
 

Abstract—Queuing network techniques are effective for 

evaluating the performance of computer systems. We 

considered a queuing network with two input sources, one is a 

finite input source and the other is an open input source. We 

call this as hybrid input source. In the finite input source, the 

finite number of terminals exists and a job is dedicated to its 

own terminal. After a think-time at the terminal, the job moves 

to the server, acquires a part of the memory, and executes CPU 

and Input / Output (I/O) processing. When the job completes 

at the CPU and I/O processing, it releases the memory and goes 

back to its own terminal. On the other hand, in the open input 

source, the job arrives at the server randomly from outside, 

acquires a part of the memory, and executes CPU and I/O 

processing, and goes back to the outside after releasing the 

memory. However, the queuing network model with memory 

resource has no product form solution and cannot calculate the 

exact solutions. 

We proposed an approximate queuing network technique to 

calculate the performance measures of computer systems with 

hybrid input source in which multiple types of jobs exist. This 

technique involves dividing the queuing network into two levels; 

one is "inner level" in which a job executes CPU and I/O 

processing, and the other is "outer level" that includes termin-

als and communication lines. By dividing the network into two 

levels, we can prevent the number of states of the network from 

increasing and approximately calculate the performance meas-

ures of the network. We evaluated the proposed approximation 

technique by using numerical experiments and a Monte Carlo 

simulation, and clarified the characteristics of the system re-

sponse time and the accuracy of the approximation. 
  

Index Terms—Performance evaluation, queuing network, 

central server model, finite input source, open input source. 

 

I. INTRODUCTION 

Queuing network techniques are effective for evaluating 

the performance of computer systems. In computer systems, 

two or more jobs are generally executed at the same time, 

which causes delays due to conflicts in accessing hardware 

or software resources such as the CPU, I/O equipment, or 

data files. We can evaluate how this delay affects the 

computer system performance by using a queuing network 

technique. Some queuing networks have an explicit exact 

solution, which is called a product form solution [1], [2]. 

With this solution, we can easily calculate the performance 

measures of computer systems, for example the busy ratio of 

hardware, the job response time, and so on.  

However, when the exclusion controls are active or when 

a memory resource exists, the queuing network does not 
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have the product form solution. When the queuing network 

that has no product form solution, we have to construct a 

Markov chain that describes the stochastic characteristics of 

the queuing network and numerically solve its equilibrium 

equations to calculate an exact solution. When the number 

of jobs or the amount of hardware in the network increases, 

the number of states of the queuing network drastically in-

creases. Since the number of unknown quantities in the 

equilibrium equations is equal to the number of states of the 

queuing network, the number of unknown quantities in the 

equilibrium equations also drastically increases. Therefore, 

we cannot perform calculation of the exact solution of the 

queuing network numerically.  

 

 
Fig. 1. Central server model in hybrid input source. 

 

Here we consider a queuing network with two input 

sources, one is a finite input source and the other is an open 

input source (Fig. 1). We call this as hybrid input source. In 

a finite input source, the finite number of terminals exist in 

the network and a job is dedicated to its own terminal. After 

a think-time at the terminal, the job moves to the server and 

acquires a part of the memory, and executes CPU and I/O 

processing. When the job completes CPU and I/O 

processing at the server, it releases the memory and goes 

back to its original terminal. In an open input source, the job 

arrives at the server randomly from outside, acquires a part 

of the memory, and executes the CPU and I/O processing. 

When the job completes the CPU and I/O processing, it 

releases the memory and goes back to the outside. The finite 

input source assumes online real-time processing in the 

computer system, and the open input source assumes batch 

processing. 

Since a job executes CPU and I/O processing occupying 

the memory, the memory can be considered as a secondary 

resource for the CPU and I/O equipment in inner level. 

Generally, when a queuing network includes a secondary 

resource, it does not have product form solutions and an 

approximation technique is required to analyze the network. 

We have proposed here an approximation technique for 
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calculating the performance measures of computer systems 

with hybrid input source. We previously reported the results 

for computer systems with memory resource in open input 

source, in which jobs arrive from and depart to the outside 

of the system. 

