,2, 𝑠5,2, 𝑠7,1, 

𝑃5 ∶ 𝑠6,2, 𝑠7,2,   

 

where 𝑠𝑖,𝑗  is computed by using Shamir’s  

(|𝐴𝑖|, |𝐴𝑖|)-threshold scheme with 𝐾  as a secret (1 ≤ 𝑖 ≤
7, 1 ≤ 𝑗 ≤ |𝐴𝑖|). 

In this example, 14/5 shares are distributed on average. 

This scheme executes one threshold scheme for each minimal 

authorized subset. A disadvantage of this scheme is that the 

number of shares distributed to each participant becomes 

large as the size of Γ0 gets large. 

For 𝒫 = {𝑃1, 𝑃2, ⋯ , 𝑃𝑛} , 𝐾 ∈ 𝒦  and Γ , Ito, Saito and 

Nishizeki’s scheme [11] is described as follows. 

Ito, Saito and Nishizeki’s scheme: 

1) Let Γ̅1 = {𝐵1, 𝐵2, ⋯ , 𝐵𝑡}. Compute 𝑡(= |Γ̅1|) shares 
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𝑆 = {𝑤1, 𝑤2, ⋯ , 𝑤𝑡} 

 

for the secret 𝐾 by using Shamir’s (𝑡, 𝑡)-threshold scheme. 

2) Distribute shares to 𝑃𝑖 ∈ 𝒫 (1 ≤ 𝑖 ≤ 𝑛) according to 

the function 𝑔𝐼𝑆𝑁 ∶ 𝒫 → 2𝑆 defined as 

 

𝑔𝐼𝑆𝑁(𝑃𝑖)  = {𝑤𝑗 ∶ 𝑃𝑖 ∉ 𝐵𝑗 ∈ Γ̅1, 1 ≤ 𝑗 ≤ 𝑡} 

= ⋃  {𝒘𝒋}.
𝟏≤𝒋≤𝒕
𝑷𝒊∉𝑩𝒋

#(1)
 

 

Example 2: We shall realize the access structure of 

Example 1 by Ito, Saito and Nishizeki's scheme. In this case, 

Γ̅1 is given by 

 

Γ̅1 = {𝐵1, 𝐵2, 𝐵3}, 
 

where 

 

𝐵1 = {𝑃3, 𝑃4}, 
𝐵2 = {𝑃1, 𝑃5}, 
𝐵3 = {𝑃2, 𝑃5}. 

 

1) Since |Γ̅1| = 3, compute 3 shares 

 

𝑤1, 𝑤2, 𝑤3 

 

by using a (3,3)-threshold scheme for the secret 𝐾. 

2) According to the function 𝑔𝐼𝑆𝑁, distribute shares as 

follows: 

 

𝑔𝐼𝑆𝑁(𝑃1) = {𝑤1, 𝑤3}, 
𝑔𝐼𝑆𝑁(𝑃2) = {𝑤1, 𝑤2}, 
𝑔𝐼𝑆𝑁(𝑃3) = {𝑤2, 𝑤3}, 
𝑔𝐼𝑆𝑁(𝑃4) = {𝑤2, 𝑤3}, 
𝑔𝐼𝑆𝑁(𝑃5) = {𝑤1}.        

 

In this scheme, to recover the secret a group 𝑋 ⊂ 𝒫 need to 

collect all shares. If X ⊂ 𝐵𝑗 ∈ Γ̅1, 𝑋 cannot collect the share 

𝑤𝑗. On the other hand, If X ∈ Γ, then there exists 𝑃 ∈ 𝑋 such 

that 𝑃 ∈ 𝑋 − 𝐵𝑗  for all 𝐵𝑗(1 ≤ 𝑗 ≤ 𝑡) . Thus, 𝑋  can collect 

𝑤1, ⋯ , 𝑤𝑡 and recover the secret. In this example, 9/5 shares 

are distributed on average. This scheme needs one share for 

each maximal unauthorized subset. Thus this scheme needs 

|Γ̅1| shares in total. A disadvantage of this scheme is that the 

number of shares distributed to each participant becomes 

large as the size of Γ̅1 gets large. 

 

III. PROPOSED SCHEME 

Here, we modify Benaloh and Leichter's scheme [12] and 

propose  a new secret sharing scheme realizing general access 

structures, which is  based on authorized subsets. The 

proposed scheme is perfect and can reduce the number of 

shares distributed to one specified participant 𝑃′ ∈ 𝒫  by 

dividing into Γ0  according to 𝑃′. Furthermore, we can apply 

the proposed scheme to the same access structure recursively. 

The proposed scheme is more efficient than or equal to 

Benaloh and Leichter's scheme [12] for any access structure. 

