

 

Abstract—One of the most important aspects of financial 

risk is credit risk management. Effective credit rating models 

are crucial for the credit institution in assessing credit 

applications, they have been widely studied in the field of 

statistics and machine learning. Given that small 

improvements in credit rating systems can generate significant 

profits, any improvement is of high interest to banks and 

financial institutions. The ensemble methods are a set of 

algorithms whose individual decisions are combined to 

perform classification tasks. In this work, we propose an 

enhanced experimental comparative study of five ensemble 

methods associated with seven base classifiers using six public 

credit scoring datasets. Four popular evaluation metrics, 

including area under the curve (AUC), accuracy, false positive 

rate (FPR) and Time taken to build the model, are employed to 

measure the performance of models. The experimental results 

and statistical tests show that Pegasos model has a better 

overall performance than the other methods analyzed her for 

Boosting and Credal Decision Tree (CDT) model has a better 

overall performance than the other algorithms in the case of 

Bagging, Random Subspace, DECORATE and Rotation Forest. 

 
Index Terms—Credit scoring, ensemble methods, CART, 

SVMs, Pegasos. 

 

I. INTRODUCTION 

The US subprime crisis that began in 2007 was the worst 

financial and economic crisis since the great depression of 

the 1930s, characterized by an increase in subprime 

mortgage defaults and foreclosures, and the decline in 

mortgage-backed securities [1]. One of the main causes of 

the problem comes from the difficulty of classifying the 

customer as a good or a bad payer depending on his level of 

risk. In light of this, the Basel Committee issued in 2013 set 

of principles under the name of BCBS 239, the purpose of 

which is to enable banks to improve their generation 

capacity and improve the bank's reporting reliability. BCBS 

239 states that banks adhere to a set of basic principles for 

the effectiveness of aggregation and risk reporting practices 

(RDARR: Risk Data Aggregation and Risk Reporting) [2]. 

As a result, credit risk analysis has become more critical 

than ever. These deficiencies have led to more formal and 

more precise approaches to credit risk assessment [3]. 

Moreover, the coming years promise substantial progress in 

machine learning based on the probabilistic framework. 

Many studies have shown that the use of these methods in 

the field of artificial intelligence and data mining shows 

improvements in the results obtained when compared to 

those obtained with classical statistical approaches [4]. 
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Several in-depth studies [3], [4] have been carried out on 

the use of different overall ensemble methods (AdaBoost, 

Bagging, Random Subspace, DECORATE and Rotation 

Forest) with basic classifiers following: 1- nearest neighbor 

(1-NN), naive Bayesian classifier (NBC), logistic regression 

(LogR), multilayer perceptron (MLP), radial base function 

(RBF), support vector machine (SVM), C4.5 decision tree 

and Credal decision tree (CDT). These studies have yielded 

some very interesting results, but it can be improved, and 

that is the purpose of the work we are proposing. In this 

article, we compare different general procedures studied in 

previous works by [3], [4]. Here we kept the basic classifiers 

with the best results, and we added Classification And 

Regression Tree (CART) and Primal Estimated sub-

GrAdient SOlver for SVM (Pegasos) to the set of basic 

classifiers for many reasons explained below.  

In recent years, numerous studies have shown that 

artificial intelligence techniques, such as the decision tree 

(DT), artificial neural networks (ANN), and Support Vector 

Machine (SVM) can be used as alternative methods for 

credit scoring [5], [6].  On the one hand, CART, C4.5 and 

CDT and all are classification tree algorithms. CART uses a 

generalization of the binomial variance called the Gini index. 

C4.5 uses entropy for its impurity function, whereas the 

CDT model represents an extension of the classical ID3 and 

uses imprecise probabilities and uncertainty measures, 

replacing precise probabilities and entropy with imprecise 

probabilities and maximum of entropy [2], [7]. CART 

technique (developed by Breiman, Friedman, Olshen and 

Stone in 1984), is considered as an innovative, powerful and 

accurate approach for approximating science and 

engineering problems [8]. CART is non-parametric in nature 

and is able to handle data with high skew value, in which the 

decision tree is constructed by successively splitting the data 

set into subsets called nodes. A recursive binary partitioning 

process is applied whereby parent nodes are always divided 

into two descending nodes (intermediate or terminal), and 

this process is repeated by considering each intermediate 

node as a parent node [9]. In this work, we chose CART as a 

basic learning algorithm because it can deal with both 

numeric and categorical variables and can easily treat 

outliers. It is also very easily readable and interpretable into 

a set of simple rules from datasets [10]. Although CART has 

many abilities, it has some disadvantages. Such a limitation 

is the high variance between the samples. This means that 

the tree structure and the resulting estimates are not 

necessarily stable in the new samples. Due to their low 

variance and high predictive accuracy in many areas, the use 

of CART has been largely improved by resampling methods 

("ensemble") that handle the potential instability of CART 

by averaging the results of many trees [11], [12]. 
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On the other hand, Support vector machine (SVM), is an 

extremely powerful and widely accepted classifier in the 

field of risk assessment because of its better generalization 

ability, it has already surpassed most other classifiers in a 

large variety of applications [13]. However, conventional 

SVMs (linear base, polynomial, radial base, exponential 

radial base, Gaussian radial base, and sigmoid functions) are 

not suitable for a large scale data set because of its high 

computational complexity [14], [15]. Nowadays, PEGASOS 

attracts a lot of attention because it divides the problem into 

a large scale of sub-problems by stochastic sampling of 

appropriate size [16], [17]. PEGASOS has been proposed in 

the study [17] to solve the optimization problem caused by 

SVM. These authors have proved that the number of 

iterations needed to obtain a precision solution φ is O (1 / φ), 

where each iteration operates on a single learning example. 

