
  

 

Abstract—Action recognition using RGB-D cameras is a pop- 

ular research topic. Recognising actions in a pose-invariant 

manner is very challenging due to view changes, posture 

changes and huge intra-class variations. This study aims to 

propose a novel pose-invariant action recognition framework 

based on kinematic features and object context features. Using 

RGB, depth and skeletal joints, the proposed framework 

extracts a novel set of pose-invariant motion kinematic features 

based on 3D scene flow and captures the motion of body parts 

with respect to the body. The obtained features are converted to 

a human body centric space that allows partial viewinvariant 

recognition of actions. The proposed pose-invariant kinematic 

features are extracted for both foreground (RGB and depth) 

and skeleton joints and separate classifiers are trained. Borda- 

count based classifier decision fusion is employed to obtain an 

action recognition result. For capturing object context features, 

a convolutional neural network (CNN) classifier is proposed to 

identify the involved objects. The proposed context features also 

include temporal information on object interaction and help in 

obtaining a final action recognition. The proposed framework 

works even with non-upright human postures and allows 

simultaneous action recognition for multiple people, which are 

topics that remain comparatively unresearched. The 

performance and robustness of the proposed pose-invariant 

action recognition framework are tested on several benchmark 

datasets. We also show that the proposed method works in 

real-time. 

 
Index Terms—Real-time action/activity recognition, 

poseinvariant kinematic features, object context, non-upright 

postures. 

 

I. INTRODUCTION 

With the advent of Microsoft Kinect, usage of depth 

cameras for vision-based research has attracted a significant 

amount of attention.  The availability of depth and skeleton 

tracking has allowed for several applications in industries, 

such as gaming, automation and entertainment among others. 

The effectiveness of human computer interactions is 

governed by the computer’s ability to understand human 

gestures. However, action recognition is affected by several 

factors, including view angle changes, pose variations and 

occlusion among others [1]. Furthermore, recognition 

methods are limited because they assume there is only one 
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person in the frame and are not real-time in nature. 

In this paper, we introduce a novel framework for pose- 

invariant action recognition using RGB-D cameras that 

includes RGB, depth modalities and ability to track skeleton 

joints. We introduce a new set of kinematic features 

computed with scene flow [2] as a basis for representing the 

motion of each body part. A novel algorithm is proposed to 

convert the computed features to human body centric space 

using the depth and skeletal joints information. In this body- 

centric space, the motion of body parts is captured with 

respect to the body frame, allowing viewinvariant action 

recognition. By converting to the proposed human body 

centric space, we can also handle non-upright human body 

postures during an action, which is a topic in need of further 

research. These kinematic features can be extracted for both 

the foreground region and skeletal joints directly, each for 

which a separate extreme learning machine (ELM) [3] 

classifier is trained for them. Both classifier’s output are 

combined using Borda-count index to obtain an initial action 

recognition result. 

Action recognition using only motion features can be 

difficult since multiple actions may share similar motion 

patterns. For example, throw and pull involve similar 

movements of hands. In the proposed method, we intend to 

initially classify both actions as same and then differentiate 

between them using the objects that are involved in the action. 

First, using the confusion matrix of the initial action 

recognition, we create clusters of actions with similar 

motions. Then, we introduce temporal object context features 

to encode the object that is involved and its temporal 

involvement. For this purpose, inception model [4] and 

transfer learning [5] have been used. Based on the foreground 

and skeletal data, we re-train the inception model to 

determine object presence in key positions. On the contrary, 

we only identify whether the subject is holding the object or 

not, and exclude all other interactions For each frame, we can 

identify the objects that are being held. To capture temporal 

object context, video is divided into smaller segments and the 

object context in each segment is combined with action 

representation to produce a final action recognition result. 

Most available methods assume that only a single person is 

present in the frame, therefore, it cannot be applied in 

real-time. We extend our framework to work for multiple 

people using Kinect’s tracking and its applicability is tested 

in real-time. 

The rest of the paper is organised as follows:  Related work 

in the area of action recognition is discussed in Section II. 