For 𝒫 = {𝑃1, 𝑃2, ⋯ , 𝑃𝑛} , 𝑃′ ∈ 𝒫, 𝐾 ∈ 𝒦  and Γ , the 

proposed scheme is described as follows. 

Proposed Scheme: 

1) Let Γ0
(1)

= {𝐴 ⊂ 𝒫 − {𝑃′} ∶ 𝐴 ∪ {𝑃′} ∈ Γ0}  and 

represent it as 

 

Γ0
(1)

= {𝐴1
(1)

, 𝐴2
(1)

, ⋯ , 𝐴𝑙
(1)

}. 
 

2) Let Γ0
(0)

= {𝐴 ∈ Γ0 ∶ 𝑃′ ∉ 𝐴} and represent it as 

 

Γ0
(0)

= {𝐴1
(0)

, 𝐴2
(0)

, ⋯ , 𝐴𝑚
(0)

}. 
 

3) compute 2 shares 

 

𝑆 = {𝑤1, 𝑤2} 

 

by using Shamir’s (2,2)-threshold scheme with 𝐾 as a secret 

𝑤2 is assigned to 𝑃′ ∈ 𝒫. 

4) For 𝐴𝑖
(1)

∈ Γ0
(1)

, compute |𝐴𝑖
(1)

| shares 

 

𝑆1,𝑖 = {𝑠1,𝑖,1, 𝑠1,𝑖,2, ⋯ , 𝑠
1,𝑖,|𝐴𝑖

(1)
|
} 

 

by using Shamir’s (|𝐴𝑖
(1)

|, |𝐴𝑖
(1)

|)-threshold scheme with 𝑤1 

as a secret independently for 1 ≤ 𝑖 ≤ 𝑙. One distinct share 

from 𝑆1,𝑖 is assigned to each 

 

𝑃 ∈ 𝐴𝑖
(1)

 (1 ≤ 𝑖 ≤ 𝑙). 

 

5) For 𝐴𝑖
(0)

∈ Γ0
(0)

, compute |𝐴𝑖
(0)

| shares 

 

𝑆0,𝑖 = {𝑠0,𝑖,1, 𝑠0,𝑖,2, ⋯ , 𝑠
0,𝑖,|𝐴𝑖

(0)
|
} 

 

by using Shamir’s (|𝐴𝑖
(0)

|, |𝐴𝑖
(0)

|)-threshold scheme with 𝐾 

as a secret independently for 1 ≤ 𝑖 ≤ 𝑚. One distinct share 

from 𝑆0,𝑖 is assigned to each 

 

 𝑃 ∈ 𝐴𝑖
(0)

 (1 ≤ 𝑖 ≤ 𝑚). 

 

Example 3: Let 𝑃′ = 𝑃1 and we shall realize the access 

structure of Example 1 by the proposed scheme. 

1) Γ0
(1)

 is defined by 

 

Γ0
(1)

= {𝐴1
(1)

, 𝐴2
(1)

, 𝐴3
(1)

} 

 

where 

 

𝐴1
(1)

= {𝑃2}, 

𝐴2
(1)

= {𝑃3}, 

𝐴3
(1)

= {𝑃4}. 
 

2) Γ0
(0)

 is defined by 

 

Γ0
(0)

= {𝐴1
(0)

, 𝐴2
(0)

, 𝐴3
(0)

, 𝐴4
(0)

} 

where  

 

𝐴1
(0)

= {𝑃2, 𝑃3}, 

𝐴2
(0)

= {𝑃2, 𝑃4}, 
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𝐴3
(0)

= {𝑃3, 𝑃5}, 

𝐴4
(0)

= {𝑃4, 𝑃5}. 
 

3) compute 2 shares 𝑤1, 𝑤2  by using Shamir’s 

(2,2) -threshold scheme with 𝐾  as a secret. 𝑤2  is 

assigned to 𝑃1. 

4) In this case, |𝐴1
(1)

| = |𝐴2
(1)

| = |𝐴3
(1)

| = 1 . For 

𝐴𝑖
(1)

∈ Γ0
(1)

, set  

𝑠1,𝑖,1 = 𝑤1 

 

and 𝑠1,𝑖,1 is assigned to 𝑃 ∈ 𝐴𝑖
(1)

 (1 ≤ 𝑖 ≤ 3). 

5) In this case, |𝐴1
(0)

| = |𝐴2
(0)

| = |𝐴3
(0)

| = |𝐴4
(0)

| = 2 . 

