
  

 

Abstract—Recent advancements in deep learning (DL) 

frameworks based on deep neural networks (DNN) drastically 

improved accuracy in image recognition, natural language 

processing and other applications. The key advantage of DL is 

systematic approach for independent training of groups of DNN 

layers including unsupervised training of auto-encoders for 

hierarchical representation of raw input data (i.e., automatic 

feature selection and dimensionality reduction) and supervised 

re-training of several final layers in the transfer learning that 

compensate for data incompleteness. However, severe data 

limitations and/or absence of relevant problem for transfer 

learning can drastically reduce advantages of DNN-based DL. 

For example, pure data-driven auto-encoders dealing with 

high-dimensional input data require large amount of data for 

effective operation. However, hierarchical data representations 

can be also implemented without NN. Previously we have shown 

robustness of boosting-like algorithms for effective utilization of 

existing domain knowledge (e.g. analytical models) via discovery 

of compact ensembles of complementary low-complexity 

components. This approach can tolerate significant data 

incompleteness and boost accuracy of individual base models as 

was demonstrated in cardiac diagnostics applications. Here we 

argue that hybrid DL framework with auto-encoders replaced 

by components discovered by boosting followed by supervised 

NN could be more tolerant to data incompleteness compared to 

pure DNN-based DL. Illustrations based on cardio data from 

www.physionet.org are presented. The proposed framework 

could be utilized in many applications dealing with incomplete 

data including personalized medicine and rare or complex 

abnormalities.  

 
Index Terms—Auto-encoders, boosting, cardiac diagnostics, 

complexity measures, deep learning, ECG, ensemble learning, 

heart rate variability, hybrid learning, neural networks, 

physiological time series. 

 

I. INTRODUCTION 

Recent advancements in deep learning (DL) frameworks 

based on deep neural networks (DNN) drastically improved 

accuracy of machine learning in image recognition, natural 
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language processing and other applications [1]–[3]. Although 

universal capabilities of multi-layer NNs are well known, the 

key advantage of DL is systematic approach for independent 

training of groups of DNN layers. This includes unsupervised 

training of auto-encoders for hierarchical representation of 

raw input data (i.e., automatic feature selection and 

dimensionality reduction) and supervised re-training of 

several last layers in the transfer learning that compensate for 

data incompleteness in a particular application [1], [4]–[8]. 

However, in cases of severe data limitations and/or absence 

of relevant problem for the transfer learning, advantages of 

DNN-based DL are drastically reduced. For example, pure 

data-driven auto-encoders dealing with high-dimensional raw 

input data would require significant amount of data for 

effective operation even when stacked shallow auto-encoders 

are employed [6].  

Advantages of hierarchical data and knowledge 

representations have been known well before recent raise of 

DNN popularity. This concept is ubiquitous in natural 

sciences where hierarchical approach is common in both 

fundamental theoretical frameworks and in practical 

simulations of complex systems.  For example, success of 

realistic simulations of multi-scale spatiotemporal dynamics 

in plasma and space physics critically depends on proper 

formulation and coupling of physical models describing 

processes on micro- and macro scales, since it is infeasible to 

model wide range of scales from first principles because of 

computational limitations and lack of detailed 

initial/boundary conditions, e.g., [9].  

In statistical and machine learning, a well-known example 

is family of boosting algorithms capable of discovering 

ensembles of complementary base models with much better 

out-of-sample performance compared to individual models 

[10]–[13]. The core reason of such robustness is utilization of 

low-complexity base models estimated one at a time and 

deterministic iterative approach where initial discovery of the 

best-on-average model is followed by additions of models 

focused on finer and more challenging data patterns that were 

missed by previous models [14]. Therefore, similar to DNN, 

boosting takes advantage of hierarchical knowledge 

representation and independent training of the model 

components. This makes boosting one of the alternatives to 

DNN-based DL. 

Boosting is one of the most powerful machine learning 

approaches with proven success in many practical 

applications [10]–[18] and impressive track record of 

winning in various challenges/competitions on real-world 

machine learning problems such as Kaggle (www.kaggle.com) 

and others.  Performance of boosting-based and similar 

ensemble learning solutions is often very comparable or just 
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slightly inferior to the best DNNs, e.g., [20], [21]. Since 

discovery of boosting-based solution may often be 

operationally simpler and less greedy on data and 

computational resources, there are legitimate arguments in 

favor of choosing boosting rather than DNN in certain 

applications, e.g., [21]. However, many hybrid approaches try 

to combine the best features of boosting and DNNs rather than 

choosing just one of them. The most obvious combination is 

adopting NNs (with potentially different feature subsets) as 

base models in the boosting iterations [22]–[24]. 

Alternatively, boosting can be successfully adopted in the 

training of a single DNN [25]. Yet another type of 

combination is using boosting on DNN outputs for 

interpretation of the observed results and/or further 

performance improvement [20].   