They analyzed Pegasos and other SVM training methods 

and showed that Pegasos is more efficient than other 

methods in measuring the execution time needed to ensure 

good predictive performance (test error). So, the use of 

PEGASOS seemed to be an important choice as a basic 

classifier in this study. 

Through this experimental study, it is shown that the 

Pegasos model has a better overall performance than the 

other methods analyzed her for Boosting and CDT model 

has a better overall performance than the other algorithms in 

the case of Bagging, Random Subspace, DECORATE and 

Rotation Forest, for the field of credit scoring using six 

public datasets in terms of average receiving operator 

characteristic, accuracy, false positive rate and time used to 

build the model. 

The remainder of this article is organized as follows. We 

present some related work in Section II. In section III, we 

present briefly an overview of the classifier ensemble 

approaches used in this work. In section IV, we describe the 

set-up of the experiments carried out, section V comments 

the results obtained from the experiments. We end with a 

conclusion and discuss possible future working directions in 

Section VI. 

 

II. RELATED WORK 

Ensemble approaches are techniques that create multiple 

models and then combine them to produce improved results. 

These methods usually produce more accurate solutions than 

a single model would [18]-[20]. Ensemble methods in 

classification tasks have recently been used in many areas 

(Finance, Computer Security, Marketing, bioinformatics, 

Environment, Sociology, etc.) to retrieve the useful 

knowledge from the very large amount of data [21], [22].  In 

fact, authors of the work [23] suggest a novel ensemble 

credit model that combines the bagging method with the 

stacking algorithm. The proposed model performs better in 

discriminating potential default borrowers.  In another field 

of interest, in [24] authors demonstrate that combining 

multiple individual classifiers using conventional or custom 

ensemble learning methods can improve activity recognition 

accuracy from wrist-worn accelerometer data. Furthermore, 

in [25], authors have investigated fifteen different machine 

learning classification algorithms over content based 

features to classify the spam and non-spam web pages. As a 

result, ensemble approach is done by using three algorithms 

which are computed as best on the basis of various 

parameters, ten-fold Cross-validation approach is also used. 

 Besides, CART and bagging with CART were 

evaluated on two UCI credit data sets in the work [10]. In 

these experiments, ensemble learning yields more favorable 

results than single CART.  

 

III. ENSEMBLE OF CLASSIFIERS 

The concepts of ensemble learning are usually used to 

improve overall accuracy, by addressing the weaknesses 

inherent in each learning algorithm used individually. To 

that end, ensemble learning involves two stages, creating a 

set of base models and combining their predictions using 

some pooling mechanism [18]. Assume we have a library of 

T base models M=(M1, M2, ..., MT) Then, the ensemble 

prediction for an example xi,P(xi,M),  is a composite forecast 

of the form: 

𝑃 𝑥𝑖 , 𝑀 =
1

𝑇
 𝛽

𝑡
𝑇
𝑡=1   𝑀𝑡(𝑥)                     (1) 

where 𝑀𝑡(𝑥)  denotes the individual prediction of base 

model 𝑀𝑡  and 𝛽
𝑡
 its weight within the ensemble.  

A. Bagging 

Bootstrapping on predictions has been known since the 

work of Leo Breiman (1996) under the name of bagging, or 

Bootstrap aggregating. The Bagging method generates 

multiple classifiers by manipulating the training set. Each 

time a different training set is presented to the learning 

machine. The new training set is created by drawing 

samples from the original training set randomly with 

replacement. The final results are obtained by a majority 

vote for classification [10]. The procedure of Bagging is 

illustrated in Fig. 1. 

 

 
Fig. 1. Bagging approach. 

 

B. Boosting 

The boosting algorithm (invented in 1996 by Yoav 

Freund and Robert E), is based on the observation that 

finding many rough rules of thumb can be a lot easier than 

finding a single, highly accurate prediction rule [26]. To 

apply the boosting approach, we follow these steps:  

a) Applying a weak classifier Mi to the learning data set 

Di, where each observation is assigned an initially 

equal weight (for i=1);  

b) Applying weights to the observations in the learning 

sample that are inversely proportional to the accuracy 

of the classification of the computed predicted 

classifications;  

c) Going to the step (i) T-times (T previously fixed);  

d) Combining predictions from individual models 

(weighted by accuracy of the models). 
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The resampling the original dataset (D1, D2, ..., DT) 

should provide the most informative learning data for each 

consecutive classifier: for misclassified samples, the weights 

are increased, while for correctly classified samples, the 

weights are decreased. The main idea is to use a series of 

successive models (M1, M2, ..., MT) where each depends on 

its predecessors, and this model Mi takes into account the 

error of the previous model Mi-1 to decide on what to focus 

on next iteration of data. AdaBoost, Gradient tree boosting, 

XGBoost, all are boosting algorithms [27], [28]. The 

AdaBoost approach used in this work is illustrated below: 

 

 
Fig. 2. AdaBoost approach. 

 

C. Random Subspace 

Tin Kam Ho uses several classifiers built on randomly 

selected subspaces of the original input space and combines 

them into a final decision rule via a simple majority voting 

procedure in 1998. Each unique classifier uses only a subset 

of all the features available in the dataset for training and 

testing. These characteristics are chosen uniformly randomly 

among the set of characteristics. Thus, Random Subspace 

sets offer an elegant answer to the problem of the very large 

dimension [6]. This method is showed below: 

 

 
Fig. 3. Random subspace approach. 