For 𝐴𝑖
(0)

∈ Γ0
(0)

, compute 2 shares 

 

𝑆0,𝑖 = {𝑠0,𝑖,1, 𝑠0,𝑖,2} 

 

by using Shamir’s (2,2)-threshold scheme with 𝐾 as a secret 

independently for 1 ≤ 𝑖 ≤ 4. One distinct share from 𝑆0,𝑖 is 

assigned to each 𝑃 ∈ 𝐴𝑖
(0)

 (1 ≤ 𝑖 ≤ 4). 

6) In this case, shares are distributed as follows: 

 

𝑃1 ∶ 𝑤2,            
𝑃2 ∶ 𝑠1,1,1, 𝑠0,1,1, 𝑠0,2,1, 
𝑃3 ∶ 𝑠1,2,1, 𝑠0,1,2, 𝑠0,3,1, 
𝑃4 ∶ 𝑠1,3,1, 𝑠0,2,2, 𝑠0,4,1, 
𝑃5 ∶ 𝑠0,3,2, 𝑠0,4,2.            

 

In this example, the proposed scheme can reduce the 

number of shares distributed to 𝑃1 ∈ 𝒫 . Actually, the 

proposed scheme distributes 12/5 shares on average, which is 

smaller than 14/5 achieved by Benaloh and Leichter's scheme. 

Hence, the proposed scheme is more efficient than Benaloh 

and Leichter's scheme.  

The next theorem shows that the proposed scheme is 

perfect. 

Theorem 1: For 𝒫 = {𝑃1, 𝑃2, ⋯ , 𝑃𝑛}, 𝑃′ ∈ 𝒫  and any 

access structure Γ(⊂ 2𝒫), distribute shares for a secret 𝐾 by 

using the proposed scheme. Then, for any subset X ⊂ 𝒫, 

 

(a) 𝑋 ∈ Γ ⇒ 𝐻(𝐾|𝑋) = 0, 

(b) 𝑋 ∉ Γ ⇒ 𝐻(𝐾|𝑋) = 𝐻(𝐾). 
 

Proof: Let 𝑋𝑆, 𝑋𝑆1,𝑖
 and 𝑋𝑆0,𝑗

 denote the shares in 𝑆 −

{𝑤1}, 𝑆1,𝑖 and 𝑆0,𝑗 assigned to 𝑋, respectively (1 ≤ 𝑖 ≤ 𝑙, 1 ≤

𝑗 ≤ 𝑚). At first, we show 𝐻(𝐾|𝑋) = 0 for any 𝑋 ∈ Γ. 

(Case i) 𝑃′ ∉ 𝑋: From the property of access structure and the 

definition of Γ0
(0)

, there exists 𝐴𝑖
(0)

∈ Γ0
(0)

 such that 𝐴𝑖
(0)

⊂ 𝑋. 

In this case, we have 

 

|𝑋𝑆0,𝑖
| = |𝑆0,𝑖|. 

 

Since 𝑠0,𝑖,1, 𝑠0,𝑖,2, ⋯ , 𝑠
0,𝑖,|𝐴𝑖

(0)
|

 are shares computed by 

Shamir’s (|𝐴𝑖
(0)

|, |𝐴𝑖
(0)

|)-threshold scheme with 𝐾 as a secret, 

we have 

 

 𝐻(𝐾|𝑋) 

=   𝐻(𝐾|𝑋𝑆, 𝑋𝑆1,1
, ⋯ , 𝑋𝑆1,𝑙

, 𝑋𝑆0,1
, ⋯ , 𝑋𝑆0,𝑚

)  

≤   𝐻(𝐾|𝑋𝑆0,𝑖
)  

=   𝟎.                                                                        (2) 
   

   
(Case ii) 𝑃′ ∈ 𝑋: From the property of access structure and 

the definition of Γ0
(1)

, there exists 𝐴𝑖
(1)

∈ Γ0
(1)

 such that 

𝐴𝑖
(1)

⊂ 𝑋. In this case, we have 

 
|𝑋𝑆| = 1 and |𝑋𝑆1,𝑖

| = |𝑆1,𝑖|. 

 

Since 𝑠1,𝑖,1, 𝑠1,𝑖,2, ⋯ , 𝑠
1,𝑖,|𝐴𝑖

(1)
|

 are shares computed by 

Shamir’s (|𝐴𝑖
(1)

|, |𝐴𝑖
(1)

|) -threshold scheme with 𝑤1  as a 

secret, we have 

 

𝐻(𝐾|𝑋) 

=   𝐻(𝐾|𝑋𝑆, 𝑋𝑆1,1
, ⋯ , 𝑋𝑆1,𝑙

, 𝑋𝑆0,1
, ⋯ , 𝑋𝑆0,𝑚

)  

≤   𝐻(𝐾|𝑋𝑆, 𝑋𝑆0,𝑖
)  

=   𝟎.                                                                        (3) 

 

Since 𝐻(𝐾|𝑋) ≥ 0 is obvious, we have 

 

𝐻(𝐾|𝑋) = 0 

 

for any 𝑋 ∈ Γ from (2) and (3). 