Our proposed action recognition method is explained in 

Section III. Experimental results and discussion are provided 

in Section IV. We conclude the paper in Section V. 
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II. RELATED WORK 

Action recognition using RGB-D cameras is researched 

growing topic of research due to current and possible 

applications in several  industries. A fundamental aspect of 

any action is the articulated motion of one or more body 

parts. To capture motion, [6] extracted optical flow from 

RGB and depth data and represented actions using spatial 

pyramid histogram of optical flow. Meanwhile, [7] 

introduced a depth motion map, that accumulates foreground 

motion re- gions to capture global activities. To achieve 

view-invariance, motion regions in front, side and top were 

accumulated.   Skeleton joints based action recognition is a 

widely re- searched area. Many researchers attempt to 

represent the action using the relative position of joints [8] 

(EigenJoints), joint trajectories [9], joint positions and 

velocities [10]. [11] 

 

III. PROPOSED FRAMEWORK 

For action recognition, the proposed framework captures 

motion as pose-invariant kinematic features (foreground and 

skeleton) encoded into a human body centric space and object 

interactions. In the following subsections, the kinematic 

motion features and its conversion to a human body cen- tric 

space based on estimated body orientation and the person’s 

viewing direction (front, back, left,or  right) are explained. 

A. Kinematic Features 

Once the foreground region has been obtained, the next 

step is computing the kinematic features, namely, divergence, 

curl, projection and rotation [14]. These features were 

previously used with optical flow to characterise 2D motion 

and assumed only frontal face. Herein, we extend these 

features to 3D and apply them to extracted scene flow [2] of 

the identified fore- ground region. The following equations 

give the 3D kinematic features: 

Proposed compatibility kernels to compare 

spatio-temporal and action dynamics compatibility between 

two sequences. Several methods based on RNN and LSTM 

[12], [13] have also used skeleton joint sequences to learn 

deep networks for action recognition.  These can  be easily 

trained  with  large-scale  datasets as well. In this study, we 

propose using scene flow to obtain velocity profile of the 

foreground and introduce a new set of kinematic features, 

which is borrowed from emotion recognition [14]. Other than 

the relative positions of body parts, we focus on capturing the 

relative motion of body parts using these features. Also, we 

propose to include contextual information using temporal 

object context features. 
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View angle changes and pose variations are some of the 

most impor- tant bottlenecks in RGB-D action recognition. 

[15] proposed HOJ3D for posture representation and a 

spherical coordinate system to achieve a view invariant 

action recognition. How- ever, methods relying on only 

skeletal joints suffer under severe occlusion. As a result many 

researchers have combined depth and skeleton information 

such as [16] and [17] for action recognition. [18] extended the 

self-similarity matrices  to depth streams to build a 

viewinvariant action recognition. 

Capturing contextual information can be essential in 

recognizing some actions. [16] introduced a novel local 

occupancy pattern  feature based on the 3D point cloud 

around particular joints. [19] proposed human interactive 

object features based on hand, edge and motion detection. To 

represent the motion of each body part and capture contextual 

information, [20] estimates the parts and employs a BoW- 

Pyramid feature representation. While these methods rely on 

local features for context, we use CNN model to focus on the 

global foreground region and determine the objects involved 

and include temporal information about the object. In this 

paper, for body part estimation, we use the skeletal joints 

only as guidance and assign part labels to foreground based 

on simple distance measures. Additionally, using depth and 

skeleton information, we encode the kinematic motion 

features into a human body centric space that forms the basis 

of our pose- invariant action representation. [21] provide 

more detailed surveys on action recognition based on depth 

data. 

