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Abstract—In this paper, the training performance of 

artificial neural network (ANN) is investigated based on three 

aspects of the training data: the data size, the distribution of the 

subsets for training, validation and testing, and the data 

segments of the training data, which are generated using Lorenz 

chaotic system equations and the forward Euler method to 

represent the chaotic features commonly found in real world 

applications, specifically for the Electroencephalogram (EEG) 

signals captured from brain activities. This research 

investigates the potentiality and feasibility of using small data 

set for training ANN to generate chaotic time series, which can 

be used for the simulation and analysis of chaotic features in 

EEG signals. Contradictory to the popular belief that better 

performance can be achieved by larger number of training 

samples, the training results show that the same level of training 

performance can be achieved by a relative small number of 

training samples for the generation and prediction of the 

chaotic system time series. 

 
Index Terms—Electroencephalogram (EEG), time series, 

artificial neural network (ANN), small data, chaotic patterns.  

 

I. INTRODUCTION 

Following the extraordinary accuracy achieved in image 

classification by using big data [1], enormous amount of 

effort has been dedicated to data acquisition in machine 

learning applications of all sorts, especially for pattern 

recognition and classification. The triumph of big data has 

been well celebrated by employing this training method to 

improve training performance and increase classification 

accuracy, which however comes at a high cost of excessive 

training time and power consumption. The complexity of 

convolutional neural network (CNN) required for abstracting 

multi-dimensional features from big training data in the deep 

learning process [2] inevitably results in the increasing of 

both training time and power consumption. For most machine 

learning applications in brain research using EEG signals, big 

data may be a luxury neither essential nor practical to be had. 

EEG biomarkers have been developed to identify various 

mental disorders. Previous research has shown that machine 

learning techniques can be successfully applied to EEG 

signals to identify mental disorders such as schizophrenia [3], 

bipolar disorder [4] and depression [5], as well as to improve 

classification accuracy of different brain activities in 

brain-computer interface (BCI) [6]. EEG has better temporal 

resolution over other neuroimaging methods and can be used 

to capture fast changes of brain activities. However, EEG 

signals have some intrinsic limitations such as low signal to 

 
Manuscript received August 23, 2018; revised October 19, 2018.  

L. Zhang is with the Faculty of Engineering and Applied Science, 

University of Regina, Regina, SK, Canada, S4S 6T2 (e-mail: 

lei.zhang@uregina.ca).  

noise ratio due to noise and artifacts, as well as relatively low 

spatial resolution in that the electrodes can only detect 

collective regional brain activity. Besides, EEG time series 

patterns are highly individually dependent and can change 

over time for each individual subject. It is impractical and 

unfeasible to acquire big EEG data for each individual over a 

long period of time. In contrary, it can be extremely 

beneficial to use small data set that is sufficient to meet the 

requirement of machine learning and serve the purpose of 

classification and prediction of EEG time series signals.  

As Artificial Neural Network (ANN) is originally inspired 

by biological neural network, from an evolutionary point of 

view, the ultimate goal should be to preserve energy in 

problem solving, instead of exhausting all energy in order to 

achieve perfect accuracy. For examples, it takes human brain 

little effort to recognize a face with a few key features, which 

is highly efficient without having to recall all specific details 

with 100% accuracy, unless one obtains the skills of a artist to 

attend to details. It therefore inspired the initial idea in this 

research to investigate the ANN training performance using 

small data set. 

Section II explains background of the research project for 

the design of ANN-based chaotic system generators to 

simulate and predict EEG signals in brain research; Section 

III describe the generation of training samples; Section IV 

provides the ANN training results using different data sizes; 

Section V concludes the research work and offers some 

future research perspectives. 