Generic boosting with stump or other low-dimensional 

classification/regression tree as base model [13], [26] may be 

operationally simpler than DNN in some cases. However, 

without additional constraints and guidance based on 

application domain knowledge, both approaches are pure 

data-driven and require large training data sets for effective 

discovery of useful and stable models. Domain-expert 

models/rules obtained by deeper understanding of the 

considered application scope could play a key role in cases 

with severe incompleteness of training data because of natural 

dimensionality reduction and usage of domain-specific 

constraints, e.g., [14], [17]. However, such simplified models 

are often biased and not capable to cover all possible regimes. 

On the other hand, comprehensive incorporation of this 

domain knowledge into standard DNN-based DL or generic 

boosting frameworks is problematic, except for 

straightforward guidance in factor selection.   

Previously we have proposed application of boosting-like 

algorithms for effective utilization of all available domain 

knowledge (e.g., analytical and other parsimonious models) 

via discovery of compact ensembles of complementary 

low-complexity components (models) [14], [17]–[19]. This 

approach can tolerate significant data incompleteness and 

significantly increase accuracy of individual base models as 

was demonstrated in cardiac diagnostics [18] and in 

gait-based detection of neurological abnormalities [19]. 

While such boosting ensembles are compact, they could 

effectively utilize all complementary domain-expert 

knowledge not just best-on-average models [17]–[19]. 

Therefore, these ensembles can be considered as 

low-dimensional representations of the considered problem 

with particular objective (unlike generic unsupervised 

approaches) that could be further used in more flexible 

frameworks such as DNNs. Such combination may further 

increase model accuracy by uncovering more subtle patterns 

such as non-linear mixed terms that were not fully explored by 

boosting formulation limited to linear combination of 

complementary models.  

Here we argue that hybrid DL framework with 

auto-encoders replaced by components discovered by 

boosting followed by supervised DNN for classification could 

be effective and potentially much more tolerant to data 

incompleteness compared to pure DNN-based DL. 

Illustrations based on real cardio data from 

www.physionet.org are presented. 

II. DEEP LEARNING BASED ON NEURAL NETWORKS 

Many properties of NNs have been discovered well before 

current resurgence of interest in these algorithms in the form 

of DL and DNNs. For example, formal mathematical results 

of NNs universality and their capabilities have been proven 

by Kolmogorov and Cybenko [27], [28]. Cybenko’s theorem 

states that feed-forward NN with just one-hidden layer and 

sigmoid activation function is capable of approximating 

uniformly any continuous multivariate function to any desired 

degree of accuracy [28]. However, these results do not 

provide any direct recipes for finding optimal NN for any 

given problem and training data.   

Based on Cybenko’s theorem, optimal NN with good 

approximation should exist for any problem that meets 

reasonable continuity requirements. However, multi-factor 

nature of the majority of practical problems leads to the set of 

challenges that are collectively called the curse of 

dimensionality [29]. In the context of NN, this challenge is 

due to large number of weights and complex error surface 

with many local minima [29]. A direct global optimization of 

NN weights for avoiding local minima cannot solve the 

problem because of high-dimensionality of the problem, 

which is prohibitive to any stochastic or heuristic 

optimization algorithms including Genetic Algorithms (GA). 

Only after iterative back-propagation (BP) algorithm for 

training NNs with any number of hidden layers proposed in 

[30], many practical NN-based applications emerged. 
 

 
Fig. 1. Schematic diagram of standard MLP based on supervised training. 

  

However, while BP was routinely and successfully used for 

NN training in many practical situations, discovery of optimal 

NN in each particular application was still facing many 

serious challenges without a single universal solution. Many 

problems such as vanishing or exploding gradients are 

limitations of BP algorithm and can be encountered in many 

NN architectures including well-known multi-layered 

perceptron (MLP) [1], [2], [29].  Some NN types may provide 

very powerful modeling framework but are especially hard to 

train in practice. For example, while recurrent NNs (RNN) 

could potentially find the best solutions in problems dealing 

with time series and general sequence forecasting, the training 

algorithm, back-propagation through time (BPTT), could be 

notoriously unstable in practice [31], [32]. 
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Active research efforts to resolve or alleviate these 

limitations of NN-based frameworks and machine learning 

algorithms in general, resulted in development of modern 

DNN-based DL approaches [1], [2]. Widespread adoption of 

DL frameworks began after 2012 when AlexNet 

(convolutional DNN) significantly outperformed other 

machine learning approaches in ImageNet Large Scale Visual 

Recognition Challenge [3]. This result facilitated explosive 

growth of DNN-based applications in computer vision, 

bioinformatics, healthcare, fundamental sciences, business 

and other areas [1], [2], [20]. 

DNNs are often regarded just as multi-layered NNs which 

were made available for real-world applications because of 

possibility to train them with modern computing resources 

such as massively parallel GPU-based systems 

(www.nvidia.com). However, the main advantage of DL, 

capable of alleviating many existed issues, comes from the 

structured approach to DNN training and hierarchical 

representation which can be outlined as follows [1], [2], [5], 

[6].    

