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Abstract—Currently, one of the most challenging problem in
machine learning and data mining is the data imbalance
problem. Many techniques and methods are researched and
proposed to solve this problem. Fundamental solution is data
balancing with under-sampling and over-sampling techniques.
However, these conventional methods might be suffered from
the potential loss of useful information leading to the generation
of useless patterns. Therefore, the techniques that avoid
adjusting the sample size of data are more interesting. One of
such technique is misclassification cost adjustment. This paper
focuses on improving the performance of classification model
built from the misclassification cost adjustment technique by
proposing the novel heuristic method. Our proposed method
uses a heuristic based on the experience of practitioner working
on many manufacturing data. The heuristic employs the
relation between misclassification cost, imbalance ratio and a
constant factor “e” (Euler’s number). The experiment has been
operated on 56 real-world datasets with various number of
attributes and different degrees of imbalance ratio. The results
confirm that our novel heuristic method can help improving the
performance of the classification model. On datasets with high
imbalance ratio, our method shows the improvement rate of
AUC up to 29%.
data,
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I. INTRODUCTION

Data mining and machine learning are very popular and
extensively used in several areas. The problem that has been
reported as one of the most often found in this field is the
imbalance ratio problem. Class imbalance data problem has
been reported to occur in a wide variety of real world
domains, such as facial age approximation [1], detecting oil
spills from satellite images [2], anomaly detection [3],
fraudulent credit card transactions detection [4], software
error prediction [5], and pattern recognition on image
annotation [6].

Most traditional algorithms, such as decision trees
[71-[9], k-nearest neighbors [10], [11], focus on generating
the models that provide the highest overall accuracy and the
minority data is always ignored [12]-[14]. However, in some
cases the minority class instances may have so high
significance and importance that they should not be ignored
by the classification algorithms. Thus, data-preprocessing
steps for balancing instances between classes are needed.
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One of the most popular methods for class rebalancing is data
sampling [15]-[18]. However, under-sampling may
eliminate the important data of the majority class. While
over-sampling methods may alter the original class
distribution. Moreover, increasing the minority class
instances may generate the useless data and misleading the
classification result. The cost-sensitive learning or
misclassification cost adjustment seems to be the efficient
way to solve the class imbalance problems [19]-[21].

The technique that we discovered in one field may show
the good result in other fields and this paper is one of them.
The technique that we introduce in this paper is extracted
from the experience of researchers while had been working in
the manufacturing companies and already proved with the
datasets which are collected from production line database of
Computer’s component manufacturing. This method can help
the expertise engineers to achieve the optimal of “true
positive rate” in a shorter time.

This paper is used that novel method to apply on
worldwide 56 datasets with the various fields like citizen data,
wine quality data, card game data, medical/scientific
experimental data etc. With these datasets, we separate them
into 2 groups: the low imbalance ratio group and the high
imbalance ratio group. The model performance can be
significantly improved by our novel heuristic method
especially in case of high imbalance ratio group. The
remaining of this paper is organized as follows. Section Il is
Theory and Literature review. Section Il is the Material and
Method explaining the novel heuristic method and how to
calculate the heuristic value. Section IV is the research
workflow and research framework. Section V presents the
experimental results. Section VI is the conclusion of this
paper and the recommendation is presented in Section VII.

Il. BACKGROUND THEORY AND LITERATURE REVIEW

A. Decision Tree

Decision tree is a well-known and one of the most
employed technique to generate classifier [22]. Decision tree
has 3 important parts: a root node, leaf nodes, and branches to
connect nodes. The root node is the origin node of the tree,
and both root and other internal nodes consist of condition or
criteria to be considered before selecting a branch to traverse.
Each branch is a connection line between nodes. Leaf node is
a final solution for a specific classification problem.

The tree building process starts with all the training data in
the root node. A first split is made using a predictor variable
to segment data into 2 or more child nodes, depending on the
possible values of the predictor variable. The terminal node is
the node that cannot be further split, and the predictions are
made from the terminal nodes. To use a decision tree to make
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a prediction, the split decisions are followed until a terminal
node is reached.