 

II. A BRIEF BACKGROUND OF THE BRAIN RESEARCH 

This research is a subproject of a multidisciplinary brain 

research program aiming to understand the brain 

functionality and enhance cognitive ability via brain 

stimulation. The design of ANN-based chaotic system 

models is motivated by the lack of theoretical foundation and 

practical individual data in brain research. EEG signals 

captured from brain demonstrate chaotic features such as 

bifurcation. A hypothesis is drawn from the explanations 

presented in [7] that a stable cortical state of the brain neural 

network may be manifested by an aperiodic signal of a 

chaotic attractor in the captured EEG data. The previous 

related research work published recently [8]-[10] were focus 

on the optimization of ANN architecture in order to 

efficiently generate and predict chaotic time series outputs 

which can be used for the simulation and analysis of EEGs 

signals for brain research. This research examines the 

possibility of using small training data set for ANN training 

without jeopardizing the training performance of the 

ANN-based chaotic system. This is of great importance for 

the study of brain activities with limited EEG signals for 
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individuals. 

The design and optimization of ANN architecture has been 

discussed in previous related research [8]. An ANN 

architecture with one hidden layer for Nonlinear 

Autoregressive (NAR) model can be defined by the number 

of hidden neurons (n) and the number of input delays (d) [10]. 

In this paper, only two ANN architectures ANN(n=3, d=4) 

and ANN(n=6, d=1) are selected for comparing training 

results using different training data sets. It is shown  that 

when big training data set is used, these two architecture can 

achieve good training performance at low computational 

cost. 

 

 
Fig. 1. ANN architectures used for training. 

 

The MATLAB Neural Network Toolbox and the nonlinear 

autoregressive (NAR) model in the nonlinear time series 

function ntstool are used for ANN training. The training 

performance is measured by the average mean square errors 

(MSEs) between the ANN outputs and the target outputs. 

Due to the random initial values assigned to all weights and 

bias in the ANN by the MATLAB ntstool, the MSE value 

varies for each training iteration, even with the same ANN 

architecture, training data set and training parameters. 

Therefore each training is carried out for 3 iterations. The 

smallest MSE is used for evaluating training performance 

among various training data in order to eliminate the 

abnormal big MSE value caused by a local minimum gradient 

[11]. It is reported in previous related research that the 

Levenberg-Marquardt (trainlm) training algorithm [12] has 

the best training efficiency in terms of well balanced training 

performance and training time, compared to the other training 

algorithms available with the ntstool. The default MATLAB 

training parameters are used for all training. 

 

III. GENERATION OF THE TRAINING SAMPLES 

The Lorenz system differential equations used for 

generating the training data are listed in (1).  
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The system has three outputs x, y and z, which are the 

target outputs of the ANN training, hence there are three 

neurons in both the input and output layers of the NAR ANN 

model. σ, ρ and β are three system parameters. Chaotic 

systems can be in chaotic, periodic or stable states depending 

on the setup of initial values and system parameters. In this 

study, all training data sets are generated with the same initial 

values x0 = y0 = z0 = 10, and system parameters σ=10, ρ=28, 

β=8/3, which will set the Lorenz attractor in chaotic state with 

chaotic time series outputs. 

Up to 16,000 training samples of Lorenz chaotic time 

series are generated using the three Lorenz system 

differential equations and the forward Euler method at two 

step sizes dt=0.01 and dt=0.005 [10]. The length of the time 

series segment depends on both the number of training 

samples and the step size. For example, 1,000 (1k) samples 

generated with the same initial conditions with dt=0.01 is 

considered to represent the equivalent length of time series 

segment as 2,000 (2k) samples with dt=0.005. The two time 

series segments with the same length are deemed to be 

equivalent but are in fact very different in nature due to the 

divergence of the two chaotic time series caused by the 

different step sizes. The training samples with smaller step 

size have better precision.  

Different training data sets are formed by using different 

blocks of the generated data samples. Two different ANN 

architectures are selected to investigate the training 

performances based on the selection of training data. 

Training data set with limited number of samples can only 

represent small segments of the Lorenz attractor, which is 

intended to examine the training performance and determine 

if these partial representations are sufficient for the ANN 

training to generate the target outputs of the chaotic system. 