 

𝑃𝑟𝑜𝑗(𝑝) = 𝑆𝐹⃗⃗ ⃗⃗  𝑝. 𝑃ˆ𝑛𝑒𝑐𝑘                                   (3) 

 

𝑅𝑜𝑡(𝑝) =  𝑃ˆ𝑛𝑒𝑐𝑘 × 𝑆𝐹⃗⃗ ⃗⃗ 𝑝                                 (4) 

 

 

 

   

As the next step, we assign a body part label to each 

foreground pixel. For this purpose, we measure the distance 

of each pixel from each of the skeletal joints and assign it    a 

label (Head, Torso, L-arm, R-arm, L-leg, R-leg) based on 

minimum distance measure. Based on the assigned part labels, 

we compute a centre point for each body part label. Similar to 

P roj and Rot, we introduce two more features body part 

referenced projection (BodyProj(pi)) and rotation 

(BodyRot(pi)) that aim to capture motion of pixel p 
classified as body part i with respect to its centre point. These 

are given by the following equations 
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where SFx(p), SFy(p) and SFz(p) are x, y and z-

components of scene flow obtained for foreground pixel p
respectively. Div and Curl mainly focus on expansion and 

circular motion in local neighbourhood. To capture the 

relative motion between parts, we use Proj(p) and Rot(p) 
features. These features compute the motion of the

foreground pixel p with respect to a stable reference point, 

neck in this case. We have chosen neck because it is stable 

and easily seen from all directions. The neck point can be

obtained from the skeletal joints from Microsoft Kinect. The 

unit vector at neck P̂neck is computed and is used for 

obtaining Proj and Rot. Due to the articulated nature of   the 

human body, the variation of velocities in depth can be 

assumed to be negligible or zero, which means that the 

equations can be further reduced.



  

𝐵𝑜𝑑𝑦𝑃𝑟𝑜𝑗(𝑝𝑖) = 𝑆𝐹⃗⃗ ⃗⃗  𝑝𝑖 
. 𝑃�̂�          𝐵𝑜𝑑𝑦𝑅𝑜𝑡(𝑝𝑖) =  𝑃𝑐 ̂ × 𝑆𝐹⃗⃗ ⃗⃗ 𝑝𝑖 

   (5) 

where for each body part i, (Pc) is computed from the centre 

pixel computed using the label assigned previously. 

B. Human Body Centric Space 

Human body centric space is a three dimensional cylinder 

characterised by up-down, left-right and forward-backward 

directions. An RGB image is a 2D cross-section of this 

cylinder and only 2D motion can be recovered. With the 

available depth and skeleton joints, we aim to convert the 

observed motion features into body-centric space so that 

pose-invariant action representation can be obtained. The 

body orientation and viewing direction of the person 

determines which cross-section of the cylinder is observed. 

To estimate the body orientation, we use the Neck and 

SpineBase skeletal joints obtained from Kinect.  Based on the 

orientation between these joints, we can estimate the posture 

as either upright or non-upright. For view direction 

estimation, we use the depth values of the body centre (neck 

and spinebase), right (R-shoulder, R-arm) and left 

(L-shoulder, L-arm) side of the body. Based on these values 

we can determine if the person is front, right or left. We use a 

face detector to differentiate between front and back views. 

Based on the body orientation and view direction, we can 

estimate the three dimensions of the human body centric 

space observed from the RGB-D cameras. The kinematic 

features computed above lie in one of these 3 dimensions. We 

assume Div, Proj and BodyProj lie in the direction of scene 

flow and Curl, Rot and BodyRot have separate components 

for each direction. 

For action representation, first, the foreground region is 

divided into three grids, head, torso and legs, using the 

skeletal joints. For accurate representation, we further divide 

them into cells (3 x 2 is used in our implementation). To 

account   for variations due to view point and body posture, 

these cells are labeled with a specific number. This allows us 

to compare corresponding cells while recognising the actions. 

The kinematic features can be classified into three based on 

the reference point used for measuring, namely, local neigh- 

bourhood (Div, Curl), neck (Proj, Rot) and body part refer- 

enced (BodyP roj, BodyRot). For action representation, we 

compute the weighted (sign and magnitude) and unweighted 

(only sign) histograms of the three classes of kinematic 

features  in each of the three directions of human body centric 

space. L2- normalisation is applied to the features after 

accumulating over the total video length. 

C. Skeleton Pose Kinematic Features 

In this subsection, we explain the extraction of the 

proposed pose-invariant kinematic features for each skeleton 

joint to obtain an action representation. The frame- work 

mentioned above has two limitations. First, the foreground is 

not always detected correctly. Second, since the action 

representation involves histograms, the temporal evolution of 

the pose might not be captured. Also, some actions differ in 

the way only    one or two joints move which might not be 

captured when complete foreground is taken. 

