

Abstract—The efficient classification ability of support vector

machines (SVMs) has been shown in many practical applica-

tions, but currently they are considerably slower in testing phase

than other approaches with similar classification performance

due to a large number of support vectors included in the solution.

Among different approaches, simplification of support vector

machine (SimpSVM) speeds-up the testing phase by replacing

original SVM with a simplified one that consists of a smaller

number of support vectors. However, the ultimate goal of the

simplification is to keep the simplified solution as similar to the

original solution as possible. To improve this similarity, in this

paper, we propose two improved SimpSVMs that are based on

stochastic gradient descent. Experiments on some datasets show

improved results by our algorithms.

Index Terms—Support vector machines, simplification of

support vector machine, stochastic gradient descent, solution

optimization.

I. INTRODUCTION

In recent years, the classification problem has been widely

studied. Many factors can affect the results of classification

such as incomplete data, selecting parameter values for a

particular model. To solve the classification problem more

efficiently, several methods have been proposed: the decision

trees [1], the back-propagation neural networks [2] and the

support vector machines (SVM) [3].

SVM (Vapnik, 1995) is an efficient machine learning

method to solve classification and regression problems.

SVMs have been shown to be successful in many pattern

recognition problems such as speech recognition, digits

recognition, handwriting recognition… By combining with

the kernel function method, SVMs provide effective models

for classification and nonlinear regression problems in

practice. However, SVMs is considerably slower in testing

phase than other learning methods with similar generalization

performance such as decision trees, neural networks [4]-[8].

The solution of an SVM is parameterized by a set of input

vectors called support vectors and their corresponding

weights. To classify a new test example, SVMs compare it

with these support vectors via kernel calculations; this num-

ber of comparison scales linearly with the number of support

vectors and becomes very expensive if the number of support

vectors is large. While SVMs are robust techniques for clas-

Manuscript received May 6, 2018; revised July 10, 2018.

Pham Quoc Thang, Hoang Thi Lam are with Tay Bac University, Vienam

(e-mail: thangpq@utb.edu.vn).

Nguyen Thanh Thuy is with VNU University of Engineering and

Technology, Vietnam.

sification, the large size and slow query time of a trained SVM

is one of the obstacles to their practical application. Therefore,

reducing this comparison will increase the speed of the testing

phase.

There have been some proposed algorithms to reduce this

computational complexity, either by removing less important

support vectors or by constructing a new smaller set of vectors,

often with minimal impact on accuracy. [4] has developed the

first constructive reduced set methods, by approximately the

original SVM with a new one includes a much smaller number

of newly constructed vectors, called the reduced vectors set.

This approach is also described in [8] and further developed

in [9]. [6], [9] start from approximately the solution includes

all original support vectors by a new vector, and then

incrementally construct the reduced set by finding vectors that

minimize the differences between the original vector

expansion and the reduced set expansion in feature space. The

authors in [10] extended this method by greedily choosing the

binary SVM with the lowest accuracy to receive the next

reduced-set vector, retraining each binary SVM using the

original SVM objective function to obtain optimal weights,

and then share reduced-set vectors between multiple

component binary SVMs in a multiclass SVM for additional

gains.

Ref. [11] proposed the reduction process is iteratively se-

lecting two nearest support vectors belonging to the same

class and replacing them with a newly constructed reduced

vector. [12] extend this bottom-up method for simplifying

binary SVM to the multi-class case by calculating for opti-

mally combining two multi-weighted support vectors, se-

lecting heuristic for choosing a good pair of support vectors

for replacing them with a newly created vector.

However, the ultimate goal of the simplification is to keep

the simplified solution as similar to the original solution as

possible. To improve this similarity, [12] proposed to adjust

all reduced vectors globally concerning norms of solution’s

hyperplanes by minimizing the difference between them and

then the authors use a gradient descent for minimizing this

difference, but the speed is quite slow. In this paper, we will

introduce our improved versions of the SimpSVM algorithm

in [12]. They have ideas of stochastic gradient descent

method to solve the above solution optimization problem.

