



Abstract—The applications of image processing for road

safety, detecting panels and roadway have attracted

considerable attention in literature and research, especially in

the field of information processing on embedded systems.

However, the demanding nature of image processing algorithms

conveys a substantial burden for any conventional real-time

implementation. Meanwhile, the emergence of reconfigurable

architectures, especially FPGA chips, which have been given

many facilities for rapid prototyping, where an image

processing algorithm, can be designed, tested, and synthesized

in a relatively short period of time compared to conventional or

traditional approaches. This paper studies a hardware and

software combination to obtain an optimal solution for the edge

detection, this step is considered essential for the detection of

panels and roadways, the dedicated algorithm is based on the

Laplacian calculation for Edges detecting and implemented in a

Xilinx Spartan 6 FPGA, and the results are displayed by

standing in a VGA monitor, with a sync and display controller.

Index Terms—Edge detection, Laplacian, real time, FPGA.

I. INTRODUCTION

An outline is materialized by a sudden change in intensity,

and the goal of edge detection is to produce something like a

line drawing of an image. In the application of edge detection

algorithms we will look for places in the image where the

intensity changes rapidly. In general, object boundaries tend

to produce sudden changes in the intensity of the image.

For example, different objects are usually different colors

or hues and this causes the image intensity to change as we

move from one object to another. In addition, different

surfaces of an object receive different amounts of light,

which again produces intensity changes. Thus, much of the

geometric information that would be conveyed in a line

drawing is captured by the intensity changes in an image.

Unfortunately, there are also a large number of intensity

changes that are not due to geometry, such as surface

markings, texture, and specular reflections. Moreover there

are sometimes surface boundaries that do not produce very

strong intensity changes. Therefore the intensity boundary

information that we extract from an image will tend to

indicate object boundaries, but not always. The detected

edges are materialized by the intensity break down in the

image in a given direction. Several methods exist to detect the

break. Some of them are more or less complex.

In this work, for the safety and processing of road images,

the contour detection step, which is essential for

Manuscript received May 24, 2018; revised October 29, 2018.

The authors are with Laboratory LASTIMI, High School of Technology

SALE Mohammed V University, Rabat, Morocco (e-mail:

Issam.bouganssa@gmail.com, Mohamed.sbihi@yahoo.fr,

Zaim.mounia@yahoo.fr).

characterizing road signs, proposes methods based on the

variation of the intensity in the time domain by calculating

the Laplacian, which will be followed by a judicious

thresholding, the latter allows to isolate the contours of the

rest of the image [1].

The proposed algorithms are implemented in real-time on

a Xilinx Spartan-6 FPGA programmable circuit, which

provides the performance needed for processing real-time

image sequences, while maintaining the flexibility of the

system to support an adaptive algorithm.

We start our work with the characteristics and the principle

of Edge detection, then we present the algorithms based on

the gradient and Laplacian computation for contour

extraction in the road images, after we sit the different

hardware software solutions for implementation of these

algorithms on reconfigurable FPGA circuits. Finally, we

expose the results and discussions of the implementation and

a conclusion at the end of our work.

II. CHARACTERISTICS OF CONTOURS IN ROAD SIGNAL

IMAGES

As well as the visual characteristics of color and texture,

contours also have their peculiarities, to predict which

detector will be the most effective [2]. In order to estimate the

efficiency of the detectors, we will refer to some errors

encountered when detecting contours (Perfect contour Fig.

1a):

 Omission of certain pixels on the contour to be detected. It

is measured by counting the number of forgotten pixels

with respect to the total number of pixels of the ideal

contour (Fig. 1b).

 Multiple responses by detecting multiple contours. It is

measured by counting the number of ambiguous pixels

compared to those that are not ambiguous (Fig. 1d).

 Location: this error occurs when a pixel of an

unambiguous ideal outline is not in the right place. It is

measured by counting the total distance between the

detected contour and the ideal contour (Fig. 1c).

 Sensitivity: This error is often related to noise and

corresponds to false contours detected near the ideal

contour. It is measured by counting the number of false

contours and the total number of contours detected (Fig.