Next we show 𝐻(𝐾|𝑋) = 𝐻(𝐾) for any 𝑋 ∉ Γ. 

(Case i) 𝑃′ ∉ 𝑋: From the property of the access structure 

and the definition of Γ0
(0)

 and Γ0
(1)

, we have 

 

𝑨𝒊
(𝟎)

⊄ 𝑿 (𝟏 ≤ 𝒊 ≤ 𝒎)                            (4) 

 

and 

 
|𝑿𝑺| = 𝟎.                                     (5) 

 

(Case ii) 𝑃′ ∈ 𝑋: From the property of access structure and 

the definition of Γ0
(0)

 and Γ0
(1)

, we have 

 

𝑨𝒊
(𝟎)

⊄ 𝑿 (𝟏 ≤ 𝒊 ≤ 𝒎)                                  (6) 

 

and 

 

𝑨𝒊
(𝟏)

⊄ 𝑿 (𝟏 ≤ 𝒊 ≤ 𝒍)                         (7) 

 

From (4) and (6), we have 

 

𝐻(𝐾|𝑋𝑆0,𝑖
) = 𝐻(𝐾) 

 

for any 𝑋 ∉ Γ (1 ≤ 𝑖 ≤ 𝑚). This implies 

 

𝑯(𝑿𝑺𝟎,𝒊
|𝑲) = 𝑯(𝑿𝑺𝟎,𝒊

)                      (8) 

 

 

for any 𝑋 ∉ Γ (1 ≤ 𝑖 ≤ 𝑚). From (5) and (7), we have 

 

𝑯(𝑲|𝑿𝑺, 𝑿𝑺𝟏,𝒊
) = 𝑯(𝑲)                    (9) 

 

for any 𝑋 ∉ Γ (1 ≤ 𝑖 ≤ 𝑙). From the definition of 𝑆, 

𝑆1,1, ⋯ , 𝑆1,𝑙 and (9), we have 
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𝐻(𝐾|𝑋𝑆, 𝑋𝑆1,1
, 𝑋𝑆1,2

, ⋯ , 𝑋𝑆1,𝑙
) = 𝐻(𝐾). 

 

This implies 

 

𝐻(𝑋𝑆, 𝑋𝑆1,1
, 𝑋𝑆1,2

, ⋯ , 𝑋𝑆1.𝑙
|𝐾) 

=   𝑯(𝑿𝑺, 𝑿𝑺𝟏,𝟏
, 𝑿𝑺𝟏,𝟐

, ⋯ , 𝑿𝑺𝟏,𝒍
).                (10) 

 

In order to show 𝐻(𝐾|𝑋) = 𝐻(𝐾), we expand 𝐻(𝐾|𝑋) as 

follows: 

 

 𝐻(𝐾|𝑋) 

=   𝐻(𝐾|𝑋𝑆, 𝑋𝑆1,1
, ⋯ , 𝑋𝑆1,𝑙

, 𝑋𝑆0,1
, ⋯ , 𝑋𝑆0,𝑚

) 

=   𝐻(𝐾) 

+𝐻(𝑋𝑆, 𝑋𝑆1,1
, ⋯ , 𝑋𝑆1,𝑙

, 𝑋𝑆0,1
, ⋯ , 𝑋𝑆0,𝑚

|𝐾) 

 −𝑯(𝑿𝑺, 𝑿𝑺𝟏,𝟏
, ⋯ , 𝑿𝑺𝟏,𝒍

, 𝑿𝑺𝟎,𝟏
, ⋯ , 𝑿𝑺𝟎,𝒎

).           (11) 

 

From the chain rule for entropy, we have 

 

𝐻(𝑋𝑆, 𝑋𝑆1,1
, ⋯ , 𝑋𝑆1,𝑙

, 𝑋𝑆0,1
, ⋯ , 𝑋𝑆0,𝑚

|𝐾) 

=   𝐻(𝑋𝑆, 𝑋𝑆1,1
, ⋯ , 𝑋𝑆1,𝑙

|𝐾) 

+ ∑ 𝐻(𝑋𝑆0,𝑡
|𝐾, 𝑋𝑆, 𝑋𝑆1,1

, ⋯

𝑚

𝑡=1

 

⋯ , 𝑋𝑆1,𝑙
, 𝑋𝑆0,1

, ⋯ , 𝑋𝑆0,𝑡−1
) 

=   𝐻(𝑋𝑆, 𝑋𝑆1,1
, ⋯ , 𝑋𝑆1,𝑙

|𝐾) 

+ ∑ 𝐻(𝑋𝑆0,𝑡
|𝐾)