DNN-based DL is not just NN with large number of hidden 

layers, it is important paradigm realizing importance of 

hierarchical representation of data with increasing degree of 

abstraction [1], [2], [5], [6]. This paradigm is not new. For 

example, in fundamental sciences, theoretical and simulation 

frameworks are often focused on different spatiotemporal 

scales and account for interaction (energy flow) across these 

scales, e.g., [9]. In traditional machine learning (ML), process 

of feature selection could often include such hierarchical 

representations without explicit formalization. Boosting-like 

ensemble learning is an example of intrinsically hierarchical 

algorithm. It starts from global scale classification/regression 

model at first iteration and focuses on more detailed modeling 

of sub-populations and sub-regimes in subsequent iterations 

[10]–[12], [14].    

Although NN-based implementation of DL paradigm is not 

the only choice, DNN provides universal framework for 

modeling complex and high-dimensional data. Especially 

attractive feature of DNN approach is the capability of 

covering all stages of data-driven modeling (features 

selection, data transformation, and classification / regression) 

within a single framework, i.e., ideally, practitioner can start 

with raw data in the domain of interest and get ready-to-use 

solution [1], [2]. 

The key differences between standard multi-layered NN 

and DNN-based DL are illustrated in Fig. 1 and 2. As an 

example of a standard NN framework, schematic MLP 

diagram is shown in Fig. 1. In this case, input features/factors 

presented to NN in the first layer are assumed to be already 

selected outside NN by other means ranging from simple 

correlation analysis to different flavors of principal 

component analysis (PCA) and other statistical and machine 

learning tools, e.g., [26]. Once inputs are chosen, one can start 

supervised training of MLP using BP algorithm. In this 

training procedure, all weights from all layers are updated at 

each BP iteration or epoch [29], [30].  

The obvious limitation of this standard NN framework is 

absence of universal approaches to feature selection and 

dimensionality reduction that would be a self-consistent part 

of the framework itself and applicable in any domain of 

interest. Large dimensionality of inputs directly translates to 

large number of weights. Since weights of all layers are 

updated simultaneously, already mentioned problems of large 

number of hard-to-avoid local minima on the 

multi-dimensional error surface, vanishing and/or exploding 

gradients and related problems are easily encountered in 

many practical applications.  

DNN-based DL alternative to standard MLP is 

schematically shown in Fig. 2. The obvious difference from 

figure 1 is additional set of layers before the actual MLP 

layers for classification / regression. These additional layers 

effectively perform generic feature selection and 

dimensionality reduction via unsupervised pre-training, 

filtering and input transformations [1], [4]–[6]. In some cases 

this pre-processing may include domain-specific set of filters 

and transformations such as in CNN-based DL for image 

recognition [3], [7]. However, the most generic 

application-independent approach is based on auto-encoders 

as illustrated in Fig. 2.      
 

 

 
Fig. 2. Schematic diagram of DNN-based DL framework with stacked 

auto-encoders for unsupervised pre-training followed by standard MLP for 

classification or regression. 

 

Auto-encoder in its basic form is equivalent to MLP with 

output layer equal to input layer [4], [5]. The training is based 

on standard BP used in supervised MLP training. The only 

difference is that input features are presented at both input and 

output layers during training, i.e., NN builds representation of 

its input in hidden layer(s) (encoding process) and then tries 

to recover original input from this representation (decoding 

process) as schematically shown in Fig. 2. Since only inputs 

are used in training, effectively, it is unsupervised learning. 

Typically, number of nodes in hidden layer(s) is significantly 

less then number of inputs. In this case, auto-encoder 

discovers compact representation of the original input 

information, i.e. performs generic dimensionality reduction 

[4]–[6]. However, if objective is to discover sparse 
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representations uncovering complex non-linear dependencies 

(patterns), then size of hidden layer is made larger than 

number of inputs. In the final NN, only encoding layers of 

auto-encoders are used as shown in Fig. 2. 

Unsupervised pre-training of DNN using auto-encoders or 

other approaches is even more important is applications with 

large amount of unlabeled data but more limited availability 

of labeled data which is often the case. Indeed, standard 

supervised learning would use only labeled data, while 

information contained in the unlabeled data is ignored. 

Unsupervised pre-training is capable to discover rich set of 

patterns and representations from unlabeled data. After that 

DNN could be further fine-tuned via supervised training using 

available labeled data. 

Thus, while NN structure in standard MLP and DL 

approaches may look the same, the key difference of true DL 

is that NN is trained layer-by-layer which leads to much more 

robust results and alleviates potential overfitting. First set of 

layers (e.g., auto-encoders) are trained in unsupervised 

fashion with ability to use most of the data (labeled and 

unlabeled). Then, MLP classifier is trained using usual 

supervised learning, while weights from the first set of layers 

are kept constant. Finally, one could choose to fine-tune all 

NN layers with supervised training on labeled data.     

Important concept of layer-by-layer learning in DNNs goes 

well beyond just two major groups of layers, i.e. with 

unsupervised (e.g., auto-encoders) and supervised (e.g., 

standard MLP) learning. This allows further alleviation of 

often encountered problems due to data incompleteness. For 

example, while one can train single auto-encoder with 

multiple hidden layers, in practice, this approach would have 

serious problems if data are limited. Therefore, often used 

alternative is a stack of shallow auto-encoders (e.g., each with 

only one hidden layer) that are trained one at a time [6]. 