1e).

 a b c d e

Fig. 1. Examples of contour errors; a: ideal contour; b: omission; c:

relocation; d: multiple responses; e: sensitivity.

Laplacian Edge Detection Algorithm for Road Signal

Images and FPGA Implementation

Issam Bouganssa, Mohamed Sbihi, and Mounia Zaim

International Journal of Machine Learning and Computing, Vol. 9, No. 1, February 2019

57doi: 10.18178/ijmlc.2019.9.1.765

mailto:Issam.bouganssa@gmail.com
mailto:Mohamed.sbihi@yahoo.fr
mailto:Zaim.mounia@yahoo.fr

In the image, a contour can be considered in different ways.

Here we describe three main ways to consider a contour:

First, a contour can be seen as an abrupt change in the

intensity of the image particularly for images in gray level [3].

Secondly, a way very similar to that mentioned above, to

consider the contour as a difference on color. Thirdly, if we

consider the image as a 2D signal, we can go in the frequency

domain (Fourier transform or wavelet for example) [4]. In

this case, a contour can be represented as the high frequency

signal.

III. EDGE DETECTION PRINCIPLE WITH THE ALGORITHMS OF

GRADIENT AND LAPLACIAN

A local variation of intensity is a primary source of

information in image processing. It’s measured by the

gradient [3] vector function of the pixel [i, j].

A. The Gradient of an Image

In an orthogonal coordinate system (Oxy) where (Ox) is

the horizontal axis and (Oy) the vertical axis, the image

gradient (or rather the luminance f) at any point or pixel

coordinates (x, y) [3], [4] is denoted by Equation 1:

𝐺𝑟𝑎𝑑 ƒ = 𝜵 ƒ = (

𝜕 ƒ

𝜕𝑥
𝜕 ƒ

𝜕𝑦

) (1)


The module of the gradient quantifies the importance of

the contour highlighted, that is to say the magnitude of the

jump intensity observed in the image:

ǁ𝛻ƒǁ = √(
𝜕 ƒ

𝜕𝑥

2
) + (

𝜕 ƒ

𝜕𝑦

2
)(2)



The direction ⍺ₒ of the gradient determines the present

edge in the image. Indeed, the gradient direction is

orthogonal to that of the outline:

 ⍺ₒ = arctan (
𝜕 ƒ/𝜕𝑦

𝜕 ƒ/𝜕𝑥
)(3)



The principle of edge detection by the use of the gradient is

to calculate, in the first time, the gradient of the image in two

orthogonal directions, then the gradient module. The next

step is to make a selection of the most marked contours, that

is to say the points of stronger contrast with adequate

thresholding.

B. Laplacian Mask with Second Derivative

The gradient operators seen above exploit the fact that a

contour in an image corresponds to the maximum of the

gradient in the direction orthogonal to the contour.

However, the zero crossing of the second derivative of an

intensity break also makes it possible to highlight the contour

[5].

The second derivative is therefore determined by the

Laplacian calculation:

𝛻² ƒ =
𝜕²𝑓

𝜕𝑥²
+

𝜕²𝑓

𝜕𝑦²
=

𝜕

𝜕𝑥
(

𝜕𝑓

𝜕𝑥
) +

𝜕

𝜕𝑦
(

𝜕𝑓

𝜕𝑦
) (4)



The equation can be written:

𝛻2ƒ = 𝛻𝑥(𝑓(𝑥 + 1, 𝑦) − 𝑓(𝑥, 𝑦))

 +𝛻𝑦(𝑓(𝑥, 𝑦 + 1) − 𝑓(𝑥, 𝑦)) (5)

Now we can define the Laplacian (Ox) by:

𝛻𝑥(𝑓(𝑥 + 1, 𝑦) − 𝑓(𝑥, 𝑦)) = 𝑓(𝑥 + 1, 𝑦) −

𝑓(𝑥, 𝑦) − (𝑓(𝑥, 𝑦) − 𝑓(𝑥 − 1, 𝑦)) (6)