Experimental results on different datasets show that the

improved SimpSVMs can reduce the time for simplifying

SVM while keeping the predictive performance of simplified

SVMs has not been changed much.

The remainder of this paper is organized as follows.

Section II, III present SVM, SimpSVM. Section IV describes

the proposed methods. Section V presents experimental

results and conclusions are presented in the last section.

Improving Simplification of Support Vector Machine

for Classification

Pham Quoc Thang, Hoang Thi Lam, and Nguyen Thanh Thuy

International Journal of Machine Learning and Computing, Vol. 8, No. 4, August 2018

372doi: 10.18178/ijmlc.2018.8.4.714

II. SUPPORT VECTOR MACHINES

Support vector machines (SVMs) work in feature space F

via a kernel function (,) (). ()K x y x y where

: dR F is a map from the d-dimensional input space to a

possibly high-dimensional feature space [3].

(,) (). ()K x y x y is a kernel function calculating the dot

product of two vectors ()x and ()y in the feature space.

For a binary-class classification problem, the decision rule

takes the form:

1

() (,)
SN

i i

i

f x sign K x x b

 (1)

where NS is the number of support vectors,
i is the weight of

support vector xi, i = 1,…,Ns, x is the input vector needed to

classify, and b is the bias. The task of the SVMs training

process is to determine all the parameters (xi , i , b, NS). The

results we have a set of xi, i = 1,…,NS is a subset of the

training set, they are called support vectors.

As support vector learning is principally designed for

binary-class classification, more than one SVM are required

to form a classifier for a multi-class application. The most

popular way is to use T binary one-versus-rest SVMs or

T(T-1)/2 one-versus-one SVMs, where T is the number of

classes. In other words, the final decision is based on not one,

but a set of T functions

1

() (,) , 1,...,
Ns

t ti i t

i

f x K x x b t T

 (2)

with 0ti means vector xi is one support vector of the t
th

SVM and its corresponding weight is
ti , otherwise

0ti means xi is not related to the t
th

 SVM [12].

III. SIMPLIFICATION OF SUPPORT VECTOR MACHINE

For both binary-class and multi-class SVM, the most

expensive procedure in testing a new object vector x is to

compare it with the whole set of support vectors via kernel

function K. This computation scales linearly with the number

of support vectors NS. To reduce this computation cost, or to

speed-up the testing phase, reduced set method tries to replace

NS, the number of original support vectors, by NZ, a smaller

number of new vectors, called reduced vector set. The

decision functions then become (T = 1 for the binary-class

case)

1

' () (,) , 1,...,
ZN

t ti i t

i

f x K z x b t T

 (3)

There have been some studies done on constructing

reduced vectors in which [11] proposed to iteratively select

two support vectors and replace them with one combined

vector. Call (xi, xj) be the selected pair of support vectors, the

combined vector z for replacing xi and xj is found by solving

2

min () (() ())i i j jz x x (4)

For multi-class, supposing that we want to replace two

multi-weighted support vectors (xi, ti) and (xj, tj) by a

single new vector (z,
t), t = 1,..,T, the 2-norm optimal

solution for all single SVMs will be the one that minimizes

2

1

min () (() ())
T

t ti i tj j

t

z x x

 (5)

The simplification procedure iteratively selects two

support vectors (including newly created vectors) xi and xj and

replaces them with a new vector z using the method described

in [12].

The combination procedure described above aims at

constructing one new vector to replace one selected pair of

support vectors. The combination criterion, or the objective

function in (5), is locally optimized for the two support

vectors in a pair. However, the ultimate goal of the

simplification is to keep the simplified solution as similar to

the original solution as possible. To improve this similarity,

[12] proposed to adjust all reduced vectors globally

concerning norms of solution’s hyperplanes by minimizing

the difference between them:

2

1 1 1

min () ()
S ZN NT

ti i ti i

t i i

x z

 (6)

IV. IMPROVED SIMPSVM ALGORITHMS

This section introduces two improved approaches, which

are developed for improving the reducing time of original

SimpSVM.