Example in Fig. 2 shows a stack with two such auto-encoders.   

Another robust technique of layer-by-layer training is 

transfer learning with many practical applications in image 

recognition and other fields [7], [8], [33]. For example, 

millions of images in hundreds of categories are available for 

DNN training. However, one may have just a few hundred 

images in the domain of interest such as medical imaging for 

particular abnormality [7], [8]. In this case, NN is first 

pre-trained on available categories not directly related to 

problem of interest. Then one could keep weights constant in 

majority of initial layers and train just a few last layers (in 

MLP) on available medical images. This is transfer learning, 

since we transfer majority of patterns learned in the domain 

with large data set (i.e., abstract image descriptors) to domain 

with small data set. Only small fraction of final layers gets 

updated. Depending on the data availability for the actual 

problem, one may increase or decrease number of updated 

layers (weights). In the extreme case of very limited data set, 

one can even replace MLP layers with simpler model (i.e., 

logit regression or support vector machine). 

However, severe data limitations in the context of problem 

dimensionality and/or absence of relevant problem for 

transfer learning can still drastically reduce key advantages of 

DNN-based DL. For example, pure data-driven 

auto-encoders dealing with high-dimensional input data 

require large amount of data for effective operation.  

Existing domain-expert models/rules obtained by deeper 

understanding of the considered domain could play a key role 

in applications with severe incompleteness of training data 

due to natural dimensionality reduction and usage of 

domain-specific constraints. However, such simplified 

models are often biased and not capable to cover all possible 

regimes. On the other hand, comprehensive incorporation of 

this domain knowledge into standard DNN-based DL is 

problematic, except for straightforward guidance in factor 

selection. In the next section we outline a novel hybrid 

framework combining boosting applied to domain-expert 

knowledge and DNNs. This framework can potentially 

tolerate severe data limitations and effectively leverage 

advantages of existing domain-expert knowledge, 

boosting-based ensemble learning and DNNs. 

 

III. HYBRID DEEP LEARNING FRAMEWORKS TOLERANT TO 

DATA INCOMPLETENESS 

DNN-based DL frameworks combine ultimate flexibility 

for data modeling with hierarchical representations, 

unsupervised pre-training, transfer learning and overall 

layer-by-layer training which are all crucial for discovery of 

viable models even when data are incomplete and very 

complex [1], [2], [4]–[7], [33]. However, operationally, 

DNNs training and optimization could be very challenging in 

practice due to large number of hyper-parameters ranging 

from specific parameters of training algorithm such as 

learning rate to NN topology such as number of layers in each 

NN component (unsupervised and supervised) and number of 

nodes in each layer.  

There are no universal recommendations for choosing 

optimal hyper-parameter set in each particular application. 

While there are rigorous mathematical results that guaranteed 

existence of optimal NN in each particular case [27], [28], the 

finding of such optimal DNN is mostly based on empirical 

considerations.    Partial theoretical understanding of the 

origins of DNN-based DL success just began to emerge, e.g., 

[34]. Therefore, discovery of optimal DNN and its training 

could be very computationally intensive and unintuitive. Also, 

in the case of serious data incompleteness, adopting 

domain-expert knowledge could be critically important. 

However, comprehensive incorporation of domain-specific 

knowledge into standard DNN-based DL is problematic, 

except for straightforward guidance in the initial 

factor/feature selection. 

However, alternative machine learning algorithms such as 

different flavors of boosting combine key advantages of 

DNNs such as hierarchical data representations and iterative 

component-wise learning with operational simplicity and 

ability of direct incorporation of domain-expert knowledge 

[10]–[14], [17], [21]. Also, performance of boosting-based 

models is often comparable to that of DNNs, e.g., [20], [21]. 

Adaptive boosting [10]–[12], [14], [26] combines many 

desirable features and is very distinct from the majority of 

ensemble learning algorithms, such as bagging and other  

“random sample” techniques, which can reduce only the 

variance part of the model error. Boosting can reduce both 

bias and variance [10]–[12], [26]. Boosting-based models 

demonstrate very good out-of-sample accuracy and stability 
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even in cases with limited training data due to intrinsic 

property of margin maximization during training. 

 

 
Fig. 3. Schematic diagram of generic boosting algorithm with decision 

stump as base model. 

 

A typical boosting algorithm such as AdaBoost [10,26] for 

the two-class classification problem (+1 or -1) consists of the 

following steps: 

following steps: 
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Here N is the number of training data points, xn is a model 

input value of the n-th data point and yn is class label, T is the 

number of iterations, I(z) = 0 (z<0), I(z)=1 (z>0), wn
t
 is the 

weight of the n-th data point at t-th iteration, Zt is 

normalization constant, ht(x) is the best model at t-th iteration, 

 is a regularization constant, and H(x) is the final combined 

model (meta-model).  