Decision trees are always mentioned as popular tools for
presenting a decision-making process [23], because they are
easy for understanding with the clearly graphic. But building
efficient decision trees from data is quite complicated. The
classical method such as ID3, developed by Quinlan
[24]-[26], takes a table of examples as input, where each
example consists of a collection of attributes, together with a
class. And then, induces a decision tree, where each node is a
test on an attribute, each branch is the outcome of that test.
The last branching step leads to one of the leaf nodes
consisting of the class value to which the example, when
following that path, belongs. With the continuous
development and improvement, many algorithms such as
C4.5 and C5.0 [27] are developed to focus on how to build a
decision tree efficiently based on several criteria of
consideration [28].

In this research, we use the C5.0 as an algorithm to build
model because it has been shown the very satisfying
performance compared to other algorithms. Besides the
easy-to-understand which is the strongest point of the
decision tree, the robustness is also another advantage that
makes decision tree popular. It has the ability to be applied
with many types of data, fast in prediction, and no need for
the assumption on variable distribution [29].

B. Imbalanced Data

Data imbalance is often reported as a problem to reduce
classification efficiency in traditional learning algorithms. In
classification task, imbalanced data problem occurs when the
samples size from the majority class is heavily higher than
minority class, and the minority class is usually misclassified
by such classification models [30], [31]. Thus, methods to
balance the skewed data, such as under-sampling and
over-sampling, have been used to tackle the problem.
However, under-sampling may drop some potentially useful
information, while over-sampling may be the cause of
another problem like overfitting [32], [33]. Therefore, it is
reasonable to develop the algorithm without conversion from
imbalanced data into balanced ones by introducing extra
information or removing the original information. The
misclassification cost adjustment or cost-sensitive learning is
the answer.

The cost-sensitive learning algorithm is developed based
on the assumption that the positive minority class is expected
to be more important than the majority negative class. Thus,
instances in positive class have been weighted with more
value than those in negative class. The weighting scheme is
based on the misclassification cost adjustment occurred
during the iterative model assessment process. The difficulty
of this method is finding a proper value for misclassification
cost that should be adjusted. The optimal goal is adjusting
with the value that results in the highest classification
performance on both classifying the minority and majority
classes. Unfortunately, a suitable value of misclassification
cost comes from many times of trial and run the model
repeatedly to see the satisfied result.

C. Confusion Matrix
Confusion matrix [34] is a table that is normally used as a

tool for computing performance of a classification model.
The key function of this table is to present a comparison
between “Predicted Labels” from model and “Actual Labels”
from the ground truth. Fig. 1 shows the example of
classification outcome of data instances from two groups:
“Positive” and “Negative”.

Predicted Label

Positive Negative

_ | ¢ TRUE POSITIVE FALSE NEGATIVE
[1] =
_Q w
® | S TP FN
R FALSE POSITIVE TRUE NEGATIVE
< | 5

s FP ™

Fig. 1. Example of confusion matrix.

e True Positive (TP): The number of instances that a model
predicts correctly such that the “Actual Labels” is
Positive and “Predicted Labels” is Positive as well.

e True Negative (TN): The number of instances that a
model predicts correctly such that the “Actual Labels” is
Negative and “Predicted Labels” is Negative as well.

e False Positive (FP): The number of instances that a
model predicts incorrectly such that the “Actual Labels”
is Negative but “Predicted Labels” is Positive.

o False Negative (FN): The number of instances that a
model predicts incorrectly such that the “Actual Labels”
is Positive but “Predicted Labels” is Negative.

True Positive Rate (TPR), or Sensitivity, measures the
proportion of actual positive data instances that are correctly
identified. The calculation of TPR is shown in equations 1
and 2.