For extracting skeleton pose kinematic features, we require 

the motion vector of the neck joint. For this purpose, we use 

3D neck joint location for two consecutive frames and obtain 

the motion vector in each direction. In each frame, the other 

skeletal joints are converted to coordinate space with neck as 

an origin. Motion vector for each skeletal joint is computed 

using 3D world coordinates obtained for two consecutive 

frames. Projection and rotation features are computed for all 

available skeletal joints using the above mentioned equations 

and converted to the human body centric space as discussed. 

The weighted and unweighted histograms for each skeletal 

joint in each of the three directions of human body centric 

space are computed and L2-normalised. 

For combining proposed features, we have employed 

Borda-count based classifier fusion approach. Separate ELM 

classifiers are trained for pose-invariant kinematic motion 

features of foreground pixels and skeletal joints, respectively. 

For a particular class ck, Borda Count B(ck) is defined as a 

sum of the number of classes ranked below class ck by each 

classifier. The magnitude of the BC reflects the level of 

agreement that the input pattern belongs to the considered 

class [22]. For every test video, both features are extracted 

and passed through respective classifiers. From the output of 

both classifiers, BC of each class ck is identified and the class 

with highest BC is given as the action recognised. 

D. Temporal Object Context Features 

The Borda-count based method is completely dependent 

on only motion features. It is difficult to differentiate all 

actions based on only motion as similar patterns may be 

observed for different action. To overcome this issue, we 

introduce temporal object context features to include 

contextual information on objects and temporal interactions 

involved. Before applying these features, we first need to 

create action clusters, i.e., actions with similar motion 

patterns are grouped as a single class. Initially, we run the 

proposed Borda-count method with all the action classes. 

During training based on the confusion matrix, we can 

determine the actions poorly recognised and actions confused 

with. A threshold can be set to determine if two classes are 

confused. Based on the initial run, we first create action 

clusters and train new classifiers to classify test videos into 

one of the clusters. During testing after the video is classified 

into one of the clusters, temporal object context features are 

used to determine a final action. In this subsection, we 

elaborate on the training object detection CNN and extract 

temporal object context features using it. 

Object Recognition CNN - Retraining Procedure: De- 

tection of objects held by subject can help in differentiating 

actions with similar motion. Due to low resolution, oc- 

clusion and variety of objects being used, object detection is 

difficult in action datasets. Hence, we train a CNN with a 

whole person holding 16 objects (including no object) seen in 

the action training videos. Using the skeletal joints, we crop 

the person out and resize to 640 x 480. The extracted set of 

images are used for retraining the Inception v3 [4] classifier, 

pre-trained on ImageNet [23], to recognise various objects 

held by the subject. 

During retraining, the original network’s last layer is re- 

placed by two layers, namely, hidden layer and new 

classification layer (for objects of interest in action dataset). 

Only parameters of these two new layers need to be trained. 

From the training videos, we collected images for each object 

category and chose around 500 sample images per object 

category which were then divided into training (70%) and 
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validation (30%) sets. The network was retrained and 

parameters with the best performance were selected for 

testing on an unlabeled dataset. Fig. 1 shows some of the 

images from training videos used for retraining. 
 

 

 
Fig. 1. Sample images with person holding different objects used for 

retraining Inception v3 classifier. 

 

For extraction of temporal object context features, we 

divide the video into N temporal segments and consider the 

objects detected in each. Given a video frame, we crop the 

person out using skeletal joints, resize to 640 x 480 and 

pass through the trained object classifier. Thus, each frame is 

asso- ciated with an object. In each temporal segment, we 

compute the ratio of the number of occurrences of each 

identified object and the total number of frames. The final 

features are combination of these features for all temporal 

segments. 