𝛻𝑥(𝑓(𝑥 + 1, 𝑦) − 𝑓(𝑥, 𝑦)) = 𝑓(𝑥 + 1, 𝑦) +

𝑓(𝑥 − 1, 𝑦) − 2𝑓(𝑥, 𝑦) (7)

And we define the Laplacian (Oy) by:

𝛻𝑦(𝑓(𝑥, 𝑦 + 1) − 𝑓(𝑥, 𝑦)) = 𝑓(𝑥, 𝑦 + 1) −

𝑓(𝑥, 𝑦) − (𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦 − 1)) (8)

𝛻𝑦(𝑓(𝑥, 𝑦 + 1) − 𝑓(𝑥, 𝑦)) = 𝑓(𝑥, 𝑦 + 1) +

𝑓(𝑥, 𝑦 − 1) − 2𝑓(𝑥, 𝑦) (9)

So the Laplacian (Oxy) can be written:

𝛻2ƒ = 𝑓(𝑥 + 1, 𝑦) + 𝑓(𝑥 − 1, 𝑦) + 𝑓(𝑥, 𝑦 + 1)

 +𝑓(𝑥, 𝑦 − 1) − 4𝑓(𝑥, 𝑦) (10)

This Laplacian calculation operation can then be applied to

an image via filtering with the following mask 3 * 3:

Other masks can be used for the application of the

Laplacian algorithm:

After filtering the image by means of one of these filters, it

is necessary to detect the zero crossings while keeping only

the most marked passages. Indeed, the technique is

particularly sensitive to noise due to the double derivation. It

is therefore a question of not considering the noise, which can

very well result in oscillations around zero, like an edge.

It is the role of the threshold S which will be used in this

approach to take into account only the relatively high

amplitude zero crossings corresponding to true Edge of the

image.

The difference between the methods presented in this

article and the classical edge detection such as Sobel, Prewitt

and Robert, is that the classical masks are codes in several

directions (vertical, horizontal, diagonal) and a module

calculus of these directions is obligator, to have a single

International Journal of Machine Learning and Computing, Vol. 9, No. 1, February 2019

58

image that presents the edges.

The mask present in this document is applied only one

liver and presents the different edge of the image.

C. Thresholding

The previous methods of Laplacian algorithms were used

to determine the double derivation of the image that allows

effectively highlighting these contours. At this level, the

resulting image is expressed in gray levels, indicating here

the importance of each fracture intensity [6].

To isolate the edges of the rest of the image, a new step is

needed to obtain more accurate information that can test the

presence of edges. The resultant image IB (i, j) of this

treatment is in black and white. White pixels (value 1)

indicate the presence of an edge, the absence of black pixels

(value 0).

The conversion of a gray-scale image to a black-and-white

'binarization' image after the Laplacian filter IM (i, j) image,

requires the setting of the thresholding and the determining of

a threshold value to represent the edges more signified and

avoids the edges of the noisy.

This parameter, noted S, is chosen to present the most

significant contours found from a cumulative histogram of

the image at the gray level. If the value of the image pixel

exceeds the threshold, the resulting pixel value is 1.

Otherwise, the pixel value is set to 0:

IB (i ,j) = 1 if IM (i ,j) ≥ S

 Else IB (i ,j) = 0 

D. Simulation of the Laplacian Algorithm on Different

Road Images

We present in this part, the application of mask based on

the calculation of Laplacian on different road images, the

goal being to verify the effectiveness of the mask to give

optimal results for the detection of the edges.

Fig. 2. Application of Laplacian algorithm to characterize different images

In the following figure (Fig. 2), we present the application

of the Laplacian mask on four road images, with the aim of

detecting the line in the middle of the road or detecting the

signs of the Highway Code.

The objective of this mask is the ease of implementation

and the speed of processing [5], [6]. On the other hand, its

disadvantage is its sensitivity to the acoustic noise of the

second derivative. However, the results are often quite broad.

The filters based on the calculation of the variation of the

intensity, which it is by the first or second derivative are the

most used in the industrial applications requiring constraints

for the implementation in real time on an embedded system.