TPR=TP /(TP + FN) (1)
or
TPR = TP / (All actual positive instances) 2)

False Positive Rate (FPR) is a metric for measuring the
error of classification. It is calculate with the equations 3 and
4.

FPR=FP/(FP + TN) 3)

or

FPR = FP / (All actual negative instances) 4

D. Performance Evaluation

In classification, there are various measurement methods
for evaluating the performance of classification models.
Receiver Operating Characteristic curve (ROC) is the
visualization to represent the relation of the false positive rate
(FPR) against the true positive rate (TPR) by plotting graphs
with TPR on the Y-axis and FPR on the X-axis. The
performance of a classifier is presented by ROC curve. If it
lies in the upper left of the square that means good
performance.

AUC or area under the ROC curve [35], [36] is the popular
measure for evaluating the performance of a classification
model with binary classes. AUC provides a value description
for the performance of the ROC curve. AUC is a portion of
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the area inside the square of unit (Fig. 2). So, its value must
be in the range of 0 and 1, and usually higher than 0.5.

AUC

0 05

FPR
Fig. 2. Example of ROC Curve.

A. Datasets of Research

MATERIALS AND METHOD

TABLE I: THE 34 DATASETS OF “LOW IMBALANCE RATIO” SHOWING
NUMBERS OF MAJORITY CLASS AND MINORITY CLASS

Group Low Imbalance Ratio

No.| Dataset IR # Attr. # Ins. | # Major | # Minor
l|glass-0-1-6 vs 5 154 9 184 175 9
2|abaloned-18 164 8 731 689 42
3|page-blocks-1-3 vs 4 159 10 a7z A 28
dlecolid 158 7 336 316 20
5|glassd 155 9 214 201 13
6|yeast-1_vs_T a3 7 459 az9 30
T|shuttlecOvscd 139 9 1829 1,706 123
8|ecoli-0-1-4-6 vs_5 130 6 280 260 20
9| cleveland-0_vs_d 126 13 177 164 13
10|ecoli-0-1-4-7 vs 56 123 ] 332 307 25
11|glass2 116 9 214 197 17
12|glass0-1-4-6 vs 2 11.1 9 205 188 17
13lecoli0-1_vs 5 110 & 240 220 20
1d|glass0-6 vs 5 110 9 108 99 9
15(ledTdigit-0-2-4-5-6-7-8-% vs 1| 110 7 443 406 El
16|ecoli-0-1-4-7 vs 2-356 10.6 7 336 307 29
17|glass0-1-6 vs 2 10.3 9 192 175 17
18|ecoli0-6-7 vs & 100 & 220 200 20
19|vowelD 100 13 988 208 o0
20|yeast-0-5-6-7-0_vs_d 94 8 528 77 51
21|ecoli-0-34-7_vs_5-6 9.3 7 257 232 25
22|ecoli-0-34-6 vs_5 93 7 205 185 20
23|glass-0-d_vs_5 9.2 9 92 83 9
2d|ecoli-0-2-6-7_vs_3-5 9.2 7 224 02 22
25|ecoli-O-1_vs_2-3-5 92 7 244 220 24
26|ecoli-0-d-6_vs_5 92 & 203 183 20
2T|yeast-0-2-5-6_vs_3T-89 91 8 1004 905 99
28|yeast-0-2-5-T-9 vs_3-6-8 91 8 1004 905 99
29|yeast-0-3-5-9 vs_T-8 91 8 506 456 50
30|glass-0-1-5 vs 2 91 9 172 155 17
3l|ecoli-0-2-34 vs_5 91 7 202 182 20
32|ecoli-0-6-T_vs_35 91 7 222 200 22
33|yeast-2 vs 4 9.1 8 514 463 51
3 ecoli-0-34 vs 5 90 7 200 180 20

The experimentation of this research is to demonstrate that
our novel heuristic method can help improving the
performance of classification model in various application
areas with different imbalance ratios. So, all of 56 datasets
are collected from 2 famous real-world dataset repositories,
which are “KEEL” and “KDD-CUP”. Then, we group them
into two groups of imbalance ratio, that is, “low imbalance
ratio” with a range of imbalance ratio from 9 to 20, and “high
imbalance ratio” which imbalance ratio is over 20 and the
maximum of imbalance ratio is 129. The Table | shows 34
datasets of “low imbalance ratio” and Table Il show 24
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datasets of “high imbalance ratio”.