With help of Kinect, we extend our action recognition 

framework to handle multiple people (6 skeletons) using the 

unique tracking ID provided. For real-time action recognition, 

the most time consuming part would be computation of scene 

flow. Using the CUDA implementation of [2] using NVIDIA 

GTX 650, we were able to achieve real-time action 

recognition. 
 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

The proposed framework for action recognition is based on 

two important components, namely, pose-invariant kinematic 

and object context features. For testing our frame- work’s 

performance, we selected three benchmark datasets, namely, 

MSR DailyActivity 3D [16], UT Kinect dataset [15] and 

NTU RGB+D dataset [12]. These datasets provide RGB, 

depth and skeleton streams from Kinect for different actions 

that may or may not include object interactions. For real-time 

implementation, we collected our own dataset of nine actions. 

For object context, we train a global classifier with 16 objects 

(including no object) seen in the datasets from the action 

training videos. As mentioned earlier, we use 3 x 2 cell 

configuration for dividing the body grids. For classification, 

we use ELM [3] due to its faster training time. The only 

parameter to tune in ELM is the number of hidden layer 

neurons. We train ELM with different number of neurons and 

report the best performance here. 

A. MSR Daily Acivity 3D 

MSR Daily Activity 3D [16] is a popular dataset with ten 

subjects performing 16 activities in standing and sitting 

postures in an office environment. Activities can include 

interaction with objects, such as laptop, vacuum cleaner, 

guitar, paper and soda can among others. For validation, we 

have used the leave-one-person- out setting. First, we run 

without the object context module to identify the action 

clusters. In this setting, we achieved a recognition 

performance of 64%, which is very low in comparison with 

other available methods. We analysed the results obtained by 

constructing the confusion matrix, as shown in Fig. 2 (a). The 

confusion matrix showed that seven out of 16 actions (read, 

call cellphone, write, use laptop, play games, play guitar, 

throw) did not perform well. Read, write, use laptop and play 

games were mainly confused with sit still action. In each of 

these actions, we observed that there is no discernible 

motion. In all these actions, the motion observed is 

negligible making it difficult to detect without object 

detection results. These five actions read, write, use laptop, 

play games and sit still can be one action cluster. A similar 

cluster was obtained with actions drink, eat and call 

cellphone. In the case of call cellphone, play guitar and 

throw actions, there is no unique motion pattern to represent 

them. For example, in the call cellphone action, after the 

subject lifts the phone to the ears, he/she is free to move in 

standing position thus introducing erroneous motion. 

Similarly, play guitar can be done in different ways and 

cannot be fixed to single discriminative motion pattern. All of these 

actions can be recognised in a better manner by including an 

object detection module. The remaining actions are 

recognised well by our framework and can be considered as 

separate action clusters. 

Second, we ran the proposed framework with object 

context module. The actions were classified into either one of 

the identified action clusters based on the motion(s) involved. 

The final action is then recognized based on the tempo- ral 

object context features. Also some actions can be recognised 

by simply identifying the objects. For example, the action 

play guitar can be recognised by identifying the object guitar. 

In this setting, we give more importance to the objects 

observed. The proposed framework shows a performance of 

90.84%. The comparison of our method and state of art 

methods are shown in table I. We can observe   that the 

proposed method performs better than most of the available 

methods. Heterogeneous feature learning [17] and multiple 

kernel learning [6] allow them to learn significantly 

important motion and appearance in an action, thus allowing 

for a better action representation. The proposed framework    

is pose-invariant whereas the other methods available are 

quite limited. Overall, our proposed method can be improved 

with better detection of significant motion patterns. Another 

limitation is that the object context module fails in cases 

where objects are too small or occluded. 

B. UT Kinect Action Dataset 

UT Kinect dataset [15] is a popular dataset with ten actions 

done by ten actors twice in an office environment. Only a few 

actions like pick up, carry and throw involve any objects. For 

validation, we have used the leave-one-person-out setting. 

Since the skeleton label is not provided for depth and RGB 

frames, we include a foreground detection based on the x,y 
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and z coordinates of the skeleton. 
 

 
(a) 

 
(b) 

Fig. 2. Confusion matrix obtained for the proposed framework without 

object context module in (a) MSR Daily Activity 3D (b) UT Kinect dataset. 

blue indicates low value and red indicates a higher value. 