Boosting starts with equal and normalized weights for all 

training data (step 1). Base classifiers ht(x) are trained using 

weighted error function t (step 2). The best ht(x) is chosen at 

the current iteration. The data weights for the next iteration 

are computed in steps (3)–(5). At each iteration, data points 

misclassified by the current best model (i.e., ynht(xn) < 0) are 

penalized by the weight increase for the next iteration. 

AdaBoost constructs progressively more difficult learning 

problems that are focused on hard-to-classify patterns defined 

by the weighted error function (step 2).  The final meta-model 

(6) classifies the unknown sample as class +1 when H(x) > 0 

and as -1 otherwise. 

From the above description, it is clear that typical boosting 

algorithm is based on utilization of low-complexity base 

models estimated one at a time and deterministic iterative 

approach where initial discovery of the best-on-average 

model is followed by additions of models focused on more 

challenging data patterns/regimes that were poorly modeled 

in previous iterations [10], [14], [26]. Therefore, similar to 

DNN, boosting takes advantage of hierarchical knowledge 

representation and independent training of the model 

components. 

In pure data-driven approaches a typical choice of the base 

model is decision stump (i.e., one-level decision tree) as 

shown in Fig. 3 where boosting procedure is schematically 

represented. In this case just one generic and 

application-independent base model is used. The final model 

is multi-level tree constructed over many boosting iterations. 

However, the out-of-sample performance of such large tree 

discovered by boosting is much better than that of the same 

tree obtained by simultaneous global optimization of the 

parameters of multi-level tree [26]. 

Generic boosting and its various extensions such as 

XGBoost [13] often demonstrate superiority over other 

algorithms in many applications and competitions. Its 

performance also often approaches that of DNNs. However, 

since discovery of boosting-based solution may often be 

operationally simpler, there are legitimate arguments in favor 

of choosing boosting rather than DNN in certain applications 

[21]. However, many hybrid approaches try to combine the 

best features of boosting and DNNs rather than choosing just 

one approach and discarding the other.  

The most obvious combination is adopting DNNs (with 

potentially different feature subsets) as base models in the 

boosting iterations [22]–[24]. Alternatively, boosting can be 

successfully adopted in the training of a single DNN [25]. Yet 

another type of combination is using boosting on DNN 

outputs for interpretation of the observed results and/or 

further performance improvement [20]. 

Generic DNNs and boosting algorithms as well as most of 

their combinations are flexible but often pure data-driven 

approaches which require significant amount of training data 

for discovery of accurate and stable models. Domain-expert 

models and other existing knowledge obtained by deeper 

understanding of the considered domain could play a key role 

in applications with severe incompleteness of training data 

due to natural dimensionality reduction and usage of 

domain-specific constraints. However, such simplified 

models are often biased and not capable to cover all possible 

regimes. On the other hand, comprehensive incorporation of 

this domain knowledge into standard DNN-based DL is 

problematic, except for straightforward guidance in factor 

selection.  

Similarly, boosting algorithms in their original form, such 

as shown in Fig. 2, are also not suitable for generic 

incorporation of variety of domain-expert knowledge such as 

analytical models, rules and constraints. However, boosting 

can be applied to the pool of the well-understood and 

low-complexity domain-expert models to produce an 

interpretable ensemble of complementary base models with 

significantly higher accuracy and stability as suggested in [14], 

[17]–[19], [35], [36]. Schematic of such algorithm is shown in 

Fig. 4. 
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Unlike generic boosting algorithms (such as in Fig. 3), the 

pool of base models could include any number of 

parameterized domain-expert and/or other low-complexity 

models (see Fig. 4) [14], [17]. At each boosting iteration, all 

models from this pool are optimized one at a time according 

to the weighted error function (2) and the best model is added 

to the ensemble. Such procedure can test and utilize 

complementary value of any number of available 

domain-expert models without overfitting. Also, proper 

parameterization could allow discovery of many 

complementary models even from a single domain-expert 

model. Unlike boosting with generic and simple tree-based 

model, domain-expert base models could already capture 

significant number of regimes and impose important 

application-specific constraints. This facilitates discovery of 

compact model ensembles which combine high accuracy with 

interpretability since well-understood base models are used 

[14], [17]. 

 

 
Fig. 4. Schematic diagram of boosting-like algorithm with base models 

inspired by existing domain-expert knowledge. 

 

The described advantages of boosting-based frameworks 

for incorporation of domain-expert knowledge into the final 

model are not directly applicable to standard DNN-based 

architectures.  For example, while boosting can work with 

unlimited number of potential domain-expert models, since 

all of them are estimated and added to ensemble one a time, 

using all of them as inputs to DNN even with pre-training 

layers could easily become impractical for limited training 

data sets (curse of dimensionality).  In this case, one could be 

forced to consider only limited number of best models and 

underutilize complementary value of models, which offer 

expertise in certain regimes.  