A. Original SimpSVM Using Gradient Descent

In [12], the authors applied the gradient descent for mini-

mizing concerning all reduced vectors zi, i=1,…,NZ. The

search directions for Gaussian RBF and polynomial kernels

are:

1 1 1

2 (,)() 2 (,)()
S

NT Nz

RBF

ti tj i j i j ti tj i j i j

t j j
i

K z z z z K z x z x
z

 (7)

1 1

1 1 1

(.) (.)
SZ NNT

Poly p p

ti tj i j j ti tj i j j

t j ji

p z z z p z x x
z

 (8)

At each iteration, updating all zi as follows:

 (1) ()

()
 , 1,...,t t

i i Zt

i

z z i N
z

 (9)

B. Improved SimpSVM Using Stochastic Gradient

Descent

We propose the first improved SimpSVM based on

stochastic gradient descent, called SimpSVM-SGD. At each

iteration, instead of adjusting all reduced vectors globally, we

adjust a single randomly picked zi with a single randomly

chosen direction. The update rule is then

(1) ()

()
 , [1,...,]; dim()t t

ik ik Z it

ik

z z i N k z
z

 (10)

By adjusting only a single reduced vector, at each iteration,

we only need to recalculate the kernel function K in (6-8)

related to chosen zi without having to recalculate the entire

kernel function K. It can be shown that SimpSVM-SGD

International Journal of Machine Learning and Computing, Vol. 8, No. 4, August 2018

373

minimizes the generalization error quicker than original

SimpSVM using gradient descent.

C. Improved SimpSVM Using Stochastic Vector Descent

We propose the second improved SimpSVM based on

stochastic vector descent, called SimpSVM-SVD. As seen in

(6-8), if using stochastic gradient descent in one direction,

when recalculating the kernel function K, we still have to

calculate by all directions. It makes more consuming

unnecessary time. Therefore, we propose to use the stochastic

gradient descent with all directions to reduce this calculation.

At each iteration, instead of adjusting all reduced vectors

globally, we adjust a single randomly picked zi but with all

directions. The update rule is then

 (1) ()

()
 , [1,...,]t t

i i Zt

i

z z i N
z

 (11)

This approach has a computational complexity that scales

linearly with the number of reduced vectors of the problem. It

is significantly quicker than original SimpSVM using

gradient descent when the number of reduced vectors is large.

V. EXPERIMENT

In this section, we evaluate the effects of the proposed

SimpSVM-SGD and SimpSVM-SVD algorithms. We have

implemented them by using programming languages C/C++.

We compare the performance of the SimpSVM-SGD and

SimpSVM-SVD with original SimpSVM on six benchmarks

and one sign language datasets. All the programs were run on

a PC with CPU Intel Core i3 3.3 GHz, 2GB RAM.

A. Benchmark Datasets

The performance of the SimpSVM-SGD and

SimpSVM-SVD has been studied for six benchmark datasets,

namely the DNA, Letter Recognition, Shuttle, Vowel,

Pendigits, and Mnist. All datasets are publicly available from

the UCI Machine Learning Repository [13], and their details

are given in Table I. The selection of parameters C, γ for SVM

models is very important. We used a grid search to select the

parameters so that the trained (original) SVM classifiers have

good predictive accuracy on independent test datasets. For the

reproducibility of experiments, we also report the parameter

values set in Table I.

In the first experiment, we run the proposed algorithms

with different values of NZ, indicating different speed-up rates

of simplified SVMs. Then we compare the accuracy of

improved SimpSVMs and original one on the prepared test

data. Experimental results reported in Table II show that when

the number of reduced vectors increased, the proposed

SimpSVMs have performance as close to the original one,

with 25% of reduced vectors or more, they have the almost

identical performance with the original one.