𝑚

𝑡=1

 

=   𝐻(𝑋𝑆, 𝑋𝑆1,1
, ⋯ , 𝑋𝑆1,𝑙

) 

+ ∑ 𝑯(𝑿𝑺𝟎,𝒕
).𝒎

𝒕=𝟏                                             (12) 

 

Here, (∗) comes from the definition of Γ0
(0)

 and Γ0
(1)

 and 

the fact that 𝑋𝑆0,1
, ⋯ , 𝑋𝑆0,𝑚

 are mutually independent and the 

last equality comes from (8) and (10). On the other hand, we 

have 

 

𝐻(𝑋𝑆, 𝑋𝑆1,1
, ⋯ , 𝑋𝑆1,𝑙

, 𝑋𝑆0,1
, ⋯ , 𝑋𝑆0,𝑚

) 

=   𝐻(𝑋𝑆, 𝑋𝑆1,1
, ⋯ , 𝑋𝑆1,𝑙

) 

+ ∑ 𝐻(𝑋𝑆0,𝑡
|𝑋𝑆, 𝑋𝑆1,1

, ⋯

𝑚

𝑡=1

 

⋯ , 𝑋𝑆1,𝑙
, 𝑋𝑆0,1

, ⋯ , 𝑋𝑆0,𝑡−1
) 

≤   𝐻(𝑋𝑆, 𝑋𝑆1,1
, ⋯ , 𝑋𝑆1,𝑙

) 

+ ∑ 𝑯(𝑿𝑺𝟎,𝒕
).𝒎

𝒕=𝟏                                             (13) 

 

Substituting (12) and (13) into (11), we obtain 𝐻(𝐾|𝑋) ≥
𝐻(𝐾). Since 𝐻(𝐾|𝑋) ≤ 𝐻(𝐾) is obvious, we have 

 

𝐻(𝐾|𝑋) = 𝐻(𝐾). 
 

Let 𝑁(𝑃) be the number of shares distributed to 𝑃 ∈ 𝒫 by 

using the proposed scheme. Similarly, let 𝑁𝐵𝐿(𝑃)  be the 

number of shares distributed to 𝑃 ∈ 𝒫 by using Benaloh and 

Leichter's scheme. The next theorem shows the proposed 

scheme is more efficient than Benaloh and Leichter's scheme 

from the viewpoint of the number of shares distributed to 

𝑃′ ∈ 𝒫. 

 

Theorem 2: For any 𝑃 ∈ 𝒫 , the number of shares 

distributed to 𝑃 is evaluated as follows: 

 

𝑁(𝑃) = {
𝑁𝐵𝐿(𝑃) − 𝑙 + 1    (𝑃 = 𝑃′) 

𝑁𝐵𝐿(𝑃)                   (𝑃 ≠ 𝑃′).
 

 

Proof : From the definition of Γ0
(1)

, we have 

 

(𝑷′) = 𝟏                                      (14) 

 

and 

 

{𝑋 ∈ Γ0: 𝑃′ ∈ 𝑋} = {𝑋 ∪ {𝑃′} ∶  𝑋 ∈ Γ0
(1)

}. 
 

𝑁𝐵𝐿(𝑃) is obtain by 

 

𝑁𝐵𝐿(𝑃′)  = |{𝑋 ∈ Γ0 ∶ 𝑃′ ∈ 𝑋}| 

 = |{𝑋 ∪ {𝑃′} ∶  𝑋 ∈ Γ0
(1)

}| 

 = |Γ0
(1)

| 
= 𝒍.                                                   (15) 

 

On the other hand, for 𝑃 ≠ 𝑃′, we have 

 

𝑵(𝑷) = |{𝑿 ∈ 𝚪𝟎
(𝟎)

∶ 𝑷 ∈ 𝑿}| + |{𝑿 ∈ 𝚪𝟎
(𝟏)

∶ 𝑷 ∈ 𝑿}|.
  (16) 

 

and 

 

𝑁𝐵𝐿(𝑃) = |{𝑋 ∈ Γ0 ∶ 𝑃 ∈ 𝑋}| 

 = |{𝑋 ∈ Γ0
(0)

∶ 𝑃 ∈ X}| 

  +|{𝑋 ∪ {𝑃′}: 𝑃 ∈ 𝑋 ∈ Γ0
(1)

}| 

 = |{𝑋 ∈ Γ0
(0)

∶ 𝑃 ∈ 𝑋}| 

+|{𝑿 ∈ 𝚪𝟎
(𝟏)

∶ 𝑷 ∈ 𝑿}|.                                 (17) 

 

Theorem 2 is easily obtained by (14)-(17). 