IV. HARDWARE SOFTWARE TOOLS NEEDED FOR ROAD

IMAGES PROCESSING

Real-time image processing requires high computing

power. For example, the standard image.jpg is about 0.8

megapixels per frame, with a calculated power of 30 frames

per second for a 25 MHz processor.

The size of the image may be larger [7], the amount of

processing required per pixel also depends on the processing

algorithm used.

High resolution images become more common, processing

requirements will increase. High resolution images of

standards typically have ten times more pixels per image. The

computing load is about ten times higher. They require more

DSP or a very expensive high-end DSP. In this scenario,

FPGAs provide real-time alternative image processing.

FPGA effectively supports high levels of parallel processing

data stream structures, which are important for the efficient

implementation of image processing algorithms.

A. Xilinx ISE

ISE is an integrated digital system development

environment aimed at FPGA hardware synthesis /

implementation. Designs can be described in three main

forms: as diagrams, as HDL or as state diagrams (Fig. 3).

For this, ISE integrates various tools to pass through the

entire design flow of a digital system. It includes editors and

tools for system input, as well as a set of tools, synthesis and

implementation, grouped into a single design flow [7]. The

details of these tools are given as follows:

 Design Entry: HDL Editor, Finite State Machine Editor

(State CAD), Engineering Capture System (ECS), and IP

Generator (CORE Generator).

 Synthesis: XST (Xilinx Synthesis Technology), Leonardo

Spectrum by Mentor Graphics and Synplify by Cadence.

 Simulation: Test Bench HDL Generator and Model

Technology ModelSim simulator integration.

 Implementation: Translate MAP, placement and routing

(PAR), floor planner, FPGA editor, timing analyzer

XPower, Fit (only CPLD) and Chip viewer (only CPLD).

 Programming the component and formatting the Bit

stream file: Bit Gen and IMPACT.

B. DDR2 Memory Management Used on FPGA Spartan-6

from Xilinx Nexys-3

The Nexys-3 board contains three external memories, all

from Micron: a 128 Mbit cellular RAM (pseudo-static

DRAM), a parallel non-volatile PCM 128Mbit (phase change

memory); and a 128Mbit PC serial device (Fig. 4). The

cellular RAM and the parallel PCM device share a common

bus, and the serial PCM is on a dedicated quad-mode (x4) SPI

bus. Nonvolatile PCM memories are editable bytes and bits

without the need for block erasure, so they are faster and

more versatile than conventional flash in most applications

[8].

International Journal of Machine Learning and Computing, Vol. 9, No. 1, February 2019

59

The 16Mbyte cellular RAM (Micron M45W8MW16

circuit number) has a 16-bit bus that supports 8-bit or 16-bit

data access. It can operate as a typical asynchronous SRAM

with 70ns read and write cycle times, or as a synchronous

memory with an 80 MHz bus. When used as an asynchronous

SRAM, the cellular RAM automatically refreshes its internal

DRAM arrays, allowing a simplified memory controller

(similar to any SRAM controller) [9]. When operating in

synchronous mode, continuous transfers up to 80MHz are

possible.

Fig. 3. Generic Xilinx design flow [7].

V. REAL-TIME IMPLEMENTATION OF ALGORITHM ON FPGA

XILINX SPARTAN-6

We used Spartan-6 FPGA from the Xilinx Nexys-3

platform for the implementation of our algorithm and a VGA

monitor to display the results. The algorithm was developed

on the Xilinx ISE interface and the different blocks are

programmed in VHDL and presented in the following Table

I:

TABLE I: LIST OF DIFFERENT BLOCKS

Block program objective of the block in the project

Memory The "Memory block” that exists in the party IP

(intellectual property) to the Xilinx software is

configured according to the size of the image that

will store, each memory cell contains 8 bits (8 bits

is the value which is coded each RGB pixel)