The training for each ANN architecture and training data set 

is carried out for 3 iterations, and the training time is 

measured in seconds.  

 The generated training samples are divided into 3 subsets 

for training, validation and testing. The training subset is used 

in the training process for computing the gradient and 

updating the weights and biases to gradually reduce the MSE. 

The validation set is used to measure network generalization 

and stop the training if the ANN is overfitting on the training 

data. The network weights and biases are saved at the 

minimum validation MSE. The testing subset is used 

independently to compare the results of different network 

models. It can also detect poor division of training samples 

among the three data subsets when the minimum MSEs of the 

testing data and validation data occur at a significantly 

different training epoch. There are two optional functions for 

dividing the training samples into three subsets. The default 

„dividerand‟ function divides the training data randomly. The 

„divideblock‟ function divides the training data into three 

contiguous blocks, which can be used alternatively to 

evaluate the predictability of the ANN. The default divide 

ratios for the training, validation and test subsets are 70%, 

15% and 15%.  

 

IV. ANN TRAINING RESULTS 

The ANN training is carried out for two selected ANN 

architectures: ANN(n=3, d=4) and ANN(n=6, d=1), as shown 
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in Fig.1(a) and (b) respectively. The computational cost of 

ANN architecture is measured by the number of 

multiplications between neurons and weights. The ANN 
(n=3, d=4) has three neurons in the input, hidden and output 

layers. The actual number of neurons in the input layer after 

adding the delay is 12 (4×3). Therefore the computational 

cost is 45 (3×4×3+3×3). The ANN(n=6, d=1) has 3 neurons 

in both input and output layers and 6 neurons in the hidden 

layer, and a computation cost of 36 (3×6+6×3).  

A. Training Results for ANN(n=3, d=4) 

The training for the ANN(n=3, d=4) architecture is carried 

out using 12 training data sets with the number of samples 

incrementing by 1k samples from 1k up to 12k samples. The 

Lorenz system time series segments represented by the data 

sets of 1k to 8k with step size dt=0.01 are plotted in Fig. 2.  

 

 
Fig. 2. Lorenz system time series segments of 1k to 8k training samples (dt=0.01). 

 

 
Fig. 3. Training results for ANN(n=3, d=4) using 1k to 12k training samples (dt=0.01, dividerand). 

 

1) Training data (dt=0.01, ‘dividerand’) 

First, the „dividerand‟ option is used for randomly divide 

the training samples of each data set into three subsets (70% 

for training, 15% for validation and 15% for testing). The 

overall performance and the performances of three data 

subsets are plotted for each iteration in Fig. 3(a), (b) and (c) 

respectively. The best overall and subset training 

performances of three iterations are plotted in Fig. 3(d). As 

indicated by all three iterations, the training performance 

cannot be improved by increasing the number of training 

samples. Contradictory to the common belief that big data 

would inevitably lead to better training results, in this case of 

ANN training for chaotic system generation, the best 

performances degrades slightly yet consistently as the 

number of training samples increment from 1k to 12k. 

2) Training data (dt=0.01, ‘divideblock’) 

Second, the „divideblock‟ option is used for dividing the 

training samples into three contiguous blocks. The training 

results are plotted in Fig. 4. The performance of validation 

subset can be used to indicate the predictability of the trained 

ANN. Similarly to the training results using the „dividerand‟ 

option, the overall training performance is not improved by 

International Journal of Machine Learning and Computing, Vol. 8, No. 6, December 2018

608



  

increasing the number of training samples, i.e., the training 

data size. Differently from the „dividerand‟ results, an 

interesting degradation occurs unanimously for all three 

training iterations using 2k training samples, whereat the 

validation performance is better than the training 

performance. This indicates poor distribution of training 

samples in three subsets. In other words, the validation subset 

contains information that is not presented in the training 

subset. It can be observed from the 3D time series plots in Fig. 