 

D. DECORATE 

In 2003, Melville proposes a framework named 

DECORATE (Diverse Ensemble Creation by Oppositional 

Relabeling of Artificial Training Examples). This technique 

builds diverse ensembles of classifiers by using specially 

constructed artificial training examples. It differs from the 

other ensemble methods described above. Indeed, this meta-

algorithm of learning is one of the few approaches 

proposing an evaluation and an explicit use of the diversity 

at each iteration of creation of the set of classifiers. The 

overall architecture of DECORATE is close to that of 

Adaboost, where the set of classifiers is built incrementally 

by modifying the learning data set at each iteration. 

However, DECORATE differs from Adaboost in the 

changes made to the training data of each classifier. At each 

iteration, a classifier is trained on the original learning data 

set, to which are added artificial data, called diversified data. 

They consist of examples generated from the distribution of 

the problem but labeled so that the differences with the 

predictions of the current data set are maximal. The number 

of artificial examples to be generated at each iteration is a 

parameter of the algorithm. A new classifier is trained on the 

original data and these diverse data, with the assumption 

that this classifier increases the overall diversity of the 

current set of classifiers. To maintain a reasonable level of 

precision, only classifiers that increase the predictive 

capabilities of the current set of classifiers are added. This 

process is repeated until the set has the desired number of 

elements or when a maximum number of iterations is 

reached. The risk is that there are too many rejects, which 

leads to the construction of a set of smaller size than initially 

desired. DECORATE reduces the correlation between 

ensemble algorithms by training classifiers on oppositely 

labeled artificial samples. Furthermore, the method ensures 

that the training error of the ensemble is always less than or 

equal to the error of the base algorithm, this generally leads 

to a reduction in the generalization error [29], [30]. 

E. Rotation Forest 

More recently, the Rotation Forest algorithm (Developed 

by Rodriguez, Kuncheva and Alonso in 2006) proposes to 

increase the diversity between decision trees by applying a 

feature extraction method (principal component analysis is 

used in this work) on random subsets of attributes, and to 

drive the decision trees on the transformed data [31]. To 

apply the Rotation Forest approach, we follow these steps: 

 

b) PCA is applied to each subset; 

c) All principal components are taken; 

d) Arrange the PCA coefficients in a matrix (rotation 

matrix); 

e) Apply the rotation matrix to the data features; 

f) Build each decision tree on the rotated training data. 

 

IV. EXPERIMENTATION 

A. Data and Variables 

TABLE I: DATA SET DESCRIPTION 

Data set N Features Good Bad 

Australian 690 15 307 383 

German 1000 17 700 300 

Japanese 653 16 357 296 

Iranian 1000 27 950 50 

Polish 240 30 128 112 

UCSD 2435 38 1836 599 

 

Six sets of real-world credit data have been used to 

compare the performance of different basic classifiers in 

several overall systems. A brief description of these datasets 

can be found in Table I. The widely used Australian, 

German, and Japanese datasets are from the UCI machine 

learning database repository (http://archive. cs.uci.edu/ml/). 

The UCSD dataset is a small version of a database used in 

the Data Mining 2007 competition organized by the 

University of California at San Diego and Fair Isaac 

Corporation. The Iranian dataset comes from a change in a 

corporate client database of a small private bank in Iran. The 
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Polish dataset contains information on the bankruptcy of 

120 companies registered over a two-year period [4]. 

B. Research Design 

In this section we will describe the experiments carried 

out and show in the Section V the results obtained. The base 

classifiers considered in this experimental study are: LogR, 

MLP, C4.5, CDT, CART, SVM and Pegasos. We mention 

once more, that only the best base classifiers in the studies 

[3], [4] are used, together with the CART and Pegasos 

methods. The ensemble schemes analyzed are the ones 

described in Section III, i.e. AdaBoost, Bagging, Random 

Subspace, DECORATE and Rotation Forest. In total, 35 

different classifiers have been taken into account for the 

mentioned six scoring data sets. All experiments were 

executed in Weka 3.8 software, on a desktop PC with 2.6 

GHz (4 CPUs), Intel i7 CPU, 16GB RAM, and Microsoft 

Windows 10 operating system (64 bits). All used classifiers, 

are provided by Weka, they were used with their default 

configurations. We repeated 50 times a 5-fold cross 

validation procedure for each data set as in the previous 

works.  

C. Measurement of Model Performance 

Generally, the evaluation metrics in classification 

problems are defined from a matrix with the numbers of 

examples correctly and incorrectly classified for each class, 

named confusion matrix. The confusion matrix for a binary 

classification problem (which has only two classes – 

positive and negative), is shown in the table below: 

TABLE II: CONFUSION MATRIX FOR CREDIT SCORING 

 Predicted class 

Actual class Good loans Bad loans 

Good loans  TP  FN (Type II error) 

Bad loans FP (Type I error) TN  

  

A TP stands for good applicant correctly classified as 

good, TN stands for bad applicant correctly classified as bad, 

FN (Type II) stands for good applicant incorrectly classified 

as bad customer and FP (Type I) stands for Bad customer 

incorrectly classified as Good customer (high risk).  

The standard classifier metrics used for analysis are 

shown in Table III. The metrics in bold plus time taken to 

build model (TBM), are the four metrics used to evaluate the 

ensemble techniques experimented in this work. Indeed, 

ROC-AUC and accuracy, represent an important reference 

about the performance when several methods are compared. 

We have added FPR for the reason that predicting a bad 

payer as a good payer presents significant risks in case of 

credit scoring. The total time required to build the model is 

also a crucial parameter in comparing the classification 

algorithms especially in the age of massive data [32], [33]. 