Memory Playback Since the image is not necessarily the same size as

the screen, the program is necessary for the correct

positioning of the image on the screen

VGA Screen The program's role to define. The VGA monitor is

controlled by five 10-bit coded signals: red (3 bits),

green (3 bits), blue (2 bits), horizontal sync and

vertical sync 1 bit 1 bit. The three color signals,

collectively known as the RGB signal are used to

control the color of a pixel at a location on the

screen. In order to produce other colors, each color

analog signal is to be supplied with a voltage

between 0.7 and 1.0 volts for varying the

intensities of the colors

Synchronization The program lets you synchronize the scanning of

pixels on the screen of a horizontally and

vertically. Signals are used to control the

synchronization of the scanning speed. The

horizontal synchronizing signal determines the

time to scan one line, while the vertical

synchronizing signal determines the time to scan

the entire screen. By manipulating these signals,

the images are formed on the monitor screen

Algorithm In this part of the program we use the principle

defined previously in part 3 for the detection of

contours. The pixels after the conversion are

always smaller than the total number of pixels

[10].

The upper limit guarantees that the operations

depending on the FIFO list can be completed

during the real-time processing period of a frame

Fig. 4 shows a diagram of the different blocks presented in

Table I, programmed in VHDL and synthetized by Xilinx

ISE software [7], [8].

Fig. 4. The blocks implemented on Xilinx ISE.

VI. RESULTS OF IMPLEMENTATION AND DISCUSSION

To display the processed images we used a VGA screen

connected directly to a Xilinx Spartan-6 FPGA circuit. Fig. 5

shows the pre-processing images and Fig. 6shows the same

images after processing.

Fig. 5. The images results before treatment.

We used a road images with a resolution of 200x200. The

module is fully pipelined where a resulting pixel is calculated

at each clock cycle. With this rate and the clock frequency, it

is possible to treat more than 400 image frames per second at

200x200 resolutions.

In addition, the entire chain has been developed following

the appropriate methodology, Algorithm Architecture. With

the regular calculations, the necessary reduced memories and

the important intrinsic parallelism, it forms an ideal candidate

for hardware implementation on embedded systems [10],

[11].

The results obtained show in Fig. 6 the clear presence of all

the edges that exist in the images, these results can be used as

International Journal of Machine Learning and Computing, Vol. 9, No. 1, February 2019

60

a tool for detecting road signs to differentiate zones of the

image in order to characterize the lines of the road and to

extract information reduced, often relevant to characterize the

road images.

Fig. 6. The images results after treatment.

In terms of performance and power consumption, FPGAs

are commonly the lowest in embedded systems, and can

compete by being available quickly, reprogrammable and

manufactured with the latest technology [12]. They provide

an attractive alternative when the resources (cost, time)

required by ASIC development are not available. The ability

to parallelize operations and perform customizable functions

also makes them competitive with the sequential

microprocessor.

VII. CONCLUSION

In this paper, we presented an implementation of edge

detection images by Laplacian algorithms on an FPGA for

the applications for road safety, detecting panels and roadway.

The method is based on the detection of zeros in the change

of intensity, the masks of convolutions obtained by the

computation of the second derivative (for the variation of the

intensity) and a thresholding to select the strongest contours

in the road imagery.

In this context, the Field Programmable Gate Array (FPGA)

with its large integration and reconfiguration capabilities

make it a key component for rapidly developing prototypes

[10], [11]. In order to encourage the widespread diffusion of

such circuits, it is necessary to improve the development

environments to make them more accessible to non-experts

in electronics.

To increase the storage capacity on the Spartan-6 circuit,

three external memories available on the Xilinx Nexys-3

platform can be configured: a 128 Mbit cellular RAM

(pseudo-static DRAM), a parallel non-volatile PCM 128Mbit

(memory of phase change); and a 128Mbit PC serial device.

To access these external memories, whatever the type, a

memory controller is used which serves as an intermediary

between the user program and the physical memory. The

controller is also used to perform the operations of commands;

physical address calculations from logical addresses, data

logging and addresses in FIFOs for Read / Write, automatic

refresh [12]. The user program deals only with the logical

address generation part as well as the Read / Write

commands.

REFERENCES

[1] D. Maar and E. Hildreth, “Théorie de la détection de bord,” Actes

royaleSoc. Londres, vol. 207, pp. 187-217, 1980.