2 that the changing rates of the three dimensions can be 

different for the training and validation subsets if the 

validation subset happens to fall into the two focus points of 

the Lorenz attractor. The Lorenz time series segment of 2k 

training samples in Fig. 4(b) also indicates that the segment 

can only partially represent the Lorenz attractor; and it 

contains both fast and slow changing subsegments which 

could result in poor training performance caused by dividing 

the training samples using the „divideblock‟ option.  

 

 
Fig. 4. Training results for ANN(n=3, d=4) using 1k to 12k training samples (dt=0.01, divideblock). 

 

 
Fig. 5. Training results for ANN(n=6, d=1) using 12 training data sets (dt=0.01, dividerand). 

 

B. Training Results for ANN(n=6, d=1) 

A different training approach is taken for the ANN(n=6, 

d=1). Both `dividerand' and „divideblock‟ options are used to 

divide the training samples. The number of samples for 12 

different data sets are: 100, 200, 400, 800, 1k, 2k, 4k, 8k, 10k, 

12k, 14k and 16k. These data sizes are selected as such to 

compare the training results of time series segments with 

equivalent length but generated using different step sizes 

(dt=0.01 vs. dt=0.005). 

1) Training data (dt=0.01, ‘dividerand’) 

The training results using training samples generated with 

step size dt=0.01 and divided with the „dividerand‟ function 

for 12 different data sizes are plotted in Fig. 5. As the training 

samples are randomly divided, there is normally no 

significant difference among the MSEs of three training data 

subsets. The best MSEs zigzag between 1E-5 and 1E-6 as the 

number of training samples increases from 1k to 16k, without 

demonstrating any consistent improvement in performance. 

2) Training data (dt=0.01, ‘divideblock’) 

The training results using the same data sets divided with 

the „divideblock‟ function are plotted in Fig. 6. It is shown 

that when the data size is smaller than 1k, the validation MSE 

is much bigger than the training MSE. This indicates that the 
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training performance is overfitting on the training data and 

the small number of training samples is not enough for 

training the ANN to learn the chaotic features of the Lorenz 

attractor. The differences of MSE for training, validation and 

testing subsets are relatively small when data sizes bigger 

than 1k (1k included) are used. The best MSEs zigzag 

between 1E-5 and 1E-6 as the number of training samples 

increases from 4k to 16k. As the training samples are divided 

into three contiguous blocks, the variation between the 

training and validation MSEs can be used to measure the 

prediction capability of the trained ANN. In the case of 

chaotic system, the size of validation and testing blocks 

should be considerably smaller than the training block, as 

they may represent time series segments of different 

changing rate compared to the training block. 

All MSEs are calculated for open-loop NAR model, where 

the MSE is calculated using the ANN outputs at each time 

step sequentially compared to the target outputs and the 

average MSE is calculated for all training samples. It is 

however infeasible to directly measure the MSE of close loop 

NAR model, as it is intrinsic for chaotic time series to 

demonstrate chaotic behavior and an infinitesimal difference 

can cause the outputs of the same chaotic system to diverge 

significantly from the original path after a short period of 

time. Nevertheless, the close-loop NAR is used to generate 

the prediction based on the defined system initial values and 

can be inspected visually. 

 

 
Fig. 6. Training results for ANN(n=6, d=1) using 12 training data sets (dt=0.01,  divideblock). 

 

 
Fig. 7. Training Results for ANN(n=6, d=1) using 12 training data sets (dt=0.005, divideblock). 

 

3) Training data (dt=0.005, ‘divideblock’) 

In order to investigate whether the ANN training 

performance and predictability can be improved by 

increasing the data precision, that is, to use more training 

samples to represent the same length of time series segments. 