Alternatively, when number of domain-expert models is 

limited, DNN does not offer any direct means of constructing 

additional (complementary) models with different set of 

parameters from a given model. DNN can only use original 

set of domain-expert models as inputs, which could eliminate 

potentially important factors. Usage of raw data inputs in 

addition or instead of domain-expert models could easily 

encounter problem of limited training data. 

However, even though boosting seems to be more natural 

for incorporation and enhancement of the domain-expert 

knowledge, its flexibility is still inferior to DNN-based DL. 

After all, boosting finds weighted linear combination of 

models. While such combination is capable to represent very 

complicated (non-linear) decision boundaries in classification 

problems, it may still miss important mixed terms that could 

be easily captured by DNN representation. Therefore, 

combination of the two approaches in capturing the most of 

domain-expert knowledge and lowering requirements for 

training data seems natural.   

Here we propose one of such combination where 

auto-encoder (pre-training) layers of DNN (see Fig. 2) are 

replaced by compact ensemble of domain-expert models 

discovered by boosting (see Fig. 4). This allows lowering 

dimensionality of the problem without requirement of large 

training data as in case of auto-encoders usage. On the other 

hand, supervised training of subsequent DNNs layer may 

further increase boosting model accuracy by incorporating 

mixed components to the original linear combination of 

models in the boosting ensemble. If number of important 

models in the ensemble is too large, auto-encoders could be 

also applied to this ensemble if enough training data is 

available. In any case, requirement on training data would be 

significantly less compared to direct usage of raw data in pure 

DNN-based DL.  

It should be noted that proposed usage of components from 

boosting ensemble is very different from stacking-like 

combination of models via NN or simpler algorithm. Indeed, 

stacking combines several complete models with comparable 

performance to get additional and often small gain in 

performance. In our case, the complete model is boosting 

ensemble. As in any ensemble model, only final aggregated 

output is used for final prediction. However, previously, we 

have demonstrated utility of direct usage of information 

encoded in the boosting components (base models) which, by 

construction, are experts in particular regimes or 

sub-populations [18], [35]. This approach, called ensemble 

decomposition learning (EDL), has been shown to be 

effective in rare states/events description and forecasting [18], 

[35]. Here we propose using this implicitly encoded 

representation of sub-regimes and sub-populations based on 

significantly enhanced domain knowledge as input to DNN 

for further training towards objective of interest.  

 

IV. APPLICATION EXAMPLES 

The proposed framework for leveraging domain-expert 

knowledge, boosting and DNNs is generic and could be 

especially attractive in applications with limited data. In this 

section, we provide illustrative examples supporting 

possibility of synergetic combination of boosting-based 

discovery of compact ensembles from models inspired by 

domain knowledge and DNNs. More detailed examples in 

wider scope and comparison with other modeling frameworks 

will be discussed elsewhere. 

Combination of physics-based and general analytical 

models with machine learning frameworks is known to be 

effective in variability analysis of physiological time series 

[17]–[19], [35], [36]. One of the well-known applications of 

this methodology is heart rate variability (HRV) analysis 

approved as one of the modalities for cardiac diagnostics [37]. 

Compared to traditional ECG analysis of waveforms, HRV 

metrics computed from time series of beat-to-beat (R-R) 

intervals are much more tolerant to noise and capable of 

detecting cardiac and non-cardiac (e.g., psychological) 

abnormalities lacking well-defined ECG waveform patterns 

[17], [18], [38]. HRV analysis is often based on complexity 
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measures inspired by theoretical results in nonlinear dynamics 

(NLD) and by spectral metrics heavily used in science and 

engineering for time series analysis [17], [37], [39]–[43].  

However, the accuracy and stability of such variability 

measures tend to decrease significantly when applied to 

shorter data segments [17]. This limitation diminishes the 

predictive capability of these measures for early detection of 

both short-lived precursors of emerging physiological 

regimes and abnormalities with transient patterns. Previously, 

we have demonstrated that performance of HRV indicators 

dealing with short time series could be significantly improved 

through optimal combination of complementary complexity 

measures using boosting [17]–[18], [35], [36]. 

The well-known NLD-inspired HRV metrics are based on 

detrended fluctuation analysis (DFA) [39], [40], multi-scale 

entropy (MSE) [41], and multi-fractal analysis (MFA) 

including MFA extension of DFA [42]. DFA was proven to be 

useful in revealing the extent of long-range correlations in 

time series including HRV applications [39], [40]. First, the 

investigated time series of length N is integrated. Next, the 

integrated time series is divided into n boxes. All boxes have 

the same length. In each box, a least-square line is fit to the 

data with y coordinate denoted by yn(k) (representing the 

trend in that box). Finally, the integrated time series, y(k), is 

detrended as follows: 
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A linear relationship on the plot of log F(n) vs. log n 

indicates power law (fractal) scaling characterized by a 

scaling exponent  (slope of the fitted straight line) which is 

used as physiological state indicator. 