In this paper, we consider the hybrid input source model. 

We already reported the open input source model and the 

finite input source model in [3] and [4] respectively, and the 

input to terminals model in [5]. In order to prevent the 

number of states of the Markov chain from increasing, we 

divide the model into two levels, one is outer level that 

includes the outside of the system, the terminals, and 

communication lines, and the other one is inner level that 

includes CPU, I/O equipment and memory resources (Fig. 

2). Similar to [3], [4] and [5], multiple types of jobs exist in 

the inner and the outer level. When there is a single job class, 

both the inner and outer level has a product form solution. 

However, if there are multiple job classes with a finite input 

source and open input source, the inner level has no product 

form solution. Therefore, an approximation is needed to 

analyze the inner level. 

Dividing the model into two levels is one of two-layer 

queuing network techniques [6], [7]. Our proposed 

technique is also a two-layer technique for computer 

systems with hybrid input source. Meanwhile, the Markov 

chain involving two dimensional state transition similar to 

our proposed model was discussed in [8]. 

 

 
Fig. 2. Concept of approximation. 

 

II. MODEL DESCRIPTION 

The CPU and I/O model in the inner level is equivalent to 

the ordinary central server model with multiple job types 

(each of which is called a job class). In this model, Rf job 

classes of finite input source and Ro job classes of open in-

put source exist, and job classes of finite input source are 

numbered r = 1, 2, … , Rf by affixing r and job classes of 

open input source are numbered r = Rf +1, Rf +2, … , Rf +Ro 

by also affixing r. The inner level consists of a single CPU 

node and multiple I/O nodes. We denote M as the number of 

I/O nodes. The I/O nodes are numbered m = 1, 2, …, M by 

affixing m, and the CPU node is numbered m = 0 by also 

affixing m. The service rate of job class r at the CPU node is 

μ0
r
 and the service rate of job class r at an I/O node m is μm

r
. 

The service time at each node is a mutually independent 

random variable subject to common exponential distribu-

tions. Jobs are scheduled on a first come first served (FCFS) 

principle at all nodes. At the end of CPU processing, a job 

probabilistically selects an I/O node and moves to it, or 

completes CPU and I/O processing and goes back to its own 

terminal or goes to the outside of the system. The selection 

probability of I/O node m of job class r is pm
r
, and the selec-

tion probability of CPU node or the completion probability 

of job class r is p0
r
. Therefore 



rp
M

m

r

m (1
0

).,,1,,,2,1 offf RRRR     

Memory resources are added to this central server model 

in the inner level. We denote S as the number of memory 

resources. 

In outer level, a job of finite input source stays at the 

terminal for short while. The staying time is called “think-

time” of a job. The think-time is mutually independent 

random variable subject to common exponential distribution 

with parameter νr of job class r (r = 1, 2, …, Rf). This νr 

equals to job departure rate from the terminal. After the 

think-time, the job moves to the inner level. Meanwhile a 

job of open input source arrives in the inner level from the 

outside at random at arrival rate λr of job class r (= Rf +1, Rf 

+2, …, Rf +Ro). When a job arrives in the inner level, it 

requests and acquires a part of the memory resources before 

entering the central server model. If all the parts of the 

memory are occupied, the job joins the system waiting 

queue and waits for a part of the memory to be released by 

another job. When the job completes CPU and I/O 

processing, it releases the memory and leaves the inner 

model and goes back to its own terminal or goes to the 

outside. Since the job has to acquire a part of memory 

before entering the central server model, the number of jobs 

occupying a memory is always equal to the number of jobs 

in the central server model. Therefore, at most S jobs can 

execute CPU and I/O processing at the same time. That is, 

the maximum job multiplicity in the central server model is 

S. When the number of jobs of job class r in the central 

server model is denoted by nr, .
1

Snr

RR

r

of






  

By replacing “CPU →  outer level transition” with 

“CPU → CPU transition”, the central server model is 

modified to a closed model in which the number of jobs is 

constant (Fig. 2). In this model, when “CPU →  CPU 

transition” occurs, the job terminates and a new job is born. 