TABLE II: THE 26 DATASETS OF “HIGH IMBALANCE RATIO” SHOWING
NUMBERS OF MAJORITY CLASS AND MINORITY CLASS

Group High Imbalance Ratio

No. Dataset IR # Attr. # Ins. # Major | # Minor
L|abalonel? 1204 8 4.174 4.142 32
2|kddcup-rootkit-imap_vs_back 100.1 41 2225 2203 22
3|poker-8_vs_6 85.9 10 1477 1460 7
d|poker-8-9_vs_5 82.0 10 2075 2,050 25
5|kr-vs-kezero_vs_fifteen 80.2 6 2,193 2,166 27
6|kddcup-land_vs_satan 5.7 41 1610 1,585 21
7|kddcup-buffer_overflow_vs_back 734 a1 2233 2203 30
B|abalone-20 vs B-9-10 727 B8 1916 1.8%0 26
F|winequality-red-3 vs_5 68.1 11 691 681 10
10[shuttle-2 vs_5 66.7 9 3316 3267 49
11|poker-8-9_vs_6 584 10 1485 1460 25
1Z|winequality-white-3-9_vs_5 58.3 11 1482 1457 25
13|kr-vs-k-zero_vs_eight 53.1 6 1,460 1433 27
1d|yeasté a14 8 1484 1443 35
15|ecoli-0-1-3-7 vs_2-6 39.1 7 281 274 7
16|yeast5 327 8 1484 1440 a4
17|yeast-1-2-8-9 vs_7 30.6 B8 947 917 30
18|yeastd 281 B8 1484 1433 51
19|elasss 228 E 214 205 E
20|yeast-1-4-5-8 vs_T 221 8 693 663 30
21|yeast-2_vs_8 213 8 ag2 426 20
22|shuttlec2vscd 20.5 B 129 123 &

B. A Novel Heuristic Method

The novel heuristic method that we present in this paper is
extracted from experience over 5 years of data mining expert
engineers in the manufacturing field. The formula of this

novel heuristic method is the relation between
misclassification cost, imbalance ratio, and the constant e
which is the “Euler's number” (~2.71828...). The
computation of this heuristic is shown in equation 5.
IR?
MCC= |— (5)

where

MCC = misclassification cost or cost sensitive,

IR = imbalance ratio, and

e = Euler's number (constant number ~2.718...).

IR or imbalance ratio is defined by the calculation as
shown in equation 6.

Number of majo rity class

IR =

Number of minority class (6)

We empirically validate this proposed method and have
been found that it can improve classification performance in
terms of the true positive rate in root cause analysis of
computer’s component manufacturing datasets with IR in the
range of 4.1 t0 1,245.7.

IVV. RESEARCH FRAMEWORK AND RESEARCH WORKFLOW

A. Research Framework

In this paper, we use 56 real-world datasets from serval
areas such as medical/scientific experiment, wine quality,
and many others. The minimum of imbalance ratio is 9 and
the maximum is 129. These 56 datasets are classified into two
groups: “low imbalance ratio” and “high imbalance ratio”.
The model that we use for classification in this paper is the
state of art model in IBM SPSS Modeler, C5.0 model
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(research framework is shown in Fig. 3). Then, we compare

the model result between the traditional method and our

novel heuristic method. The assumption of comparison in this
paper focuses on 2 points:

1) The novel method should show better performance than
the traditional method.

2) The high imbalance ratio group should show better of
improvement rate than the low imbalance ratio group.