Multi-scale entropy (MSE) method [41] has been 

introduced to resolve limitations of traditional single-scale 

entropy measures. First, a coarse-graining process is applied 

to the original time series, xi. Multiple coarse-grained time 

series are constructed by averaging the data points within 

non-overlapping windows of increasing duration, : 
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Here,  represents the scale factor and j=1…N/. The 

duration of the coarse-grained time series is N/. Next, 

entropy is calculated for each time series and plotted as a 

function of the scale factor. Different signatures of this curve, 

including originally suggested entropy difference between 

two scales [41], can serve as HRV and other physiological 

indicators. 

Spectral HRV indicators based on frequency-domain 

analysis are often superior in accuracy and stability to the 

time-domain linear indicators. One of the widely accepted 

indicators of this type is a power spectrum ratio of the 

low-frequency band (0.04-0.15 Hz) to the high-frequency 

band (0.15-0.4 Hz) [37], which we will refer to as LFHF 

indicator. In certain regimes, the accuracy of such power 

spectrum indicators could be comparable to the best NLD 

approaches.  

A natural choice of base models within boosting framework 

are low-complexity base classifiers, where each of the 

classifiers uses just one complexity measure, i, out of several 

available choices [17]:  

)],[(  ii phy                               (9) 

Here  is a threshold level (decision boundary) and pi is a 

vector of adjustable parameters of the chosen measure. In our 

case, i may correspond, for example, to either DFA scaling 

exponent, slope of MSE curve, or power spectrum ratio. 

Applying boosting steps to a set of such base classifiers (9) 

with different measures i and optimizing over (pi, ) on each 

boosting iteration, we can obtain a compact ensemble of 

measures with significantly better  accuracy and stability. 

Previously, we have demonstrated that boosting-based 

combination of DFA, MSE, and LFHF indicators 

parametrized according to (9) and optimized one at a time at 

each boosting iteration can significantly increase accuracy of 

cardiac abnormality detection even when short R-R segments 

of just several minutes are used [17]–[18], [35], [36]. Here we 

reproduce the main features of these results on similar (but 

expanded) data set and illustrate that addition of DNN to the 

boosting-based framework could further improve accuracy of 

the generic normal-abnormal classification/ranking for 

multiple cardiac abnormalities.  

Analysis presented in this section is based on real-patient 

ECG data from http://www.physionet.org. We used long R-R 

records (up to 24 hours each) from 52 subjects with normal 

sinus rhythm, 27 subjects with congestive heart failure (CHF), 

84 subjects with long-term atrial fibrillation (LTAF), and 12 

subjects from Sudden Cardiac Death (SCD) database who had 

sustained ventricular tachyarrhythmia and most had an actual 

cardiac arrest. Additionally, we used more than 100 

30-minute records from 48 subjects with paroxysmal atrial 

fibrillation (PAF) and up to 30-minute records for each of 47 

subjects with different types of arrhythmia. We have also 

added 78 intervals (each of 30 min) from patients with 

supraventricular arrhythmias to expand the arrhythmia data 

set. It should be noted that, while various cardiac 

abnormalities can be accompanied by arrhythmia, a separate 

arrhythmia sample, considered here, represents 

arrhythmia-only condition. 

 Here we use collection of 256-beat R-R segments obtained 

by 128-beat shifts (i.e., half overlapped) from R-R time series 

described above. The total number of R-R segments used for 

calculation of DFA, LFHF, and MSE indicators is more than 

1.35×105, among which about 3.6×104 are data from normal 

subjects. For training we used balanced set with 3.6×104 of 

256-beat segments (i.e., equal number of segments from 

normal subjects and patients with different cardiac 

abnormalities), which is just slightly above 25% of all data. 

1.8x104 segments are from normal subjects (i.e. less than half 

of data in this category) and 6×103 are from each of the 

following categories: CHF (i.e. less than 30%), LTAF (i.e., 

less than 9%) and SCD (~ 90%). All reported AUC metrics 

are computed on the full set of 1.35×105 samples (which are 

mostly out-of-sample). It should be noted that training set size 

could be reduced even further, since we did not observe any 

signs of overfitting due to usage of parsimonious analytical 

indicators as base models.     

As shown previously, for all specific abnormality types and 
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generic normal-abnormal classification, DFA and LFHF 

indicators always demonstrated significantly better 

performance compared to MSE [18]. Application of boosting 

to parameterized DFA and LFHF base indicators did not show 

any noticeable gain compared to single DFA or LFHF model, 

which indicated insufficient variability of these models even 

after parameterization. However, when MSE-based indicators 

were included as base models in addition to DFA and LFHF 

measures, boosting was capable of discovering ensembles 

with classification/ranking accuracy more than 10% higher 

than that of single DFA or LFHF model e.g., [18], [36]. Here 

ranking or differentiation capability is measured by the full or 

partial area-under-curve (AUC) metric applied to Receiver 

Operating Characteristic (ROC) curve. Thus, in this setting, 

the main boosting-induced gain is due to complementary of 

original measures rather than additional optimization of the 

parameterized measures. 

 

 
Fig. 5. AUC of single measures (red), NN with standard measures as inputs 

(orange), boosting ensemble with parameterized single measures as base 

models (green), and NN with standard measures and boosting components as 

inputs (blue). 