In our work, the Friedman test, which is a non-parametric 

rank-based test, is used to compare the different models 

according to Demšar's recommendation [34]. The Friedman 

test classifies the algorithms separately for each data set, 

with the best performing algorithm obtaining rank 1, second 

best rank 2, and so on. This test is based on a Friedman 

statistic that is distributed according to a chi square with n-1 

degree of freedom, where n is the number of algorithms 

used. This value is based on the individual average rank of 

each algorithm on each set of data r, j, i, where j = 1, ..., n 

and i = 1, ..., m, with m the number of data sets. The 

Friedman test is calculated as follows: 

 

χ 𝐹
2 =

12𝑚

𝑛(𝑛 + 1)
    𝑟𝑖

𝑗

𝑖

 

2

𝑗

−
𝑛(𝑛 + 1)2

4
       

 

All the algorithms are equivalent in the case of the null 

hypothesis. In the opposite case, the null hypothesis of the 

Friedman test is rejected, we can then compare all the 

algorithms with each other with a post hoc test in order to 

find the particular comparisons in pairs that produce 

significant differences. The Bonferroni-Dunn test is used in 

this case. 

TABLE III: STANDARD BINARY CLASSIFIER METRICS 

Metrics Formula 

True Positive Rate 

(TPR)/ Sensitivity/ 

Recall 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

True Negative Rat / 

Specificity (TNR) 

𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 

False Positive Rate 

(FPR)/ Type I error 

FP

𝐹𝑃 + 𝑇𝑁
 

False Negative Rate 

(FNR) 

/Type II error 

𝐹𝑁

𝐹𝑁 + 𝑇𝑃
 

Precision/ Positive 

Prediction Rate 

(PPR) 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Negative Prediction 

Rate (NPR) 

𝑇𝑁

𝐹𝑁 + 𝑇𝑁
 

F-Measure 2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

Correct 

Classification % / 

Accuracy 

 𝑇𝑃 + 𝑇𝑁 ∗ 100

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

Incorrect 

Classification % 

 𝐹𝑃 + 𝐹𝑁 ∗ 100

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

Area Under Curve 

(AUC) 

1 + 𝑇𝑃𝑅 − 𝐹𝑃𝑅

2
 

Mathews Correlation 

Coefficient (MCC) 

 𝑇𝑃 ∗ 𝑇𝑁 − (𝐹𝑃 ∗ 𝐹𝑁)

  𝑇𝑃 + 𝑇𝑁 ∗  𝑇𝑃 + 𝐹𝑁 ∗  𝐹𝑃 + 𝑇𝑁 ∗ (𝑇𝑁 + 𝐹𝑁)
 

 

The performance of two algorithms is clearly 

distinguished if the corresponding average ranks differ by at 

least the critical difference. The test statistics for measuring 

the differences between the i-th and th-classifiers using 

these approaches are as follows: 

𝑧 =   𝑟𝑖
𝑗

𝑖 −  𝑟𝑖
𝑡

𝑖   
𝑛 𝑛+1 

𝑚
                            (3) 

The z value is used to define the corresponding 

probability in the normal distribution table, which is then 

compared with an appropriate α. In our experiments, on all 

the tests carried out, the level of significance has been of α= 

0.1. 
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V. RESULT DISCUSSION 

In this paper, we considered Friedman's rank values for 

each measure: ROC-AUC, accuracy, false-positive rate, and 

time taken to build the model. Although the objective of this 

work is not to evaluate the performance of basic classifiers, 

Table IV reports the mean rank (Friedman score) of each 

model as a reference for further comparisons. The technique 

obtaining the lowest average rank ROC (highlighted in bold) 

corresponds to LogR, whereas the SVM appears as the 

individual classifier with the worst overall performance. 

Thus, the lowest average accuracy rank corresponds to CDT, 

where the MLP appears as the individual classifier with the 

lowest overall accuracy rate.  

Table V reports the results of the ROC curves and the 

average rank of the different sets. For each set method, the 

basic classifier with the best average ranking among the six 

sets of credit score data is highlighted in bold and the overall 

best for each set of data is also noted with the italic and bold 

fonts. As can be seen, the C4.5 seems to be the best basic 

classifier with DECORATE and Rotation Forest, while 

Pegasos has the highest ranking when used with AdaBoost. 

CART ranks lowest with Bagging, while CDT ranks lowest 

with the Random Subspace algorithm. It should be noted 

that LogR, which is the individual model with the highest 

(lowest average ranking), performs less well than most 

classifiers when used in an overall approach. 

 
TABLE IV: RESULT OF ROC, ACCURACY, TBM AND FPR FOR EACH BASE CLASSIFIER AND DATA SET 

 
 

TABLE V: AVERAGE RESULT OF THE ROC CURVES FOR EACH BASE 

CLASSIFIER AND DATA SET GROUPED BY ENSEMBLE 

 

TABLE VI: AVERAGE RESULT OF ACCURACY FOR EACH BASE CLASSIFIER 

AND DATA SET GROUPED BY ENSEMBLE

 