Therefore, the mean job response time is the mean time 

between two successive “CPU → CPU transitions”. This 

mean job response time can be considered as a job lifetime. 

 

III.  APPROXIMATION MODEL 

To obtain the exact solution of the central server model 

with hybrid input source, we have to describe the entire 

model with a single Markov chain for each job class. 

However, this causes the number of states of the Markov 

chain to drastically increase when the number of jobs and 

the number of nodes in the network increase. By dividing 

the network into two levels, and describing each level with 

two Markov chains, we can prevent the number of states of 

the model from increasing (Fig. 2). We set the following 

notations.  
 

Rf : number of job classes of finite input source 
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Ro: number of job classes of open input source 

tr: mean think-time of jobs in job class r (r = 1, 2, ... , Rf) 

νr: departure rate from the terminal of job class r (r = 1, 

2, ... , Rf) 

λr: arrival rate of job class r (r = Rf +1, Rf +2, ... , Rf +Ro) 

τrm: total mean service time at node-m of jobs in job class 

r (r =1, 2, ... , Rf +Ro; m =0, 1, ... , M ) 

nrm: number of jobs in job class r at node-m (r =1, 2, ... , 

Rf +Ro; m =0, 1, ... , M ) 

n = (n1, n2, ... , nRf, nRf +1, ... , nRf +Ro) : vector of number of 

jobs 

(nr =0, 1, 2, ..., Kr for r = 1, 2, ... , Rf ; =nr =0, 1, 2, 3, ...   

for r = Rf +1, Rf +2, ... , Rf +Ro) 

n
*
 = (n10, n11, ... , n1M, n20, n21, ... , n2M, ... , nRf +Ro0, nRf 

+Ro1, ... , nRf +RoM) : state vector of the central server model 

F (n) = {n
*
 | 0,

0




rm

M

m

rrm nnn  (m =0, 1, ... , M )}  

(r = 1, 2, … , Rf+Ro; n1+n2+...+nRf +Ro≦S ): set of all feas-

ible states of the central server model 

when the number of jobs in job class r is nr 

Ps (n
*
): steady-state probability of state n

* 

Tn
r
: mean job response time in the central server model of 

job class r when the vector of number of jobs is n 

μn
r
: service rate from the central server model of job class 

r when the vector of number of jobs is n 

T 
r
: system response time of job class r 

 

Since the central server model in inner level is equivalent 

to the ordinary central server model with multiple job 

classes, it has the product form solution. Then the steady-

state probability Ps(n
*
) is represented by the following 

formula. 

),,,,(
)(

21

1 0*

Mnnn
nP

R

R

r

M

m

n

rm

s

rm




   

where ),,,,( 21 Mnnn R  
  )( 1 0nFn

R

r

M

m

n

rm
rm  is the 

normalizing constant of steady-state probabilities when the 

number of jobs of job class r in the central server model is nr 

(r =1, 2, ... , Rf +Ro). From these steady-state probabilities, 

we can calculate the mean job response time Tn
r
 of job class 

r as 
),,,1,,(

),,,,,(

1

1

Mnnn

Mnnnn
T

Rr

Rrrr

n 









 , when the number of jobs 

is nr [1], [2]. 

The memory resource can be considered as an M/M/S 

queuing model with S servers. In an ordinary M/M/S 

queuing model, the service rate at a server is constant, re-

gardless of the number of customers in service. In the mem-

ory resource of our model, however, the service rate changes 

depending on the number of occupied memories. The mean 

job response time Tn
r
 of job class r (=1, 2, ... , Rf +Ro) when 

the vector of number of jobs is n
 
= (n1, n2, ... , nr) is equal to 

the mean time while the memory is occupied. Since the ser-

vice rate of job class r from the central server model μn
r
 is 

denoted as μn
r
 

r

nT

1
 , μn

r
 depends on the number of jobs in 

the central server model nr. The state transition of the 

M/M/S queuing model with two job classes (one is for finite 

input source and the other is for open input source) is shown 

in Fig. 3, where the service rates from the central server 

model change depending on the number of jobs in the cen-

tral server model. This is a two dimensional birth-death 

process. The equilibrium equations with the steady-state 

probability QS(n) =QS(n1, n2), when the maximum number 

of jobs in the central server model is S and the vector of 

number of jobs in the central server model is n
 
=(n1, n2), are 

as follows (similar to the case with higher dimensions). 
 