 

 
Fig. 6. AUC of a single LFHF measure with standard parameters (red), 

boosting ensemble with LFHF as only base model (green), and NN with 

LFHF boosting components as inputs (blue). 

 

Illustration in Fig. 5 shows that combination of already 

existing boosting-based results and DNN could further 

improve accuracy of the normal-abnormal classification and 

produce results better than those obtained from boosting or 

DNN alone. Here we compare AUC metrics of the individual 

measures (DFA, LFHF, dMSE and MSE) calculated on 

standard set of parameters [37], [39]–[43], [17]  with NN and 

boosting models based on these indicators as well as 

combined boosting and NN model.  

Results in Fig. 5 confirm intuitively expected accuracy 

ranking of different models. First, NN with 4-indicator input 

is capable to increase accuracy of the best single indicator by 

mixing complementary benefits of each such indicator. 

Boosting not only uses these four indicators with standard 

parameters, but also finds optimal parameters for these 

indicators at each boosting iteration, which enhances 

capabilities for finding proper complementary models and 

increase ensemble accuracy. This could explain better 

performance of boosting compared to NN. However, 

difference in performance is small since additional variability 

of indicators due to parameterization is limited. One could 

expect more pronounced performance enhancement in cases 

with higher variability of the parameterized base models. 

Although in this case we show boosting ensemble with 30 

components, the main boosting effect is already achieved 

after 10-15 iterations, i.e., with much more compact 

ensemble. 

Finally, as shown in Fig. 5, the highest AUC value is 

achieved by combination of boosting and NN. In this case, 

besides four indicators with standard parameters we add first 

10 indicators from boosting ensemble to NN inputs. These 

additional indicators have parameters optimized for detection 

of particular subset of patterns. Therefore, they add 

complementary information in addition to indicators with 

standard parameter set. This explains better performance 

compared to original NN with four inputs. However, accuracy 

is also higher compared to boosting ensemble. This 

demonstrates that NN optimally adds mixed terms into the 

final model which improves performance of the original 

boosting ensemble based on linear combination of base 

models.         

Even more encouraging and less expected result of the 

synergetic combination of boosting and NN is presented in 

Fig. 6. Here we used boosting with just one base model – 

parameterized LFHF indicator. Therefore, at each boosting 

iteration only LFHF indicator with different set of parameters 

was added to the ensemble. As already mentioned, while 

LFHF and DFA measures are often the best single indicators, 

their variability remain limited after parameterization. 

Therefore, when set of base models is restricted to LFHF (or 

both DFA and LFHF), effect of boosting remain very limited 

as shown in Fig. 6, where 30-component boosting ensemble 

shows almost the same performance as single LFHF indicator.   

However, boosting is known for its ability for continuous 

margin increase even when formal training error stops 

decreasing. This helps boosting out-of-sample performance. 

In our case, boosting also tries to find complementary set of 

LFHF indicators with different parameter sets, even though 

in-sample and out-of-sample performance of boosting 

ensemble do not show noticeable increase. This could be due 

to intrinsic boosting limitation of using linear combination of 

base models.  However, when just first 5-10 components from 

boosting ensemble are used as inputs to NN, AUC can be 

increased by up to 10% compared to single LFHF indicator or 

boosting ensemble (see Fig. 6). Once again, NN was able to 

significantly enhance performance through flexible 

non-linear mixing of components discovered by boosting.    

Optimal hyper-parameters used in NN-based solutions 

presented in this section (Fig. 5 and 6) were found by simple 

search on rather coarse-grain parameter grid, which suggests 

that further fine-tuning of hyper parameters  and performance 

improvements are possible. Here we used H2O.ai 

(www.h2o.ai) implementation of feed-forward NN with 

rectifier activation function in hidden layers. Our final choice 

was NN with two hidden layers and decreasing number of 

nodes in proportion of 3:1. 50% dropout rate was chosen. It 
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should be noted that we did not observe any change in model 

performance ranking presented in Fig. 5 and 6, when NN 

architecture and learning parameters were varied around this 

quasi-optimal set of hyper-parameters.  

Further research on the proposed combination of boosting 

and DNNs is warranted and results for a wider scope of 

applications will be presented elsewhere. We will also adopt 

multi-objective optimization framework for better search of 

NNs hyper-parameters which already shows encouraging 

preliminary results. 

 

V. CONCLUSION 

We have proposed combination of boosting-like 

algorithms and DNNs in applications with limited training 

data and existing domain-expert knowledge in the form of 

analytical and other parsimonious models or indicators. In 

particular, we have argued that hybrid DL framework with 

auto-encoders replaced by components discovered by 

boosting followed by supervised NN could be more tolerant 

to data incompleteness compared to pure DNN-based DL. We 

have illustrated that, in application dealing with detection of 

multiple cardiac abnormalities from short time series of 

beat-to-beat (R-R) intervals, boosting, DNNs and existing 

complexity measures can be synergistically combined to 

achieve significantly better performance compared to each 

individual technique. Further research and wider scope 

applications of the proposed framework are warranted. 
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