ROC Australian German Japanese Iranian Polish UCSD Rank average

LogR 0,9020 0,7880 0,9310 0,7120 0,8150 0,8820 1,0

MLP 0,8830 0,7350 0,8940 0,6990 0,8000 0,8350 2,5

C4.5 0,8790 0,6850 0,8470 0,5680 0,7110 0,7650 5,2

CDT 0,8930 0,7120 0,9000 0,5000 0,7810 0,8580 3,0

CART 0,8680 0,7160 0,8820 0,5000 0,7660 0,8250 4,2

SVM 0,8680 0,6860 0,8700 0,5000 0,7100 0,7420 5,8

Pegasos 0,8530 0,6710 0,8720 0,5020 0,7230 0,7620 5,7

Accuracy Australian German Japanese Iranian Polish UCSD Rank average

LogR 84,93 75,70 87,29 94,00 74,58 84,02 3,0

MLP 82,61 72,00 82,08 93,30 74,17 80,62 6,5

C4.5 85,51 73,30 84,69 94,10 68,75 82,14 4,8

CDT 85,22 72,10 86,06 95,00 75,83 83,66 2,8

CART 85,07 73,70 86,06 95,00 75,00 82,26 3,2

SVM 85,07 76,00 86,37 95,00 70,83 83,20 3,2

Pegasos 84,93 76,20 86,52 93,60 71,67 83,70 3,5

Time Australian German Japanese Iranian Polish UCSD Rank average

LogR 0,05 0,23 0,04 0,07 0,02 0,18 2,8

MLP 7,81 18,68 1,35 3,75 1,29 21,39 7,0

C4.5 0,05 0,10 0,01 0,04 0,02 0,12 1,7

CDT 0,03 0,08 0,01 0,01 0,02 0,09 1,0

CART 0,67 1,11 0,07 0,07 0,05 0,40 5,3

SVM 0,20 0,61 0,15 0,28 0,02 0,18 4,2

Pegasos 0,14 0,18 0,03 0,50 0,02 0,20 3,7

FPR ROC German Japanese Iranian Polish UCSD Rank average

LogR 0,1400 0,1400 0,1110 0,0120 0,2420 0,0940 4,0

MLP 0,1990 0,1970 0,1930 0,0280 0,1560 0,1300 6,0

C4.5 0,1630 0,1490 0,1550 0,0150 0,3280 0,1140 5,3

CDT 0,1430 0,1290 0,0980 0,0000 0,2420 0,0930 2,8

CART 0,1070 0,1360 0,0950 0,0000 0,2970 0,1060 3,0

SVM 0,1070 0,1290 0,0610 0,0000 0,3200 0,0810 1,8

Pegasos 0,1140 0,1010 0,0610 0,0160 0,3670 0,0900 3,3

Ensemble Base Australian German Japanese Iranian Polish UCSD Average rank

LogR 0,8990 0,6980 0,9090 0,6370 0,8180 0,8530 6,2

MLP 0,9070 0,7020 0,8900 0,6550 0,8390 0,8780 5,2

C4.5 0,9170 0,7320 0,9060 0,6800 0,8340 0,9040 4,2

CDT 0,9200 0,7700 0,9130 0,6710 0,7930 0,9020 3,7

CART 0,9230 0,7430 0,9140 0,6810 0,8410 0,8990 2,7

SVM 0,9200 0,7690 0,9160 0,7600 0,7940 0,8510 3,5

Pegasos 0,9250 0,7640 0,9180 0,7150 0,8380 0,8670 2,5

LogR 0,9290 0,7900 0,9310 0,7220 0,8250 0,8840 3,3

MLP 0,9220 0,7820 0,9160 0,7950 0,8590 0,8770 3,8

C4.5 0,9300 0,7680 0,9280 0,7880 0,8490 0,9110 2,5

CDT 0,9230 0,8010 0,9190 0,7220 0,8290 0,9100 3,3

CART 0,9300 0,7890 0,9280 0,7410 0,8360 0,9100 2,3

SVM 0,8970 0,7800 0,9030 0,4990 0,8150 0,8060 6,7

Pegasos 0,9230 0,7800 0,9170 0,5600 0,8260 0,8350 5,2

LogR 0,9280 0,7970 0,9310 0,7460 0,8300 0,8820 2,5

MLP 0,9240 0,7860 0,9230 0,7740 0,8390 0,8940 3,0

C4.5 0,9270 0,7750 0,9210 0,6860 0,8220 0,9120 3,7

CDT 0,9250 0,8060 0,9220 0,7170 0,8390 0,9040 2,5

CART 0,9250 0,7670 0,9280 0,6420 0,8470 0,8970 3,2

SVM 0,9190 0,7490 0,9210 0,5000 0,7880 0,8050 6,5

Pegasos 0,9150 0,7630 0,9220 0,5180 0,7590 0,8400 6,0

LogR 0,9180 0,7910 0,9270 0,6750 0,8050 0,8640 2,3

MLP 0,9110 0,7080 0,8850 0,6740 0,8470 0,8430 4,5

C4.5 0,9140 0,7670 0,9240 0,7310 0,8550 0,8870 1,8

CDT 0,9130 0,7750 0,8970 0,6890 0,8350 0,8900 2,7

CART 0,9130 0,7540 0,9180 0,5780 0,8510 0,8450 3,8

SVM 0,8620 0,6950 0,8700 0,6400 0,7190 0,8360 5,7

Pegasos 0,8890 0,7050 0,8800 0,5850 0,7730 0,8080 6,2

LogR 0,9280 0,7910 0,9310 0,7120 0,8180 0,8830 2,8

MLP 0,9200 0,7650 0,9220 0,7630 0,8340 0,8910 3,5

C4.5 0,9240 0,7730 0,9260 0,7490 0,8570 0,9220 1,8

CDT 0,9150 0,7880 0,9260 0,7320 0,8420 0,9070 2,7

CART 0,9080 0,7580 0,9250 0,5430 0,8460 0,9050 4,2

SVM 0,8990 0,7030 0,9120 0,5000 0,7980 0,8050 6,3

Pegasos 0,8680 0,6650 0,8970 0,5530 0,7230 0,8200 6,5

Adaboost

Random 

Subspace

Decorate

Rotation 

Forest

Bagging

Ensemble Base Australian German Japanese Iranian Polish UCSD Average rank

LogR 86,81 75,70 87,29 94,00 74,58 83,86 3,7

MLP 83,48 71,20 81,78 93,20 76,25 83,94 5,8

C4.5 85,94 74,30 84,99 94,10 77,50 87,72 3,5

CDT 86,38 74,00 86,37 94,30 71,67 86,20 4,0

CART 87,39 73,10 86,52 94,70 77,08 86,61 2,5