56 Realworld datasets

with various Imabalance Ratio

* Novel Hueristic Misclassification Cost
Adjustment

4

(5.0 modelfor data analysis

!

* Compare the performance between
Result Traditional method VS
Result from Novel heuristicmethod.

* Compare improvement rate between
High Imbalance Ratio VS
Low Imbalance Ratio

Fig. 3. Research framework.

B. Research Workflow

The research workflow of this research is shown in Fig. 4.
Each of the 56 real-world datasets is used as input into the
C5.0 model with 70% data instances for training the model
and keep aside 30% of the rest for model validation. The
same datasets are operated with two methods: “Traditional
Method” and “Novel Heuristic Method Misclassification
Cost Adjustment”. After we run through this process we will
obtain two classifiers from the two methods. Then the 30% of
data that we set aside in earlier step will be used to test
performance of classifiers. The final step is comparing the
model performance in terms of AUC.

56 Real World Datasets

[ TRAIN DATA 70% ]

Modeling by C5.0 Model
with Novel Method
Misclassification Cost

Modeling by €5.0 with
traditional Method

TEST DATA 30%

Adjustment

o o ] e o

1
| - 1
I Classifier1 ‘ Classifier2 ‘ I
1
! i
l._._._._._...Té _____________ -

) 74
AUC Comparison

Fig. 4. Research workflow.

V. EXPERIMENTATION AND RESULTS
This section is a demonstration of the experimentation
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results. The key point is a comparison between traditional
method and novel heuristic method (or called proposed
method). Table Il is the experimentation results of “low
imbalance ratio” group. There are 34 datasets in this group.
The average imbalance ratio is 11.3 (minimum is 9 and
maximum is 19.4), misclassification cost is averaged as 0.81.

In terms of AUC comparison, average AUC before
adjusting misclassification cost (traditional methods) is 0.81
and after adjusting misclassification cost with the proposed
method, AUC is 0.93. The proposed method shows the better
AUC with the improvement rate of 18%. The top-3 of
improvement rate are the dataset named “cleveland-0_ vs 4,

“glass-0-1-6 vs 57 and “glass-0-1-6 vs 57 with the
improvement rate of 97%, 82% and 57%, respectively.
The improvement rate is calculated by equation 7.
Improvement Rate = Proposed AUC —Traditional AUC (7)

Traditional AUC

TABLE I1I: AUC COMPARISON BETWEEN “TRADITIONAL METHOD” AND
“PROPOSE METHOD” IN GROUP “LOW IMBALANCE RATIO”