We can apply the proposed scheme to the same access 

structure recursively. That is, the proposed scheme can 

reduce the number of shares distributed to another participant 

once again by applying the proposed scheme recursively. 

Example 4: We shall apply the proposed scheme to the 

access structure of Example 1 recursively. 

1) Let 𝑃′′ = 𝑃2 and apply the proposed scheme to Γ0
(0)

 

of Example 3 again. In this case, Γ0
(01)

 is defined by 

 

Γ0
(01)

= {𝐴1
(01)

, 𝐴2
(01)

} 

 

where 

 

𝐴1
(01)

= {𝑃3}, 

𝐴2
(01)

= {𝑃4}. 
 

2) Γ0
(00)

 is defined by 

 

Γ0
(00)

= {𝐴1
(00)

, 𝐴2
(00)

} 

 

where 

 

𝐴1
(00)

= {𝑃3, 𝑃5}, 

(∗) 
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𝐴2
(00)

= {𝑃4, 𝑃5}. 
 

3) compute 2 shares 𝑤1
′ , 𝑤2

′  by using Shamir’s 

(2,2) -threshold scheme with 𝐾  as a secret. 𝑤2
′  is 

assigned to 𝑃2. 

4) Since |𝐴1
(01)

| = |𝐴2
(01)

| = 1, set 

 

𝑠1,𝑖,1
′ = 𝑤1

′  

 

and 𝑠1,𝑖,1
′  is assigned to 𝑃 ∈ 𝐴𝑖

(01)
 (1 ≤ 𝑖 ≤ 2). 

5) Let 𝑃′′′ = 𝑃5 and apply the proposed scheme to Γ0
(00)

 

again. In this case, Γ0
(001)

 is defined by 

 

Γ0
(001)

= {𝐴1
(001)

, 𝐴2
(001)

} 

 

where 

 

𝐴1
(001)

= {𝑃3}, 

𝐴2
(001)

= {𝑃4} 

 

and Γ0
(000)

= 𝜙. 

6) compute 2 shares 𝑤1
′′, 𝑤2

′′  by using Shamir’s 

(2,2) -threshold scheme with 𝐾  as a secret. 𝑤2
′′  is 

assigned to 𝑃5. 

7) Since |𝐴1
(001)

| = |𝐴2
(001)

| = 1, set 

 

𝑠1,𝑖,1
′′ = 𝑤1

′′ 

 

and 𝑠1,𝑖,1
′′  is assigned to 𝑃 ∈ 𝐴𝑖

(001)
 (1 ≤ 𝑖 ≤ 2). 

8) In this case, shares are distributed as follows: 

 

𝑃1 ∶ 𝑤2, 
 

𝑃2 ∶ 𝑠1,1,1, 𝑤2
′ , 

 

𝑃3 ∶ 𝑠1,2,1, 𝑠1,1,1
′ , 𝑠1,1,1

′′ , 
 

𝑃4 ∶ 𝑠1,3,1, 𝑠1,2,1
′ , 𝑠1,2,1

′′ , 
 

𝑃5 ∶ 𝑤2
′′. 

 

In this example, the proposed scheme can reduce the 

number of shares distributed to 𝑃2, 𝑃5 as well as 𝑃1.  Actually, 

the proposed scheme distributes 2 shares on average.  

The proposed scheme can yet reduce the number of shares 

distributed to each participant if Γ1
(0)

 or Γ0
(0)

 forms a 

complete multipartite graph. 

Example 5: From Example 4, Γ0
(0)

 of Example 3 is denoted 

by 

 

Γ0
(0)

= 𝑉1 ∪ 𝑉2 

 

where  

 

𝑉1 = {𝑃2, 𝑃5}, 
 

𝑉2 = {𝑃3, 𝑃4}. 
 

 In this case, shares are distributed as follows: 

 

𝑃1 ∶ 𝑤2, 
𝑃2 ∶ 𝑠1,1,1, 𝑤2

′ , 
𝑃3 ∶ 𝑠1,2,1, 𝑠1,1,1

′ , 

𝑃4 ∶ 𝑠1,3,1, 𝑠1,2,1
′ , 

𝑃5 ∶ 𝑤2
′ . 

 

In this example, the proposed scheme can reduce the 

number of shares distributed to 𝑃3, 𝑃4  besides 𝑃1, 𝑃2, 𝑃5 . 

Actually, the proposed scheme distributes 8/5 shares on 

average. 

 

IV. EVALUATION OF EFFICIENCY 

Here, we consider the efficiency of the proposed scheme. 