 
Fig. 3. State transition diagram (two job classes). 

 

a) n1=0, n2=0 

(K1ν1+ λ2) QS (0, 0) = μ10
1 QS (1, 0) + μ01

2QS (0, 1) 

b) n1=1, 2, ... , S－1, n2=0 

{(K1－n1) ν1+ λ2 + n1
1

01n } QS (n1, 0)= (K1－n1+1) ν1QS (n1

－1, 0) + (n1+1) 1

101n QS (n1+1, 0) + 2

11n QS (n1, 1) 

(c) n1= S, S+1, ..., K1－1, n2=0 

{(K1－n1) ν1+ λ2 + S 1

0S } QS (n1, 0) = (K1－n1+1) ν1QS (n1

－1, 0) + S 1

0S QS (n1+1, 0)+ 2

11n QS (n1, 1) 

(d) n1=0, n2= 1, 2, ... , 1S  

{K1ν1 + λ2 + n2
2

0 2n } QS (0, n2) = λ2QS (0, n2－1) + 1

1 2n QS (1, 

n2) + (n2+1) 2

10 2n QS (0, n2+1) 

(e) n1=0, n2= S, S+1, S+2, ... 

{K1ν1 + λ2  + S 2

0S } QS (0, n2)= λ2 QS (0, n2－1) + 1

1 2n QS (1, 

n2) +S 2

0S QS (0, n2+1) 

(f) n1+n2≦ 1S , n1=1, 2, …, S－2, n2=1, 2, …, S－2 

{(K1－n1) ν1 + λ2  + n1
1

21nn + n2
2

21nn } QS (n1, n2) = (K1－

n1+1)
1   QS (n1－1, n2) + λ2 QS (n1, n2－1)+ (n1+1) 1

1 21 nn  QS 

(n1+1, n2) + (n2+1) 2

121 nn QS (n1, n2+1) 

(g) n1+n2 = S, n1=1, 2, ... , 1S , n2=1, 2, ... , 1S  
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{(K1－n1) ν1 + λ2  + n1
1

21nn + n2
2

21nn } QS (n1, n2) = (K1－

n1+1)
1 QS (n1－1, n2) + λ2 QS (n1, n2－1) + n1

1

21nn QS (n1+1, 

n2) + n2
2

21nn  QS (n1, n2+1) 

(h) n1+n2 > S, n1=1, 2, ... , K1 , n2=1, 2, 3, .. 

When the lattice point (m1, m2) such as m1+m2=S  

(m1, m2 = 0, 1, …, S) is on the shortest route from (0, 0) to 

(n1, n2), and QS
m

1
m

2(n1, n2) is the steady-state probability 

along with the route.  

{(K1－n1) ν1 + λ2  + m1
1

21mm + m2
2

21mm }  ),( 21
21 nnQ

mm

S
  = (K1

－n1+1) ν1  ),1( 21
21 nnQ

mm

S  + λ2  )1,( 21
21 nnQ

mm

S
 + m1

),1( 21

1 21

21
nnQ

mm

Smm  + m2 )1,( 21

2 21

21
 nnQ

mm

Smm  

(h-1) n1=1, 2, ... , S , n2=S－n1+1, S－n1+2, ... , S 





1

21

21 ),(),( 2121

n

nSm

SS nnQnnQ
mm  

(h-2) n1=S+1, S+2, ... , K1, n2=1, 2, ... , S 





S

nSm

SS nnQnnQ
mm

21

21 ),(),( 2121
 

(h-3) n1=1, 2, ... , S, n2=S+1, S+2, S+3, ... 