AUC : Area Under ROC Curve

Group "Low Imbalance Ratio" Traditional Method | Proposed Method Improvement

No. Dataset IR | MCC | Training | Testing | Training | Testing Rate
1|glass-0-1-6_vs_5 19.4| 11.8 1.00 0.50 0.95 091 82%
2|abalone9-18 16.4 | 100 0.82 0.61 0.92 0.68 11%
3|page-blocks-1-3_vs_4 159 | 96 1.00 1.00 1.00 1.00 0%
4 ecoli4 15.8 9.6 0.88 0.74 0.97 0.88 18%
5|glass4 155 9.4 1.00 0.57 0.98 0.89 57%
6/yeast-1_vs_7 143 | 87 0.78 0.79 0.92 0.96 23%
7|shuttle-c0-vs-c4 139 | 84 1.00 1.00 1.00 1.00 0%
8|ecoli-0-1-4-6_vs_5 13.0 79 093 0.90 0.98 0.98 9%
9/ cleveland-0_vs_4 126 77 0.88 0.46 0.97 0.90 97%
10| ecoli-0-1-4-7_vs_5-6 123 74 0.90 0.61 0.99 0.90 47%
11|glass2 11.6 70 0.97 0.92 0.96 0.92 0%
12|glass-0-1-4-6_vs_2 111 o7 0.90 0.85 0.96 0.93 9%
13|ecoli-0-1_vs_5 11.0| 67 0.99 0.75 0.97 0.93 24%
14 glass-0-6_vs_5 11.0| 67 0.99 1.00 0.99 1.00 0%
15|led7digit-0-2-4-5-6-7-8-9_vs_1 11.0 6.7 0.96 0.94 0.97 0.94] 0%
16| ecoli-0-1-4-7_vs_2-3-5-6 10.6 | 6.4 0.88 0.91 0.98 0.95 5%
17|glass-0-1-6_vs_2 103 | 62 0.50 0.50 0.94 0.79 57%
18|ecoli-0-6-7_vs_5 10.0 6.1 0.92 0.79 0.99 0.93 18%
19/ vowel0 100 el 0.99 0.94 1.00 1.00 7%
20|yeast-0-5-6-7-9_vs_4 94| 57 0.85 0.87 0.96 091 5%
21|ecoli-0-3-4-7_vs_5-6 93| 56 0.84 0.90 0.90 1.00 11%
22|ecoli-0-3-4-6_vs_5 9.3 5.6 0.89 0.83 0.98 091 9%
23|glass-0-4_vs_5 92| 56 0.99 1.00 0.99 1.00 0%
24|ecoli-0-2-6-7_vs_3-5 92| 56 0.90 0.83 0.93 0.92 10%
25|ecoli-0-1_vs_2-3-5 9.2 5.6 0.99 0.77 0.99 0.90 16%
26/|ecoli-0-4-6_vs_5 9.2 56 0.87 0.74 0.99 0.95 28%
27|yeast-0-2-5-6_vs_3-7-8-9 91| 55 0.78 0.80 0.86 0.92 14%
28 |yeast-0-2-5-7-9_vs_3-6-8 9.1 5.5 0.90 0.86 0.99 091 5%
29|yeast-0-3-5-9_vs_7-8 91| 55 0.79 0.88 0.93 0.89 1%
30|glass-0-1-5_vs_2 91| 55 0.84 0.71 0.95 0.92 30%
31|ecoli-0-2-3-4_vs_5 91| 55 093 0.92 0.98 0.97 6%
32|ecoli-0-6-7_vs_3-5 9.1 55 0.85 1.00 0.98 1.00 0%
33|yeast-2_vs_4 91| 55 1.00 0.96 0.98 0.98 3%
34/|ecoli-0-3-4_vs_5 9.0 55 0.84 0.83 0.99 0.90 8%
AVG 113 | 6.8 0.90 0.81 0.97 0.93 18%

Table IV is the experimental results of “high imbalance
ratio” showing comparative AUC performance between
“Traditional Method” and “Proposed Method”. In this groups,
there are 22 datasets. The average value of imbalance ratio is
57.39 (minimum is 20.5 and maximum is 129). Average of
misclassification cost adjustment is 34.8. AUC of traditional
method is 0.74 compared to 0.90 of the proposed method.
There are many datasets showing better performance in terms
of AUC with high improvement rate.

The top-5 datasets are  “yeast-1-4-5-8 vs 77,
winequality-red-3_vs_5”, ”poker-8-9 vs 6”, “poker-8 vs
_6” and “winequality-white-3-9 vs 5”. The improvement
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rates are 77%, 71%, 67%, 65% and 63%, respectively. The
average improvement rate is as high as 29%. It is a significant
gap when compared to “low imbalance ratio” (which has an
improvement rate of 18%).

TABLE IV: AUC COMPARISON BETWEEN “TRADITIONAL METHOD” AND
“PROPOSE METHOD” IN GROUP “HIGH IMBALANCE RATIO”

AUC : Area Under ROC Curve

Group "High Imbalance Ratio”
[ ®
| 120.4
100.1
859
820
802
757
734
727
68.1
66.7
584
583
53.1
41.4
391
327
306
281
28
21