SVM 84,49 76,00 85,60 95,00 70,42 83,04 4,5

Pegasos 86,23 76,50 83,31 94,60 75,42 83,16 4,0

LogR 86,67 76,50 87,29 94,40 73,75 83,94 4,3

MLP 86,09 76,00 84,69 94,90 79,58 83,86 4,8

C4.5 87,54 75,10 87,14 95,20 76,67 86,98 2,8

CDT 86,96 75,30 88,36 95,00 73,33 85,95 3,5

CART 87,83 77,10 87,60 95,10 77,92 86,32 1,7

SVM 85,51 76,70 86,37 95,00 72,92 83,08 5,2

Pegasos 85,94 76,70 86,68 94,90 72,50 83,45 5,2

LogR 85,51 74,90 86,22 94,80 74,17 83,82 4,5

MLP 86,09 76,10 86,22 95,00 72,50 84,76 3,2

C4.5 86,23 73,90 86,98 94,90 77,08 86,16 2,5

CDT 86,96 74,20 86,98 95,00 74,58 85,46 1,8

CART 86,23 72,80 86,83 95,00 76,25 84,97 3,0

SVM 85,51 72,40 85,45 95,00 72,08 76,35 5,5

Pegasos 85,22 73,10 85,60 94,70 71,25 80,90 6,3

LogR 86,67 76,20 86,52 94,30 73,75 84,11 3,5

MLP 86,09 70,80 82,24 94,40 75,83 82,14 4,7

C4.5 85,65 74,70 85,45 95,20 78,75 85,87 2,7

CDT 85,80 74,60 86,52 94,90 77,50 85,71 3,5

CART 87,10 74,60 86,22 95,10 77,50 83,98 3,2

SVM 85,51 75,40 86,37 94,80 67,50 83,04 5,5

Pegasos 85,94 76,20 86,37 93,70 70,83 83,45 5,2

LogR 86,81 76,10 87,14 94,00 73,75 84,11 3,3

MLP 85,36 74,80 84,99 94,70 74,17 84,68 5,2

C4.5 86,81 74,50 85,76 94,70 79,17 87,19 3,2

CDT 86,81 73,40 86,37 95,00 74,58 85,54 2,8

CART 85,94 74,40 85,91 95,00 77,08 85,42 3,5

SVM 85,51 75,40 86,37 95,00 72,92 83,04 4,2

Pegasos 85,65 75,00 86,52 94,90 71,67 82,30 4,7

Adaboost

Random 

Subspace

Decorate

Rotation 

Forest

Bagging
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The Friedman‟s test finds significant differences for the 

AUC.  

The Friedman‟s test finds also significant differences for 

the accuracy. His results are described as in Table VI, the 

CART appears to be the best base classifier with Adaboost 

and Bagging, while the CDT presents the best rank when 

used with the Random Subspace and Rotation Forest, C4.5 

as the lowest rank with the DECORATE algorithm.  

  
TABLE VII: RESULT OF THE FPR FOR EACH BASE CLASSIFIER AND DATA 

SET GROUPED BY ENSEMBLE 

 
 

TABLE VIII: RESULT OF THE TBM (MEASURED BY SECOND) FOR EACH 

BASE CLASSIFIER AND DATA SET GROUPED BY ENSEMBLE 

 
 

Taking into account Table VII about the false positive 

rate, the Friedman‟s test finds significant differences. The 

technique achieving the lowest FRP average rank 

(highlighted in bold face) corresponds to:  

 SVM for Random Subspace and Rotation Forest. 

 CART for Bagging and DECORATE. 

 CDT for DECRATE and Rotation Forest. 

 C4.5 for Adaboost. 

For the time taken to build model (measured by second), 

presented in Table VIII, the CDT has the lowest rank for 

most ensemble methods, closely followed by the SVM, C4.5, 

Pegasos and LogR and SVM. While, MLP correspond to the 

worst in terms of time taken to constitute the model. 

Taking into account the Table IX about the summary of 

results, the technique achieving the lowest average rank 

(highlighted in bold face) corresponds to: 

 CDT for Bagging, Random subspace, DECORATE and 

Rotation Forest 

 Pegasos for Adaboost scheme. 

 C4.5 for Bagging scheme. 

 
TABLE IX: RESULT OF (ROC, ACCURACY, COST AND FRP) RANK‟S FOR 

EACH BASE CLASSIFIER AND DATA SET GROUPED BY ENSEMBLE 

 
 

Fig. 4-Fig. 8 illustrate the average ranking of each basic 

algorithm by meta-algorithm.  

The summary of the findings are described as in Table X 

and Fig. 9, we compare method by method in each ensemble 

scheme:  

LogR: This method obtains second place in the Adaboost 

scheme and achieve an average performance in the other 

ensemble methods. 

MLP: It is the worse method in this experimental study. It 

is especially a very bad method when Adaboost, Decorate or 

Rotation Forest ensembles are applied. It can be concluded 

also that this method obtains the highest rank regarding the 

results of time to build the model. 