TABLE I: CHARACTERISTICS OF DATASETS AND PARAMETER SETTING

Name # Attributes # Class # Training # Testing Parameters

dna 180 3 1400 1186 C = 10, = 0.01

letter 16 26 10500 5000 C = 10, = 2

shuttle 9 7 30450 14500 C = 10, = 0.1

vowel 10 11 528 462 C = 2 , = 2

pendigits 16 10 7494 3498 C = 4 , = 0.25

mnist 780 10 60000 10000 C = 10, = 0.0128

TABLE II: PREDICTIVE ACCURACY OF SIMPSVMS WITH DIFFERENT SPEED-UP RATES ON SIX DATASETS

Data
 Percentage of support vectors

100% 50% 25% 10% 5%

Dna

SV 654 327 164 65 33

Original SimpSVM 94.44 94.52 94.18 94.44 94.86

SimpSVM-SVD 94.44 94.44 94.18 93.59 91.91

SimpSVM-SGD 94.44 94.01 93.42 93.09 90.73

Letter

SV 6014 3007 1504 601 301

Original SimpSVM 97.04 97.00 96.74 91.54 80.86

SimpSVM-SVD 97.04 97.02 96.68 87.98 71.40

SimpSVM-SGD 97.04 96.88 96.26 87.02 68.54

Shuttle

SV 3208 1604 802 321 160

Original SimpSVM 98.98 98.98 98.98 98.98 98.98

SimpSVM-SVD 98.98 98.98 98.98 98.98 98.98

SimpSVM-SGD 98.98 98.98 98.98 98.98 98.98

Vowel

SV 393 197 98 39 20

Original SimpSVM 60.82 60.82 59.52 38.31 37.45

SimpSVM-SVD 60.82 61.26 58.66 38.74 35.71

SimpSVM-SGD 60.82 60.82 58.44 39.83 39.18

Pendigits

SV 948 474 237 95 47

Original SimpSVM 98.48 98.48 98.46 98.26 95.14

SimpSVM-SVD 98.48 98.48 98.37 97.94 95.74

SimpSVM-SGD 98.48 98.40 98.34 96.71 91.51

Mnist

SV 11554 5777 2889 1155 578

Original SimpSVM 98.31 98.34 98.26 98.03 97.84

SimpSVM-SVD 98.31 98.27 98.21 97.98 97.60

SimpSVM-SGD 98.31 98.33 97.94 96.96 95.36

In the second experiment, we compare reducing time of

improved SimpSVMs and original one on the prepared test

datasets with Nz equal to half of Ns. This comparison is shown

in Fig. 1. As can be seen in Fig. 1, on six datasets,

International Journal of Machine Learning and Computing, Vol. 8, No. 4, August 2018

374

SimpSVM-SGD has a smaller reducing time than original

SimpSVM while keeping the predictive performance of

simplified SVMs has not been changed much and

SimpSVM-SVD can reduce the time for simplifying SVM

while the performance is almost unchanged. Special, on the

“letter”, “shuttle”, “vowel” and “mnist” datasets,

SimpSVM-SVD has reducing time less than one-fifth of

original SimpSVM, or otherwise it can run faster original one

up to 5 times without any loss in predictive accuracy. Between

improved SimpSVMs, SimpSVM-SVD runs faster than

SimpSVM-SGD in most datasets.

Fig. 1. Comparison of reducing time between SimpSVMs.

In the third experiment, we compare our improved

SimpSVMs, original SimpSVM and the SVM simplification

methods described in [4], [10] on the “usps” handwritten

recognition dataset. In our experiment, SVM in LibSVM

produces 45 one-vs-one SVMs with a total number of support

vectors are 1459 (with Gaussian kernel), and the accuracy is

95.32%. The comparison in Fig. 2 shows that the

SimpSVM-SVD produces competitive performance in term

of speeding-up rate and preserving the predictive accuracy of

simplified SVMs.

Fig. 2. Comparison of number of RVs and predictive accuracy between

SimpSVMs.