 

TABLE I: PERFORMANCE COMPARISON IN MSR DAILY ACTIVITY 3D 

DATASET 
Method Performance (%) 

Proposed Framework (with object context) 90.84 
Range-Sample Depth [24] 95.63 
Heterogeneous Learning [17] 95 
Multiple Kernel Learning [6] 92.5 
Actionlets [16] 85.75 

Tensor Subspace[25] 80.63 

 

Similar to MSR DailyActivity 3D, we first run without the 

object context module. We achieve a performance of 80.95%, 

which is very low in comparison to the state of the art 

methods. Using the confusion matrix, as shown in Fig. 2 (b), 

we identified the action clusters. We observed that only three 

actions had a very poor recognition performance, namely, 

carry, walk and throw. Throw is mainly confused with the 

push action since they have similar actions with the only 

difference being the object held in the hand. Carry and walk 

actions are also confused with each other. From the videos of 

both actions, we can see that action carry involves walking 

with a box in the hand. The rest of the actions have a better 

recognition performance. 

Second, we ran the framework with object context module 

included. Also for actions carry and throw, it is not important 

which object is being held. We only need information as to 

whether the object is present or not, since any object can be 

carried or thrown. Our object context features include this 

information. The results obtained with object context and 

comparison to other available methods is tabulated in table II. 

We show a performance of 96.5%, which is comparable with 

the state of the art methods. [10] and [11] show better 

performance. [11] captures higher order relation- ships 

between actions and joints using tensors. Since, from [10], 

action representation involves identifying important skeletal 

joints and temporal stages of that action. Our framework can 

also be improved for identifying such attributes and we plan 

to do this as part of our future work. Also, our framework 

includes object context in contrast with the other methods. 
 

TABLE II: PERFORMANCE COMPARISON IN UT KINECT DATASET 
Method Performance (%) 

Proposed Framework (with object context) 96.5 
GCA LSTM [13] 98.5 
Tensor Representations[11] 98.2 
ST NBNN [10] 98 

Eigen Joints[9] 91.5 

 

C. NTU RGB+D Dataset 

NTU RGB+D [12] is one of the largest RGB-D action 

recognition datasets available with 56880 samples and 60 

action classes. The actions are performed by 40 subjects and 

captured from three camera views. The actions can be either 

one-person actions or two-person interactions. The dataset 

are extremely challenging due to the view-point changes, 

pose variations and intra-class variations among others. In 

our implementation, we used RGB, masked depth image and 

skeleton information provided with the dataset. We followed 

two standard protocols, namely, cross-subject and cross-view, 

provided with the dataset for testing. For two person 

interactions, we compute average skeleton joint positions and 

use it for skeleton pose kinematic features. The RGB-D 

based kinematic features are computed based on the skeleton 

for each person in the frame. The results of our method and 

i t s  comparison with other state of art methods are shown 

in table III. We can observe that the proposed method does 

not perform well in comparison with state of the art deep 

learning methods. With only kinematic motion features, the 

performance is 45.01% and 41.37% in both evaluation 

protocols, respectively. Similar to other datasets, our 

performance can increase with the inclusion of temporal 

object context features but it might not be comparable to 

state of the art methods. Due to this, we have not included the 

object context module. Our kinematic motion features 

represent the observed motion during the entire action. As a 

result, it might not be able to learn important, subtle motion 

involved in many of the action classes. Deep learning based 

methods using RNN, LSTM [12] and [13] can explore spatial 

and temporal structure. Also, they can learn long term 

temporal dependency of different body parts involved in an 

action. ELM classifier used by the proposed method is very 

simple and might not be able learn all variations and nuances 

of an action. This suggests that the proposed method might 

not be suitable for big datasets. In our future work, we will 

focus on developing a deep learning based method using the 

proposed features. 

D. Own Collected Dataset 

To test the proposed framework in real-time and handle 

multiple persons, we collected our own dataset with nine 

actions. They include eat, drink, answerPhone, checkPhone, 

give object, extend to shake hands, takePhoto, walk and do 
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nothing. For actions eat, drink, answerPhone and walk, we 

used the training videos from MSR DailyActivity 3D and UT 

Kinect dataset, respectively, and collected our own dataset 

for other actions using a Kinect v2. Some of the collected 

sample frames are shown in Fig. 3. The subjects were 

allowed to choose any object for performing the actions. We 

used global object context classifier for extracting the 

contextual information. Leave-one-out validation was used 

for measuring performance. 
 