1

1

21

0

2121 ),(),(
n

m

SS nnQnnQ
mm  

(h-4) n1= S+1, S+2, ... , K1, n2=S+1, S+2, ... 





S

m

SS nnQnnQ
mm

0

2121

1

21 ),(),(  

For the state (n1, n2) of  the Markov chain, when n1＋n2≦
S , all jobs are in the central server model and executing 

CPU and I/O processing, and when n1+n2＞S, n1+n2－S jobs 

are in the system waiting queue and waiting for a part of the 

memory resources to be released. The transition diagram of 

the two dimensional birth-death process is shown in Fig. 3. 

However, since the equilibrium equation does not have the 

product form solution, some approximation is required to 

solve it. 

When the model has a single job class, it can be described 

with a one dimensional birth-death process. Its transition 

diagram is shown in Fig. 4, and the equilibrium equation is 

as follows: 

(a) Finite input source 

(i) n1 =0 

K1 ν1 QS (0)＝μ1
1
QS (1) 

(ii) n1 =1, 2, …, S－1 

{(K1－n1)ν1+ n1
1

1n } QS (n1)= (K1－n1+1) ν1 QS (n1－1) + 

(n1+1) 1

11n QS (n1+1) 

(iii) n1 =S, S+1, … , K1－1 

{(K1－n1)ν1+S 1

S } QS (n1) = (K1－n1+1) ν1 QS (n1－1) + S

1

S QS (n1+1) 

(iv) n1 =K1 

S 1

S QS (K1) = ν1 QS (K1－1) 

 (b) Open input source 

(i) n2 =0 

λ2 QS (0)＝μ1
2
QS (1) 

(ii) n2 =1, 2, …, S－1 

(λ2 + n2
2

2n ) QS (n2) = λ2QS (n2－1) + (n2+1) 2

12n QS (n2+1) 

 (iii) n2 = S, S+1, S+2, … 

(λ2 +S 2

S ) QS (n2) =λ2QS (n2－1) + S 2

S QS (n2+1) 

 
(a) Finite input source 

 
(b) Open input source 

Fig. 4. State transition diagram (single job class). 

 

Solutions for the equilibrium equation are in the 

following product form. 

 

(a) Finite input source 
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(b) Open input source 
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In finite input source, for the state transition at i =1, 2, ..., 

S－1, multiply by factor 
1

11 )1(

ii

iK







 , while for the state 

transition at  i = S, S+1, ..., K1, multiply by factor 

1

11 )1(

SS

iK







 , and in open input source, for the state transition 

at i =1, 2, ..., S－1, multiply by factor 
2

2

ii 





, while for the 

state transition at i = S, S+1, S+2, ... multiply by factor 

2

2

SS 





. For two dimension case, we consider a route from 

lattice point (0, 0) to (n1, n2) shown in Fig. 5, and for the 

horizontal state transition at the lattice point (i1, i2) such as 

i1+i2≦S on the route, multiply by factor 
2

2

1

1

111

2121

)1(

iiii ii

iK







 , 

and multiply by factor
2

2

1

1

2

2121 iiii ii 





 for the vertical state 

transition. When the lattice point (i1, i2) such as i1+i2＞S, for 

the state transition outside of the lattice point (m1, m2) such 

as m1+m2=S on the route (between (m1, m2) and (i1, i2)), mul-

tiply by factor 
2

2

1

1

111

2121

)1(

mmmm mm

mK







  or 
.

2

2

1

1

2

2121 mmmm mm 





 

Thus, the coefficient of QS(n1, n2) related to QS(0, 0) is 
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represented as the summation of the multiplication based on 

all the routes from (0, 0) to (n1, n2). For example, for the 

route from (0, 0) to  

(1, 2) when S=3, and K1=5, which is the case of n1+n2≦S, 

the multiplication along the route of broken line (i) in Fig. 5 

is .
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Since there are multiple routes from (0, 0) to  

(n1, n2), the coefficient of QS(n1, n2) related to QS(0, 0) is 

approximately represented as the total of the multiplication 

based on all routes. Similarly, to the case above, we can 

approximately calculate the state probability of a queuing 

net-work with multiple job classes when Rf >1 or Ro >1.  