B. Sign Language Recognition

There are many sign languages in the world, in which

Auslan is the sign language used by the Non-vocal and Deaf

community in Australia. In Auslan sign language, to express a

meaning, each sign is expressed as a series of gestural patterns

(Fig. 3). There are multiple signs in Auslan language so this is

a multi-class classification problem.

Fig. 3. Some sample images of signs in Auslan sign language.

1) Data

We took the dataset from the UCI Machine Learning

Repository [13], the dataset was captured from a native

Auslan singer by using two Fifth Dimension Technologies

(5DT) gloves with two high-quality position trackers over a

period of nine weeks. In this data set, each data sample

contains a series of 22-dimensional value vectors: x, y, z, yaw,

pitch, roll, Little finger bend, Ring finger bend, Middle finger

bend, Forefinger bend, Thumb bend... for both hands and

their details are described in [14]. The dataset consists of a

total of 2565 samples belonging to 95 distinctive signs with an

average of 27 samples per sign.

2) Feature extraction

There have been many suggested methods to extract

various features from the 22 channels of information. In this

experiment, we used the method as described in [14] to

extract the global features and meta-features.

First, we computed the global features: extracting various

stream features as a whole including: minima/maxima/mean

(of each channel). From 22 channels of information, we

computed the above three information to achieve 66 global

features [15].

Next, we computed the meta-features: extracting the

original events, clustering them to generate the basis of

synthetic event attributes. With each raw stream, the value of

the synthetic event attribute is a confidence metric that

original event as belonging to that cluster. For each channel,

we used the following five events: localmin, localmax, flat (no

perceptible change in gradient), decreasing/increasing (an

extended period with considerable negative/positive gradient).

For two decreasing and increasing events, we computed four

parameters: average gradient, the average value of the

channel, start time, duration. For the flat event, we computed

three parameters: average value, the start time and duration.

For two localmin/localmax events, we computed two

parameters: time of the minimum/maximum and the value.

The number of extracted meta-features is dependent on the

results of clustering events [15].

Finally, the data from the global features and meta-features

are recombined in a form suitable for classification.

3) Sign classification

For ease of comparison with the results of other studies that

were previously published, we used 5-fold cross-validation

procedure for experimentation.

In Fig. 4, we compared the predictive performance and

reducing time of SimpSVM-SVD and original SimpSVM on

the three types of features: global features, meta-features and

both. The results show that both methods increase the

classification accuracy when the number of features increases.

If using a combination of both feature types, SimpSVM-SVD

obtains the high classification accuracy (98,13%) as close to

the original SimpSVM (98,17%), but it needs only 564

seconds for reducing time while original one needs to 2094

seconds. On all types of features, SimpSVM-SVD can run

faster than original SimpSVM 4 times while the prediction

accuracy has not been changed much.

With these above results, we believe that the improved

SimpSVMs can reduce the time for simplifying SVM since

they allow to improve overall training time of SimpSVM.

International Journal of Machine Learning and Computing, Vol. 8, No. 4, August 2018

375

Fig. 4. The error rates and reducing times of models learned by SimpSVMs

on Auslan datasets.

VI. CONCLUSION

In this paper, we have presented two improved SimpSVM

algorithms for classification problems. The capability of these

algorithms was investigated through the performance of

several experiments on some datasets. Experimental results

show the effectiveness of our approaches that they can reduce

the time for simplifying SVM while keeping the predictive

performance of simplified SVMs has not been changed much.

The future work will be to validate our approaches to other

datasets and real-life problems.

REFERENCES

[1] J. R. Quinlan, “Simplifying decision trees,” International Journal of

Man-Machine Studies, vol. 27, no. 3, p. 221.

[2] M. N. Nazri et al., “An improved back propagation neural network

algorithm on classification problems,” Database Theory and

Application, Springer Berlin Heidelberg, pp. 177-188, 2010.

[3] C. Cortes and V. Vapnik, “Support vector networks,” Machine

Learning, vol. 20, no. 3, pp. 273-297, 1995.