Traditional Method Proposed Method | Improvement

Rate
28%
0%
65%
445
20%
0%
0%
18%
71%
0%
67%.
63%
2%
28%
0%

No. Dataset

1|abalone1d

MCC Training Testing Training Testing
785 050 050 091 064
60.7 1 1 1 1
521 0.5 0.5 0.806/ 0.826/
49.7 0.5 05 0.849 0.718]
48.7 0.932 0.801 0.965 0.964
459 1 1 1 1
445 1 1 1 1
a1 083 0739 0941 0869
a3 05 05 095 0857
40.4 1 1
354 0.5 05
33 0688 0578
22 0988 1
25.1 0.92 0.75
237 0.80 099
199 0% 091
185 0.66 049
170 0.86 0.80°
138 100 063
34 0s0 050

213 129 0.50 0.50°

205 124 1.00 1.00
[57.39] 3a.81] o078 0.74]

2|kddcup-rootkit-imap_vs_back
3|poker-8_vs_6
4|poker-8-9_vs_5
5|kr-vs-k-zero_vs_fifteen
6|kddcup-land_vs_satan
7|kddcup-buffer_overflow_vs_back
8|abalone-20_vs_8-9-10
9|winequality-red-3_vs 5
10|shuttle-2_vs_5
11|poker-8-9_vs_6 0.857
0.916
0.982
0.90
0.98,

0.837]
0.945
0.984

0.96

12|winequality-white-3-9_vs_5
13|kr-vs-k-zero_vs_eight
14|yeasté
15| ecoli-0-1-3-7_vs_2-6
8%
43%
8%
57%
7%
50%
0%
29%

0.99
0.93
096,
034
0489
0.79
1.00
093]

0.98
0.70!
0.87
0.8
0.89
0.75]
1.00
0.90]

16 yeast5
17|yeast-1-2-8-9_vs_7
18 yeastd
19|glasss
20|yeast-14-5.8 vs_7
21|yeast-2_vs 8
22|shuttle-c2-vs-c4
AVG

VI. CONCLUSION

In this paper, we presented the novel heuristic method to
compute proper cost-sensitive value for classifying
imbalanced data that have high imbalance ratio between the
tremendous majority class as compared to the tiny minority
class. The experimentation have been performed on the 56
real-world datasets to assess the improvement rate of AUC
when compared to the traditional classification method.
These datasets are from various domains and various
imbalance ratios. The key proposals of this paper are based
on the two assumptions:

Novel method can improve the model performance when
compared to traditional classification method.
High imbalance ratio should show
improvement rate than low imbalance ratio.

the better

Average AUC : Traditional VS Novel Method

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

93%
81%
A8

@
o
Q‘
&

LOW IR Ratio
OTraditional @ Novel Method

Fig. 5. Summary graph showing overall AUC comparisons improvement
rate between “traditional method” and “propose method”.

HIGH IR Ratio

It turns out that the experimental results confirm our
assumptions. From overall data, we can see the improvement
rate at the satisfying level. For the 34 datasets of low
imbalance group, with the imbalance ratio ranging from 9 to
20, the improvement rate is about 18%. For the 22 datasets of
high imbalance ratio (with imbalance ratio over 20), the
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improvement rate is 29% on average. A graph of overall
AUC comparisons is shown in Fig. 5. From this result, we
can conclude that our novel heuristic method is suitable for
classifying data with high imbalance ratio.

VIl. RECOMMENDATION

On standard datasets obtained from the worldwide
repositories, we observe that imbalance ratios in these data
are not so high (11.3 to 57.39 on average). This is unlike real
production data of manufacturing fields in which the
imbalance ratio can be as high as 1: 1,000 or over. Based on
the experimental results that reveal significant classification
improvement when the imbalance ratio is very high, we thus
expect that the proposed novel heuristic method can show
clearly the improvement over traditional classification when
the imbalance ratio of manufacturing data is in extreme level.

In our further research, we plan to use this method in
misclassification cost adjustment with data in other fields that
have extremely high level of imbalance ratio. Moreover, the
multiclass target classification is also the challenging area
that we would like to tackle with this method.
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