TABLE III: PERFORMANCE COMPARISON IN NTU RGB+D DATASET 
Method Cross- 

Subject 
(%) 

Cross-View 
(%) 

Proposed Framework (without ob- 
ject context) 

45.01 41.37 

Original Samples Skeleton Visual- 
ization [26] 
Part-aware LSTM [12] 
GCA LSTM [13] 

75.97 
 

62.9 
74.4 

82.56 
 

70.3 
82.8 

 

 
Fig. 3. Sample frames from own dataset collected for checkPhone, give 

object, shake hands and takePhoto actions. Other actions were taken from 

other datasets. 

 

Similar to other datasets, we ran the proposed framework 

without the object context module. The framework shows a 

performance of 64.72%. From the results obtained, we 

identified two action clusters, eat, drink and answerPhone 

and give, shake hands and takePhoto. Using these clusters, 

we ran the proposed framework with object context module. 

We observed an increase of 12% after inclusion of object 

context. 
 

 
Fig. 4. Sample frames showing occlusion of objects and small sized objects 

in the dataset 

 

An important observation is that the same object can be 

used for different actions. For example, a phone can be used 

for both give and takePhoto. When both actions are in the 

same action cluster, it would be difficult to identify the action. 

Similar to MSR DailyActivity 3D, another source of error is 

when the object is small or occluded. Also as shown in Fig. 3, 

the subject might be occluded making it difficult for the 

motion based action recognition to be accurate. Overall, the 

proposed method was able to function in real-time and handle 

multiple persons. 

E. Discussion 

During analysis of our results, we noticed that simple 

foreground detection based on skeleton and depth 

information can result in erroneous detection of cupboards 

and table as foreground. This would introduce erroneous 

motion features and thus reduce our recognition performance. 

Our framework also depends on the availability of neck point 

to compute pose- invariant motion features. The skeleton 

joints provided in some cases are such that the neck and other 

parts remain hidden or invalid. In these cases, it is not 

possible to extract motion from the videos. The availability of 

neck point in the frame is a significant limitation of our 

framework. 

The proposed framework currently cannot handle 

occlusion of body parts. We observed that the performance 

drops in the presence of occlusion. In the own collected 

dataset, give, shake hands and takePhoto all included 

occlusion of legs. When we ran the proposed framework in 

real-time, we observed that the actions were getting confused 

to these 3 actions when the legs were occluded. 

Object context is an important component in the proposed 

framework. In all three datasets, we have seen a significant 

increase after including the contextual information. But as 

shown in Fig. 4, it is difficult to detect occluded or small- 

sized objects. In the current setup, we have considered only 

one type of interaction, i.e. the subject holding the object. But 

this needs to be extended to other interactions such as sitting 

down in a chair. In the future, we would like to extend the 

framework to include object identity, type of interaction and 

temporal involvement of object. For action recognition, we 

would like to investigate deep learning for the proposed set of 

kinematic features also to encode object interactions into it. 

 

V. CONCLUSION 

Pose-invariance in RGB-D action recognition is difficult 

due to a variety of factors, such as view changes, occlusion, 

large amount of possible poses and object interactions among 

others. In this study, we propose a novel framework to 

combine motion features and temporal object context 

features. For motion, we introduce a new set of pose- 

invariant kinematic features that capture motion of body parts 

with respect to the body frame itself. Encoding in human 

body centric space allows us to recognise actions in 

non-upright postures and in a partially view invariant manner. 

The proposed features can be applied to both foreground and 

skeletal joints and are combined using Borda-count classifier 

fusion. Initial action clusters are formed using this output. For 

final action recognition, we include temporal object context 

features that distinguish what object is being held and for 

how long. For this purpose, we also train CNN that detects 

the object in each frame. Experiments have shown that the 

proposed framework performs well in benchmark datasets 

and can be applied in real-time to handle multiple subjects. 
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