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Abstract—The efficient classification ability of support vector 

machines (SVMs) has been shown in many practical applica-

tions, but currently they are considerably slower in testing phase 

than other approaches with similar classification performance 

due to a large number of support vectors included in the solution. 

Among different approaches, simplification of support vector 

machine (SimpSVM) speeds-up the testing phase by replacing 

original SVM with a simplified one that consists of a smaller 

number of support vectors. However, the ultimate goal of the 

simplification is to keep the simplified solution as similar to the 

original solution as possible. To improve this similarity, in this 

paper, we propose two improved SimpSVMs that are based on 

stochastic gradient descent. Experiments on some datasets show 

improved results by our algorithms. 

 
Index Terms—Support vector machines, simplification of 

support vector machine, stochastic gradient descent, solution 

optimization.  

 

I. INTRODUCTION 

In recent years, the classification problem has been widely 

studied. Many factors can affect the results of classification 

such as incomplete data, selecting parameter values for a 

particular model. To solve the classification problem more 

efficiently, several methods have been proposed: the decision 

trees [1], the back-propagation neural networks [2] and the 

support vector machines (SVM) [3]. 

SVM (Vapnik, 1995) is an efficient machine learning 

method to solve classification and regression problems. 

SVMs have been shown to be successful in many pattern 

recognition problems such as speech recognition, digits 

recognition, handwriting recognition… By combining with 

the kernel function method, SVMs provide effective models 

for classification and nonlinear regression problems in 

practice. However, SVMs is considerably slower in testing 

phase than other learning methods with similar generalization 

performance such as decision trees, neural networks [4]-[8]. 

The solution of an SVM is parameterized by a set of input 

vectors called support vectors and their corresponding 

weights. To classify a new test example, SVMs compare it 

with these support vectors via kernel calculations; this num-

ber of comparison scales linearly with the number of support 

vectors and becomes very expensive if the number of support 

vectors is large. While SVMs are robust techniques for clas-
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sification, the large size and slow query time of a trained SVM 

is one of the obstacles to their practical application. Therefore, 

reducing this comparison will increase the speed of the testing 

phase.  

There have been some proposed algorithms to reduce this 

computational complexity, either by removing less important 

support vectors or by constructing a new smaller set of vectors, 

often with minimal impact on accuracy. [4] has developed the 

first constructive reduced set methods, by approximately the 

original SVM with a new one includes a much smaller number 

of newly constructed vectors, called the reduced vectors set. 

This approach is also described in [8] and further developed 

in [9]. [6], [9] start from approximately the solution includes 

all original support vectors by a new vector, and then 

incrementally construct the reduced set by finding vectors that 

minimize the differences between the original vector 

expansion and the reduced set expansion in feature space. The 

authors in [10] extended this method by greedily choosing the 

binary SVM with the lowest accuracy to receive the next 

reduced-set vector, retraining each binary SVM using the 

original SVM objective function to obtain optimal weights, 

and then share reduced-set vectors between multiple 

component binary SVMs in a multiclass SVM for additional 

gains. 

Ref. [11] proposed the reduction process is iteratively se-

lecting two nearest support vectors belonging to the same 

class and replacing them with a newly constructed reduced 

vector. [12] extend this bottom-up method for simplifying 

binary SVM to the multi-class case by calculating for opti-

mally combining two multi-weighted support vectors, se-

lecting heuristic for choosing a good pair of support vectors 

for replacing them with a newly created vector.  

However, the ultimate goal of the simplification is to keep 

the simplified solution as similar to the original solution as 

possible. To improve this similarity, [12] proposed to adjust 

all reduced vectors globally concerning norms of solution’s 

hyperplanes by minimizing the difference between them and 

then the authors use a gradient descent for minimizing this 

difference, but the speed is quite slow. In this paper, we will 

introduce our improved versions of the SimpSVM algorithm 

in [12]. They have ideas of stochastic gradient descent 

method to solve the above solution optimization problem. 

Experimental results on different datasets show that the 

improved SimpSVMs can reduce the time for simplifying 

SVM while keeping the predictive performance of simplified 

SVMs has not been changed much. 

The remainder of this paper is organized as follows. 

Section II, III present SVM, SimpSVM. Section IV describes 

the proposed methods. Section V presents experimental 

results and conclusions are presented in the last section. 
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II. SUPPORT VECTOR MACHINES 

Support vector machines (SVMs) work in feature space F 

via a kernel function ( , ) ( ). ( )K x y x y   where 

: dR F  is a map from the d-dimensional input space to a 

possibly high-dimensional feature space [3]. 

( , ) ( ). ( )K x y x y  is a kernel function calculating the dot 

product of two vectors ( )x  and ( )y  in the feature space. 