The training samples are generated with step size dt=0.005 

and the „divideblock‟ option is used for dividing the training 

samples into three contiguous blocks. The training results are 

plotted in Fig. 7. It can be observed that as the number of 
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training samples increases above 1k, the MSEs variation is 

more converging and less zigzag compared to the previous 

training with dt=0.01. This may be due to the doubled 

precision and halved training segment, a.k.a, doubled data 

precision. 

A number of data sizes of training data are carefully 

selected for comparing the equivalent time series segments 

generated with two step sizes (dt=0.01 and dt=0.005) and 

divided by the „divideblock‟ function, as listed in Table I. 

The Lorenz system time series equivalent segments 

represented by the training samples generated with step size 

dt=0.005 are plotted in Fig. 8. 
 

TABLE I: TRAINING DATA WITH EQUIVALENT LENGTH 

Step Size Number of Training Samples (ks) 

dt=0.01 0.1 0.2 0.4 1 2 4 8 

dt=0.005 0.2 0.4 0.8 2 4 8 16 

Equivalent Length 1 2 4 10 20 40 80 

 

The best training and validation MSEs of two time series 

with equivalent length generated with two different step sizes 

are plotted in Fig. 9. These time series segments are 

considered equivalent in that they can represent a segment of 

the chaotic system outputs with the same length. The length 

of the segment is measured by the product of the number of 

training samples and the step size. For a segment with a given 

length, the training samples generated with a smaller step size 

will result in a larger number of training samples. For 

example, the length of 1k samples data set with dt=0.01 is 1k

× 0.01=10; and the length of 2k samples data set with 

dt=0.005 is also 2k×0.001=10. It needs to be clarified that the 

equivalent time series segments are not identical because 

they are generated using Euler method with different step 

sizes, which cause the time series to diverge. Nevertheless, 

the comparison results show that the training performance 

can be improved by increasing the precision of the training 

data with increased number of training samples when the 

training samples are more than 1k. The predictability 

indicated by the validation performance can also be improved 

using training samples generated with better representation 

precision by increasing the number of data samples to 

represent the time series segment with the same length. 

Moreover, it is insufficient to use less than 1k training 

samples to effectively train the ANN. 

 

 
Fig. 8. Lorenz system equivalent time series segments (dt=0.005). 

 

 
Fig. 9. Training results for equivalent time series segments (ANN(n=6, d=1), divideblock). 

 

V. CONCLUSION AND FUTURE WORK 

Three conclusions can be drawn from the training results in 

the application of Lorenz chaotic system design based on 

ANN. First, the size of the training data does not have 

significant impact on the training performance. At the same 

precision, a small training data set can be trained to generate 

the desired chaotic time series with equivalent performance 

as a big data set but much reduced training time. Second, the 

training performance can be better evaluated by using the 

`divideblock' option in MATLAB to use three separate 

consequent time series segments for training, validation and 

testing, without any penalty of degrading the training 

performance compared to the default `dividerand' option, 

which randomly divide the training samples into three 

subsets. In fact, the three continuant segments divided by the 
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„divideblock‟ option can be used to test the predictability of 

the trained ANN by measuring the difference between the 

training and validation performances, as well as the 

difference between the training and testing performances. 

Third and most important, the performance and predictability 

of the trained ANN can be improved by using training 

samples with better precision, i.e. smaller time step (dt). It is 

the quality, rather than the quantity of the training data that 

primarily determines the ANN training results. It is not 

guaranteed that big data can create big value. One key reason 

the human brain is highly energy efficient is that it can 

ruthlessly screen out massive noncritical information (noise) 

in order to focus on processing a limited amount of most 

important information. The insight gained from this research 

lies in the understanding that big data alone is not the panacea 

for all machine learning applications. More data can only be 

beneficial for ANN training if it contains useful information. 

Excessive training data with low data quality may also bring 

in more noise and reduce training efficiency. The successive 

research will be carried out for the hardware implementation 

of the designed ANN with fixed-point data representation, 

which will introduce quantization error to both the training 

data and the ANN architecture, including the values of 

weights and biases, as well as the activation function.  
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