Ensemble Base Australian German Japanese Iranian Polish UCSD Average Rank

LogR 0,1240 0,1400 0,1110 0,0120 0,2420 0,0970 3,3

MLP 0,1760 0,2170 0,1790 0,0290 0,1950 0,0830 5,5

C4.5 0,1500 0,1400 0,1590 0,0190 0,1560 0,0650 3,2

CDT 0,1530 0,1460 0,1260 0,0130 0,3040 0,0750 4,0

CART 0,1530 0,1460 0,1450 0,0150 0,1950 0,0700 3,7

SVM 0,1600 0,1290 0,1420 0,0000 0,3280 0,0870 3,8

Pegasos 0,1140 0,1410 0,2090 0,0050 0,2270 0,0960 4,0

LogR 0,1170 0,1310 0,1080 0,0080 0,3040 0,0950 5,8

MLP 0,1500 0,1210 0,1590 0,0070 0,1960 0,0930 5,0

C4.5 0,1240 0,1170 0,1280 0,0020 0,2500 0,0710 3,7

CDT 0,1110 0,1130 0,1460 0,0000 0,2580 0,0770 3,2

CART 0,1140 0,1090 0,1150 0,0010 0,2410 0,0720 2,5

SVM 0,0750 0,1260 0,0610 0,0507 0,2680 0,0800 4,0

Pegasos 0,0850 0,1210 0,0680 0,0010 0,2950 0,0880 3,5

LogR 0,1890 0,0600 0,1760 0,0020 0,2950 0,0740 5,3

MLP 0,1860 0,0570 0,1890 0,0000 0,2950 0,0740 4,5

C4.5 0,1890 0,0390 0,1620 0,0020 0,2410 0,0840 4,8

CDT 0,1790 0,0230 0,1090 0,0000 0,2580 0,0780 2,8

CART 0,1730 0,0210 0,1590 0,0000 0,2410 0,0820 2,8

SVM 0,1240 0,0240 0,1320 0,0000 0,2950 0,0070 2,3

Pegasos 0,1470 0,0410 0,1280 0,0030 0,1790 0,0470 3,2

LogR 0,1270 0,1530 0,1350 0,0070 0,2860 0,1000 5,0

MLP 0,1530 0,1800 0,1930 0,0130 0,3040 0,1210 6,7

C4.5 0,1470 0,1300 0,1450 0,0050 0,2140 0,0910 4,2

CDT 0,1300 0,1090 0,1510 0,0010 0,2110 0,0830 2,2

CART 0,1240 0,0970 0,1250 0,0010 0,2320 0,0940 2,2

SVM 0,0750 0,1310 0,0610 0,0020 0,3390 0,0860 3,2

Pegasos 0,1110 0,1160 0,0610 0,0150 0,2410 0,0940 3,5

LogR 0,1240 0,1340 0,1150 0,0120 0,2680 0,0940 6,0

MLP 0,1560 0,1630 0,1590 0,0030 0,3130 0,0820 6,2

C4.5 0,1210 0,1290 0,1110 0,0070 0,2410 0,0780 4,3

CDT 0,1010 0,0930 0,0810 0,0000 0,2500 0,0770 2,3

CART 0,1140 0,0740 0,0810 0,0000 0,2500 0,0800 2,7

SVM 0,0750 0,1130 0,0610 0,0000 0,3130 0,0690 2,3

Pegasos 0,1010 0,0910 0,0610 0,0010 0,1880 0,1110 2,8

Adaboost

Random 

Subspace

Decorate

Rotation 

Forest

Bagging

Ensemble Base Australian German Japanese Iranian Polish UCSD Average rank

LogR 0,14 0,31 0,21 0,47 0,27 1,47 1,2
MLP 10,06 78,56 7,02 16,78 7,44 857,57 7,0