[2] T. Lindeberg, “Edge detection et détection Ridge avec la sélection

echelle automatique,” International Journal of Computer Vision, vol.

30, no. 2, pp. 117-154, 1998.

[3] D. Marimont and Y. Rubner, “Un probabiliste Frameword pour Edge

Détection et Échelle de sélection,” Actes de la Conférence

internationale de l'IEEE sur lavision par ordinateur, pp. 207-214,

Janvier 1998.

[4] J. F. Canny, “A computation approach to edge detection,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 8, no.

6, pp. 769-798, November 1986.

[5] Pankiewicz, W. Powiertowski, and G. Rozszak, “Implementation of

the Lane Detection Algorithm,” presented at 15th International

Conference IEEE (2008), Poland.

[6] J. C. Mc.Call and M. Trived, “Video-based lane estimation and

tracking for driver assistance: Survey, system, and evaluation,” IEEE

Transactions on Intelligent Transportation Systems, vol. 7, no. 1,

March 2006.

[7] Design-tools. [Online]. Available:

http://www.xilinx.com/products/design-tools/ise-design-suite.html

[8] fpga-programmable-log. [Online]. Available:

http://store.digilentinc.com/fpga-programmable-log

[9] S. Nazari et al., “Multiplier-less digital implementation of neuron–

astrocyte signalling on FPGA,” Neurocomputing, 2015.

[10] I. Bouganssa, M. Sbihi, and M. Zaim, “Implementation of Edge

Detection Digital Image Algorithm on a FPGA,” MATEC Web of

Conferences, vol. 75, no. 03003, Sept 2016.

[11] I. Bouganssa, M. Sbihi, and M. Zaim, “Implementation in an FPGA

circuit of Edge detection algorithm based on the discrete wavelet

transforms,” Journal of Physics: Conf. Series, vol. 870, no. 012016,

2017.

[12] M. Strzelecki, P. Brylski, and H. Kim, ‘FPGA-based system for fast

image segmentation inspired by the network of synchronized

oscillators,” in Proc. International Conference on Artificial

Intelligence and Soft Computing, pp. 580-590, 2017.

Issam Bouganssa was born on February 3, 1987. He

got the university diploma of technology specialized

in industrial maintenance at the Higher School of

Technology Sale 2009, professional license

mechatronics at the faculty of Sciences Rabat 2011,

specialized microelectronic master's degree at the

Faculty of Sciences Kenitra 2013, PhD student in

science and techniques for engineers in the Laboratory

of System Analysis, Information Processing and Industrial Management at

Mohammed-V University in Rabat. Search domain, data processing on

embedded systems and microelectronic.

Mohamed Sbihi was born on November 22, 1962. He

is a full professor of higher education. He has received

a graduate degree in electronics and signal processing

from the Faculty of Science at the Mohammed V

University in Rabat 1995, and the PhD in automatic

and information processing from the Faculty of

Science in IbnTofail University in Kenitra 2006. He

was employed since 1996 and member of Laboratory

of System Analysis, Information Processing and

Industrial Management at the Higher School of Technology-SALE in

Mohammed V University in Rabat, Morocco. He works on Image processing,

Data analysis, University teaching and embedded systems and robotics.

Mounia Zaim was born on July 19, 1973. She

received the B.S. in eng science from University

Mohammed V, Rabat, in 1996, and the M.S. in

telecommunications & microwaves from University

Chouaib Doukkali, El-Jadida, in 1997 and the Ph.D.

degree in computer vision from University Sidi

Mohammed Ben Abdellah, Fes, in 2002. She is

currently a Habilited professor at the Higher School

of Technology-SALE in Mohammed V University,

Rabat in Morocco, since 2003 and a member of the Research Lab LASTIMI

(Laboratory of System Analysis, Information Processing and Industrial

Management). Her fields of interest are in computer vision, artificial

intelligence, data analysis and e-learning.

International Journal of Machine Learning and Computing, Vol. 9, No. 1, February 2019

61