For a binary-class classification problem, the decision rule 

takes the form: 

                   
1

( ) ( , )
SN

i i

i

f x sign K x x b


 
  

 
                      (1) 

where NS is the number of support vectors, 
i  is the weight of 

support vector xi, i = 1,…,Ns, x is the input vector needed to 

classify, and b is the bias. The task of the SVMs training 

process is to determine all the parameters (xi , i , b, NS). The 

results we have a set of xi, i = 1,…,NS is a subset of the 

training set, they are called support vectors. 

As support vector learning is principally designed for 

binary-class classification, more than one SVM are required 

to form a classifier for a multi-class application. The most 

popular way is to use T binary one-versus-rest SVMs or 

T(T-1)/2 one-versus-one SVMs, where T is the number of 

classes. In other words, the final decision is based on not one, 

but a set of T functions 
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with 0ti   means vector xi is one support vector of the t
th

 

SVM and its corresponding weight is 
ti , otherwise 

0ti  means xi is not related to the t
th

 SVM [12].  

 

III. SIMPLIFICATION OF SUPPORT VECTOR MACHINE 

For both binary-class and multi-class SVM, the most 

expensive procedure in testing a new object vector x is to 

compare it with the whole set of support vectors via kernel 

function K. This computation scales linearly with the number 

of support vectors NS. To reduce this computation cost, or to 

speed-up the testing phase, reduced set method tries to replace 

NS, the number of original support vectors, by NZ, a smaller 

number of new vectors, called reduced vector set. The 

decision functions then become (T = 1 for the binary-class 

case) 

               
1

' ( ) ( , )    ,   1,...,
ZN

t ti i t
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f x K z x b t T

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There have been some studies done on constructing 

reduced vectors in which [11] proposed to iteratively select 

two support vectors and replace them with one combined 

vector. Call (xi, xj) be the selected pair of support vectors, the 

combined vector z for replacing xi and xj is found by solving 

       
2

min ( ) ( ( ) ( ))i i j jz x x                      (4) 

For multi-class, supposing that we want to replace two 

multi-weighted support vectors (xi, ti ) and (xj, tj ) by a 

single new vector (z, 
t ), t = 1,..,T, the 2-norm optimal 

solution for all single SVMs will be the one that minimizes 
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The simplification procedure iteratively selects two 

support vectors (including newly created vectors) xi and xj and 

replaces them with a new vector z using the method described 

in [12]. 

The combination procedure described above aims at 

constructing one new vector to replace one selected pair of 

support vectors. The combination criterion, or the objective 

function in (5), is locally optimized for the two support 

vectors in a pair. However, the ultimate goal of the 

simplification is to keep the simplified solution as similar to 

the original solution as possible. To improve this similarity, 

[12] proposed to adjust all reduced vectors globally 

concerning norms of solution’s hyperplanes by minimizing 

the difference between them: 
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IV. IMPROVED SIMPSVM ALGORITHMS 

This section introduces two improved approaches, which 

are developed for improving the reducing time of original 

SimpSVM. 

A. Original SimpSVM Using Gradient Descent 

In [12], the authors applied the gradient descent for mini-

mizing  concerning all reduced vectors zi, i=1,…,NZ. The 

search directions for Gaussian RBF and polynomial kernels 

are: 

1 1 1

2 ( , )( ) 2 ( , )( )
S

NT Nz

RBF

ti tj i j i j ti tj i j i j

t j j
i

K z z z z K z x z x
z


   

  


     



 
 
 

    (7) 

1 1

1 1 1

( . ) ( . )
SZ NNT

Poly p p

ti tj i j j ti tj i j j

t j ji

p z z z p z x x
z


    

  

  
  

  
   (8)  

At each iteration, updating all zi as follows: 
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B. Improved SimpSVM Using Stochastic Gradient 

Descent 

We propose the first improved SimpSVM based on 

stochastic gradient descent, called SimpSVM-SGD. At each 

iteration, instead of adjusting all reduced vectors globally, we 

adjust a single randomly picked zi with a single randomly 

chosen direction. The update rule is then 

( 1) ( )

( )
     ,     [1,..., ]; dim( )t t

ik ik Z it

ik

z z i N k z
z


 

   


   (10) 

By adjusting only a single reduced vector, at each iteration, 

we only need to recalculate the kernel function K in (6-8) 

related to chosen zi without having to recalculate the entire 

kernel function K. It can be shown that SimpSVM-SGD 
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minimizes the generalization error quicker than original 

SimpSVM using gradient descent. 

C. Improved SimpSVM Using Stochastic Vector Descent 

We propose the second improved SimpSVM based on 

stochastic vector descent, called SimpSVM-SVD. As seen in 

(6-8), if using stochastic gradient descent in one direction, 

when recalculating the kernel function K, we still have to 

calculate by all directions. It makes more consuming 

unnecessary time. Therefore, we propose to use the stochastic 

gradient descent with all directions to reduce this calculation. 