C4.5 0,75 1,36 0,73 1,02 0,66 7,27 4,0

CDT 0.77 1,22 0,61 0,54 0,27 8,21 3,3

CART 2,00 13,03 1,59 1,69 1,80 15,84 6,0

SVM 0,23 5,72 0,45 0,66 0,13 7,50 3,0

Pegasos 0,66 1,80 0,39 1,14 0,31 6,11 3,3

LogR 1 3,72 0,84 3,49 0,94 8,18 4,0

MLP 47,41 735,13 44,05 194,74 56,60 702,3 7,0

C4.5 0,41 0,55 0,3 0,97 0,56 5,16 2,3

CDT 0,22 0,39 0,21 0,67 0,27 3,06 1,3

CART 1,37 10,00 1,42 3,03 1,49 18,03 5,0

SVM 2,4 14,28 2,84 4,49 0,20 8,95 4,3

Pegasos 1,61 5,10 1,29 2,17 0,78 10,56 4,0

LogR 0,63 1,74 0,6 1,22 0,51 5,11 3,7

MLP 25,17 227,20 26,22 62,83 17,95 284,2 7,0

C4.5 0,28 0,45 0,24 0,53 0,22 3,1 2,2

CDT 0,14 0,25 0,17 0,36 0,19 1,87 1,2
CART 1,19 5,51 1,21 1,91 0,71 9,49 5,3

SVM 1,45 5,59 1,84 1,96 0,15 3,74 4,7

Pegasos 1,06 3,15 0,69 1,26 0,40 4,45 4,0

LogR 2,28 6,94 2,15 3,51 1,16 16,35 3,7

MLP 105,21 1466,52 111,68 300,99 83,91 1421,24 7,0

C4.5 1 1,64 0,71 2,92 0,87 20,73 2,8

CDT 0,95 1,45 0,64 1,7 0,79 10,85 1,3

CART 3,81 64,00 7,9 3,78 3,45 67,79 5,7

SVM 1,2 85,69 1,41 1,11 0,39 14,17 2,7

Pegasos 3,35 30,16 2,19 5,28 1,36 16,68 4,7

LogR 0,25 1,69 1,51 0,86 1,34 10,13 3,7

MLP 10,93 297,84 58,21 30,11 42,87 796,03 7,0

C4.5 0,19 1,88 0,91 0,38 0,63 13,41 2,7

CDT 1,08 1,48 0,88 1,83 0,56 8,88 3,0

CART 0,59 4,86 2,68 0,84 0,37 30,46 4,5

SVM 0,44 1,91 2,37 0,42 0,38 5,41 2,8

Pegasos 1,69 2,66 1,46 0,52 1,13 11,69 4,3

Adaboost

Random 

Subspace

Decorate

Rotation 

Forest

Bagging

Ensemble Base ROC Accuracy Time FPR Rank average

LogR 6,2 3,7 1,2 3,3 3,6

MLP 5,2 5,8 7,0 5,5 5,9

C4.5 4,2 3,5 4,0 3,2 3,7

CDT 3,7 4,0 3,3 4,0 3,8

CART 2,7 2,5 6,0 3,7 3,7

SVM 3,5 4,5 3,0 3,8 3,7

Pegasos 2,5 4,0 3,3 4,0 3,5

LogR 3,3 4,3 4,0 5,8 4,4

MLP 3,8 4,8 7,0 5,0 5,2

C4.5 2,5 2,8 2,3 3,7 2,8

CDT 3,3 3,5 1,3 3,2 2,8

CART 2,3 1,7 5,0 2,5 2,9

SVM 6,7 5,2 4,3 4,0 5,0

Pegasos 5,2 5,2 4,0 3,5 4,5

LogR 2,5 4,5 3,7 5,3 4,0

MLP 3,0 3,2 7,0 4,5 4,4

C4.5 3,7 2,5 2,2 4,8 3,3

CDT 2,5 1,8 1,2 2,8 2,1

CART 3,2 3,0 5,3 2,8 3,6

SVM 6,5 5,5 4,7 2,3 4,8

Pegasos 6,0 6,3 4,0 3,2 4,9

LogR 2,3 3,5 3,7 5,0 3,6

MLP 4,5 4,7 7,0 6,7 5,7

C4.5 1,8 2,7 2,8 4,2 2,9

CDT 2,7 3,5 1,3 2,2 2,4

CART 3,8 3,2 5,7 2,2 3,7

SVM 5,7 5,5 2,7 3,2 4,3

Pegasos 6,2 5,2 4,7 3,5 4,9

LogR 2,8 3,3 3,7 6,0 4,0

MLP 3,5 5,2 7,0 6,2 5,5

C4.5 1,8 3,2 2,7 4,3 3,0

CDT 2,7 2,8 3,0 2,3 2,7

CART 4,2 3,5 4,5 2,7 3,7

SVM 6,3 4,2 2,8 2,3 3,9

Pegasos 6,5 4,7 4,3 2,8 4,6

Adaboost

Bagging

Random 

Subspace

Decorate

Rotation 

Forest
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Fig. 4. Average rank Adaboost. 

 

 
Fig. 5. Average rank bagging. 

 

 
Fig. 6. Average rank random subspace. 

 

 
Fig. 7. Average rank DECORATE. 

 

 
Fig. 8. Average rank rotation forest. 

CDT: It is the winner method in 4 of the 5 ensemble 

schemes. The greatest differences in favor of the CDT with 

respect the rest are obtained when the Random Subspace 

ensemble is applied. When Bagging ensemble is used, this 

method is the winner but with similar result than the C.5 

method.  

C4.5: It is the winner method only in the Bagging 

ensemble, and the second one in the Adaboost, Random 

Subspace, Decorate and Rotation Forest. If we look at the 

results of the base classifiers Table IV, we can say that 

ensemble schemes allow to improve this method. 

CART: This method obtains second place in the Bagging 

scheme and the third place in general. 

SVM: This method obtains second place in the Adaboost 

scheme, but it is a bad method when Bagging or Random 

Subspace are used. 

Pegasos: It is the winner method only in the Adaboost 

ensemble. If we look at the results of the base classifiers 

Table IV, we can say that ensemble schemes allow to 

improve this method. 

 
TABLE X: SUMMARY OF THE FINDINGS: RANK FOR EACH BASE 

CLASSIFIER AND DATA SET GROUPED BY ENSEMBLE 

 
 

 
Fig. 9. Global average rank. 

 

VI. CONCLUDING REMARKS 

Risk credit has been transformed over the past decade, 

mainly in response to regulations that occurred from the 

global financial crisis. Technological innovations 

continuously arise, enabling new risk management 

techniques and helping the risk function make better risk 

decisions at lower cost: Big data, machine learning, and 

artificial intelligence illustrate the potential impact. This 

work completes a previous one where other base classifiers 

are used, also we have presented a survey of credit scoring 

using ensemble learning. With this objective, seven 

classification methods and five ensemble approaches have 

been applied to six credit scoring problems.  

In this experimental study, four evaluation metrics, 

including area under the curve (AUC), accuracy, false 

positive rate (FPR) and Time taken to build the model, are 

used to measure the performance of models. As results, 

Base Adaboost Bagging Random Subspace Decorate Rotation Forest Avg

LogR 3,6 4,4 4,0 3,6 4,0 3,9

MLP 5,9 5,2 4,4 5,7 5,5 5,3

C4.5 3,7 2,8 3,3 2,9 3,0 3,1

CDT 3,8 2,8 2,1 2,4 2,7 2,8

CART 3,7 2,9 3,6 3,7 3,7 3,5

SVM 3,7 5,0 4,8 4,3 3,9 4,3

Pegasos 3,5 4,5 4,9 4,9 4,6 4,5
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Pegasos algorithm displays the general better performance 

than the other methods examined in this study for Adaboost, 

whereas C4.5, CDT and CART models present a general 

better performance than the other methods analyzed here for 

Bagging, Random Subspace, Decorate and Rotation Forest. 

These results confirm that C4.5, CART and CDT algorithms 

perform the best as base classifier of meta-learning methods 

studied here. On the other hand, some interesting directions 

for further research have emerged from this study, such as: 

(i) to extend the present analysis to other individual 

classifiers and other ensemble approaches; (ii) to study 

ensemble methods for credit scoring using a Big Data 

platform, (iii) to compare between Deep Learning, and 

ensemble methods in the field of credit rating.
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