Let 𝑁′(𝑃) be the number of shares distributed to 𝑃 ∈ 𝒫 by 

using the proposed scheme recursively. Similarly, let 𝑁′′(𝑃) 

be the number of shares distributed to 𝑃 ∈ 𝒫 by using the 

property of complete multipartite graphs and the proposed 

scheme recursively. Here, we denote the total number of 

shares distributed to all participants by 

 

𝑁𝐵𝐿 = ∑ 𝑁𝐵𝐿(𝑃)

𝑃∈𝒫

, 

 

𝑁 = ∑ 𝑁(𝑃),

𝑃∈𝒫

 

 

𝑁′ = ∑ 𝑁′(𝑃),

𝑃∈𝒫

 

 

𝑁′′ = ∑ 𝑁′′(𝑃),

𝑃∈𝒫

 

 

𝑔𝐼𝑆𝑁 = ∑ 𝑔𝐼𝑆𝑁(𝑃).

𝑃∈𝒫

 

 

From Theorem 3 and the definition of Γ0
(0)

 and Γ0
(1)

, we 

have 

 

𝑁′′ ≤ 𝑁′ ≤ 𝑁𝐵𝐿. 
 

For all 180 access structures on five participants clarified 

by Jackson and Martin [19], we obtain 𝑁𝐵𝐿, 𝑁, 𝑁′, 𝑁′′ and 

𝑔𝐼𝑆𝑁  in order to evaluate the efficiency of the proposed 

scheme. Table I shows the number of shares distributed to 

participants by these five schemes. We summarize the 

comparison among 𝑁𝐵𝐿, 𝑁, 𝑁′ and 𝑁′′ in Table II. For 173 

access structures, 𝑁  is smaller than 𝑁𝐵𝐿 . For 143 access 

structures, we can reduce the number of shares distributed to 

participants by applying the proposed scheme recursively. 

The proposed scheme can yet reduce the number of shares 

distributed to each participant by using the property of 

complete multipartite graphs for 40 access structures. 

We summarize the comparison among between 𝑁′′  and 

𝑔𝐼𝑆𝑁 in Table III. For 169 access structures, 𝑁′′ is smaller 

than 𝑔𝐼𝑆𝑁. There is no access structure for which Ito, Saito 

and Nishizeki's scheme is better. 
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TABLE I: COMPARISON OF THE NUMBER OF SHARES DISTRIBUTED TO PARTICIPANTS 

# 𝑁𝐵𝐿 𝑁 𝑁′ 𝑁′′ 𝑔𝐼𝑆𝑁 

1 5 5 5 5 5 

2 5 5 5 5 8 

3 6 5 5 5 7 

4 8 7 7 7 12 

5 5 5 5 5 9 

6 9 7 7 7 10 

7 11 9 8 7 11 

8 13 11 10 10 16 

9 7 5 5 5 6 

10 10 8 8 8 13 

11 7 6 6 6 9 

12 9 8 7 5 6 

13 8 7 7 7 12 

14 5 5 5 5 12 

15 6 5 5 5 8 

16 9 8 7 7 15 

17 7 6 5 5 7 

18 10 8 7 7 11 

19 13 11 10 10 18 

20 5 5 5 5 8 

21 14 11 10 10 13 

22 16 13 11 10 14 

23 18 15 12 11 15 

24 20 17 14 14 20 

25 12 9 8 8 9 

26 14 11 9 9 10 

27 17 14 12 11 17 

28 14 11 10 9 13 

29 16 13 11 9 10 

30 15 12 11 10 16 

31 12 10 9 8 12 

32 14 12 10 8 9 

33 13 11 10 9 15 

34 10 7 7 7 8 

35 12 9 9 9 16 

36 13 10 9 9 12 

37 16 13 11 11 19 

38 10 8 7 7 8 

39 12 10 9 7 12 

40 13 11 10 10 15 

41 10 8 8 8 15 

42 11 9 8 8 11 

43 14 12 10 10 18 

44 8 7 7 7 18 

45 9 7 7 7 10 

46 12 10 9 9 14 

47 15 13 10 10 21 

48 11 8 8 8 10 

49 14 11 9 9 11 

50 17 14 11 11 15 

51 20 17 14 14 22 

52 11 9 8 8 11 

53 13 11 10 8 15 

54 15 13 11 9 12 

55 14 12 10 10 18 

56 12 10 8 8 10 

57 15 12 10 10 14 

58 18 15 13 13 21 

59 8 5 5 5 5 

60 12 9 9 9 12 

 