 

 
Fig. 5. Calculation state probability for two job classes. 

 

IV. NUMERICAL EXPEROMENTS 

We evaluated the proposed approximation technique 

through numerical experiments and compared it with the 

simulation results. We used the following parameters. 

 

1) Number of terminals: K1 = 3 ~ 20 or K1 = 5 ~ 20 

2) Number of memory resources: S = 3 or 5 

3) Think-time: t1 = 10 

4) Arrival rate: λ2=0.02 ~ 0.4 

5) Number of I/O nodes: M = 2 

6) Total service time at each node 

τ10=1.0, τ11=τ12=0.5, 

τ20=1.0, τ21=τ22=1.0, 

where τrm is the total service time of job class r at node m. 

Fig. 6 to Fig. 9 show the mean system response times of 

job classes 1 and 2 calculated by the proposed method and 

the simulation, when S is fixed at 3 or 5. Fig. 6 and Fig. 7 

show the cases of λ2=0.2, K1=S, S+1, …, 20, and Fig. 8 and 

Fig. 9 show the cases of K1=6, λ2=0.02, 0.04, …, 0.4. The 

mean system response time is the mean time from job arriv-

al to departure from the inner level, that is the mean time 

from departure from the terminal to coming back to the ter-

minal in the finite input source and that is the mean time 

from arrival to departure to the outside of the system in the 

open input source. Similar to the case of a single job class, 

the mean system response time for both job class monotoni-

cally increases and the mean system response time for the 

finite input source draws a convex curve. When the number 

of terminals K1 of job class 1 increases and the arrival ate λ2 

of job class 2 is fixed (the only traffic of job class 1 increas-

es), both job class 1 and job class 2 mean response times 

increase. This is because of the entire central server model is 

more crowded by increasing traffic of the job class 1. Simi-

larly, when the number of terminals K1 of job class 1 is fixed 

and the arrival rate λ2 of job class 2 increases, both response 

times monotonically increase. We can see that the mean 

response time of job class 1 increases more rapidly than job 

class 2 in heavier traffic range. This reason can be presumed 

that the behavior of the mean system response time of job 

class 1 in the heavier traffic range is approximately linear to 

the number of jobs in the central server model. 

 

 
Fig. 6. Mean system response time (S=3, t1=10, λ2=0.2). 

 

 
Fig. 7. Mean system response time (S=5, t1=10, λ2=0.2). 

 

 
Fig. 8. Mean system response time (S=3, t1=10, K1=6). 
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Fig. 9. Mean system response time (S=5, t1=10, K1=6). 

 

Compared to the simulation, the results of job class 1 are 

well consistent with the simulation results in Fig. 6 and Fig. 

7, and the results of job class 2 are well consistent with the 

simulation results in Fig. 8 and Fig. 9, this means that the 

results of the classes that controlled their traffic are better 

consistent. When the results are indirectly changed due to 

the influence of another class, it is considered that the accu-

racy of the approximation can be deteriorated. In Fig. 9, 

both results of job class 1 and 2 are well consistent with the 

simulation results. Fig. 9 shows the case that the memory 

load is the smallest. 

 

V. CONCLUSION 

 We proposed an approximation technique for evaluating 

the performance of computer systems in hybrid input source 

using a queuing network and analyzed its performance 

measures through numerical experiments. The concept of 

the approximation is based on separately analyzing the inner 

level (CPU, I/O equipment, and memory) and outer level 

(terminals, communication lines and the outside of the 

system). The numerical experiments clarified the 

characteristics of the system response time. 

In the future, we are planning to analyze the queuing 

network model that a job arrives from the outside to 

terminals instead of the hybrid input source. 
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