[4] C. J. C. Burges, “Simplified support vector decision rules,” in Proc.

13th International Conference on Machine Learning, 1996, pp.

71–77.

[5] C. J. C. Burges, “A tutorial on support vector machines for pattern

recognition,” Data Mining and Knowledge Discover, vol. 2, pp.

121-167, 1998.

[6] C. J. C. Burges and B. Schoelkopf, “Improving the accuracy and speed

of support vector learning machines,” Advances in Neural Informa-

tion Processing Systems, vol. 9, pp. 375-381, Cambridge, MA: MIT

Press, 1997.

[7] Y. LeCun, L. Botou, L. Jackel, H. Drucker et al., “Learning algorithms

for classification: A comparison on handwritten digit recognition,”

Neural Networks, pp. 261-276, 1995.

[8] C. Liu, K. Nakashima, H. Sako, and H. Fujisawa, “Handwritten digit

recognition: benchmarking of state-of-the-art techniques,” Pattern

Recognition, vol. 36, pp. 2271-2285, 2003.

[9] B. Schölkopf, S. Mika, C. J. C. Burges et al., “Input space vs. feature

space in kernel-based methods,” IEEE Trans. Neural Networks, vol.

10, pp. 1000-1017, 1999.

[10] B. Tang and D. Mazzoni, “Multiclass reduced-set support vector

machines,” in Proc. Int'l Conf. Machine Learning, ACM, New York,

NY, USA, 2006, pp. 921-928.

[11] N. DungDuc and H. TuBao, “An efficient method for simplifying

support vector machines,” in Proc. the 22nd International Conference

on Machine Learning, Bonn, Germany, August 07-11, 2005, vol. 119,

pp. 617-624. ACM, New York, 2005.

[12] N. DucDung, K. Matsumoto, K. Hashimoto, Y. Takishima, D. Takatori,

and M. Terabe, “Multi-class Support Vector Machine Simplification,”

in Proc. the 10th Pacific Rim International Conference on Artificial

Intelligence: Trends in Artificial Intelligence, PRICAI 2008, Hanoi,

Vietnam, December 15-19, 2008, pp. 799–808, 2008.

[13] Machine Learning Repository. [Online]. Available:

https://archive.ics.uci.edu/ml/datasets.html

[14] M. W. Kadous, “Temporal classification: Extending the classification

paradigm to multivariate time series,” PhD Thesis, The University of

New South Wales, 2002.

[15] Q. T. Pham, D. D. Nguyen, and T. T. Nguyen, “A comparison of

simpsvm and rvm for sign language recognition,” in Proc. the 2017

International Conference on Machine Learning and Soft Computing,

Ho Chi Minh City, Vietnam, January 13-16, 2017, ACM, New York,

USA, pp. 98–104, 2017.

Hoang Thi Lam received the B.S. and M.S. degree in computer science

from Hanoi National University of Education, Vietnam in 2001 and 2010.

She has been a lecturer at Tay Bac University, Vietnam since 2001. Her

research interests include information systems, databases and data mining.

Nguyen Thanh Thuy received B.S. degree in Mathematics, and Ph.D.

degree in Computer Science from Hanoi University of Technology, Vietnam,

in 1982 and 1987. He has been the professor of Vietnam since 2010. His

primary research interests include uncertainty, fuzziness and knowledge

base systems, decision support systems. He is also interested in

soft-computing and hybrid intelligent systems, data mining and knowledge

discovery from database, grid and parallel computing.

International Journal of Machine Learning and Computing, Vol. 8, No. 4, August 2018

376

Pham Quoc Thang is a Ph.D Student at VNU

University of Engineering and Technology, Vietnam.

He received the B.S. and M.S. degree in computer

science from Hanoi National University of Education,

Vietnam in 2001 and 2010. He is currently a lecturer at

Tay Bac University, Vietnam. His current research

interests include data mining, machine learning, data

analysis, pattern recognition and artificial intelligence.