 
# 𝑁𝐵𝐿 𝑁 𝑁′ 𝑁′′ 𝑔𝐼𝑆𝑁 

61 8 6 6 6 7 

62 10 8 7 6 8 

63 12 10 8 5 5 

64 11 9 8 8 11 

65 9 7 7 7 9 

66 12 10 8 8 10 

67 15 13 10 10 14 

68 10 8 8 8 11 

69 11 9 8 7 11 

70 14 12 11 9 18 

71 8 7 6 6 11 

72 10 9 8 8 15 

73 11 9 9 9 18 

74 9 7 7 7 10 

75 12 10 9 9 14 

76 15 13 11 11 21 

77 12 10 8 8 14 

78 9 8 7 7 7 

79 10 8 7 7 9 

80 12 10 9 9 21 

81 13 11 9 9 13 

82 16 13 11 11 17 

83 19 16 13 13 24 

84 13 10 9 9 13 

85 16 13 11 11 17 

86 9 8 7 7 14 

87 10 8 8 8 12 

88 13 11 9 9 13 

89 16 13 10 10 17 

90 10 8 7 7 9 

91 13 11 9 9 10 

92 6 5 5 5 10 

93 7 5 5 5 7 

94 10 8 7 7 12 

95 13 11 8 8 13 

96 11 9 8 8 14 

97 7 6 6 6 8 

98 10 9 7 5 6 

99 8 7 7 7 10 

100 7 6 6 6 9 

101 10 8 7 7 13 

102 13 11 9 9 17 

103 16 13 11 9 24 

104 10 9 8 8 10 

105 11 9 8 8 11 

106 14 11 9 7 12 

107 17 14 11 9 16 

108 20 17 13 11 20 

109 23 19 14 13 27 

110 20 16 12 11 20 

111 17 13 10 9 16 

112 14 11 10 10 15 

113 17 14 11 11 16 

114 14 12 9 9 12 

115 17 14 11 11 13 

116 14 11 9 9 12 

117 11 9 7 7 11 

118 8 6 5 5 6 

119 11 8 7 7 10 

120 14 11 10 10 15 

 

 
# 𝑁𝐵𝐿 𝑁 𝑁′ 𝑁′′ 𝑔𝐼𝑆𝑁 

121 15 12 11 11 17 

122 11 9 8 8 11 

123 14 12 9 9 9 

124 11 9 8 8 11 

125 12 10 9 9 13 

126 8 7 7 7 10 

127 11 9 8 8 8 

128 8 7 6 6 10 

129 9 8 7 7 12 

130 5 5 5 5 12 

131 6 5 5 5 7 

132 10 9 7 7 14 

133 15 12 10 10 13 

134 18 14 11 10 14 

135 21 17 12 11 15 

136 24 19 14 13 19 

137 27 22 16 16 23 

138 30 25 19 19 30 

139 21 16 13 13 18 

140 21 17 12 11 15 

141 24 20 14 13 16 

142 18 15 11 11 14 

143 12 9 7 7 8 

144 15 11 8 7 9 

145 18 13 10 10 13 

146 22 17 14 14 20 

147 18 14 11 10 14 

148 21 17 12 11 12 

149 19 15 12 11 16 

150 15 12 10 10 13 

151 18 15 11 9 11 

152 15 12 9 9 13 

153 16 13 11 11 15 

154 12 10 8 8 12 

155 15 12 10 8 10 

156 18 15 11 7 8 

157 13 11 10 10 14 

158 9 7 5 5 5 

159 12 10 8 8 15 

160 13 10 8 8 10 

161 17 14 11 11 17 

162 9 7 6 6 7 

163 12 9 7 5 5 

164 16 13 11 9 12 

165 12 10 8 8 12 

166 15 13 10 10 10 

167 13 11 9 9 14 

168 9 8 7 7 14 

169 10 8 7 7 9 

170 14 12 9 9 16 

171 6 5 5 5 9 

172 10 9 8 8 16 

173 7 6 5 5 6 

174 11 9 7 7 11 

175 15 13 10 10 18 

176 8 7 5 5 5 

177 12 10 7 7 8 

178 16 13 10 10 13 

179 20 17 14 14 20 

180 5 5 5 5 5 
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TABLE III: COMPARISON BETWEEN N′′ AND GISN 

 The number of access structures 

𝑁′′ < 𝑔𝐼𝑆𝑁 169 

𝑁′′ = 𝑔𝐼𝑆𝑁 11 

𝑁′′ > 𝑔𝐼𝑆𝑁 0 

 

V. CONCLUSION 

We have proposed a new secret sharing scheme realizing 

general access structures. The proposed scheme is perfect and 

can reduce the number of shares distributed to each 

participant. We can apply the proposed scheme to the same 

access structure recursively. The proposed scheme is more 

efficient than or equal to Benaloh and Leichter's scheme [12] 

for any access structure. Furthermore, we have shown that the 

proposed scheme is more efficient than or equal to Ito, Saito 

and Nishizeki's scheme [11] for all 180 access structures on 

five participants. We will compare the proposed scheme with 

the other general secret sharing schemes and evaluate the 

efficiencies in the follow-up work. 
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