At each iteration, instead of adjusting all reduced vectors 

globally, we adjust a single randomly picked zi but with all 

directions. The update rule is then 

    ( 1) ( )

( )
     ,     [1,..., ]t t

i i Zt

i

z z i N
z


 

  


              (11) 

This approach has a computational complexity that scales 

linearly with the number of reduced vectors of the problem. It 

is significantly quicker than original SimpSVM using 

gradient descent when the number of reduced vectors is large. 

 

V. EXPERIMENT 

In this section, we evaluate the effects of the proposed 

SimpSVM-SGD and SimpSVM-SVD algorithms. We have 

implemented them by using programming languages C/C++. 

We compare the performance of the SimpSVM-SGD and 

SimpSVM-SVD with original SimpSVM on six benchmarks 

and one sign language datasets. All the programs were run on 

a PC with CPU Intel Core i3 3.3 GHz, 2GB RAM. 

A. Benchmark Datasets 

The performance of the SimpSVM-SGD and 

SimpSVM-SVD has been studied for six benchmark datasets, 

namely the DNA, Letter Recognition, Shuttle, Vowel, 

Pendigits, and Mnist. All datasets are publicly available from 

the UCI Machine Learning Repository [13], and their details 

are given in Table I. The selection of parameters C, γ for SVM 

models is very important. We used a grid search to select the 

parameters so that the trained (original) SVM classifiers have 

good predictive accuracy on independent test datasets. For the 

reproducibility of experiments, we also report the parameter 

values set in Table I. 

In the first experiment, we run the proposed algorithms 

with different values of NZ, indicating different speed-up rates 

of simplified SVMs. Then we compare the accuracy of 

improved SimpSVMs and original one on the prepared test 

data. Experimental results reported in Table II show that when 

the number of reduced vectors increased, the proposed 

SimpSVMs have performance as close to the original one, 

with 25% of reduced vectors or more, they have the almost 

identical performance with the original one. 

 

TABLE I: CHARACTERISTICS OF DATASETS AND PARAMETER SETTING 

Name # Attributes # Class # Training # Testing Parameters 

dna 180 3 1400 1186 C = 10,  = 0.01 

letter 16 26 10500 5000 C = 10,  = 2 

shuttle 9 7 30450 14500 C = 10,  = 0.1 

vowel 10 11 528 462 C = 2  ,  = 2 

pendigits 16 10 7494 3498 C = 4  ,  = 0.25 

mnist 780 10 60000 10000 C = 10,  = 0.0128 

TABLE II: PREDICTIVE ACCURACY OF SIMPSVMS WITH DIFFERENT SPEED-UP RATES ON SIX DATASETS  

Data 
 Percentage of support vectors 

100% 50% 25% 10% 5% 

Dna 

# SV 654 327 164 65 33 

Original SimpSVM 94.44 94.52 94.18 94.44 94.86 

SimpSVM-SVD 94.44 94.44 94.18 93.59 91.91 

SimpSVM-SGD 94.44 94.01 93.42 93.09 90.73 

Letter 

# SV 6014 3007 1504 601 301 

Original SimpSVM 97.04 97.00 96.74 91.54 80.86 

SimpSVM-SVD 97.04 97.02 96.68 87.98 71.40 

SimpSVM-SGD 97.04 96.88 96.26 87.02 68.54 

Shuttle 

# SV 3208 1604 802 321 160 

Original SimpSVM 98.98 98.98 98.98 98.98 98.98 

SimpSVM-SVD 98.98 98.98 98.98 98.98 98.98 

SimpSVM-SGD 98.98 98.98 98.98 98.98 98.98 

Vowel 

# SV 393 197 98 39 20 

Original SimpSVM 60.82 60.82 59.52 38.31 37.45 

SimpSVM-SVD 60.82 61.26 58.66 38.74 35.71 

SimpSVM-SGD 60.82 60.82 58.44 39.83 39.18 

Pendigits 

# SV 948 474 237 95 47 

Original SimpSVM 98.48 98.48 98.46 98.26 95.14 

SimpSVM-SVD 98.48 98.48 98.37 97.94 95.74 

SimpSVM-SGD 98.48 98.40 98.34 96.71 91.51 

Mnist 

# SV 11554 5777 2889 1155 578 

Original SimpSVM 98.31 98.34 98.26 98.03 97.84 

SimpSVM-SVD 98.31 98.27 98.21 97.98 97.60 

SimpSVM-SGD 98.31 98.33 97.94 96.96 95.36 

 

In the second experiment, we compare reducing time of 

improved SimpSVMs and original one on the prepared test 

datasets with Nz equal to half of Ns. This comparison is shown 

in Fig. 1. As can be seen in Fig. 1, on six datasets, 
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SimpSVM-SGD has a smaller reducing time than original 

SimpSVM while keeping the predictive performance of 

simplified SVMs has not been changed much and 

SimpSVM-SVD can reduce the time for simplifying SVM 

while the performance is almost unchanged. Special, on the 

“letter”, “shuttle”, “vowel” and “mnist” datasets, 

SimpSVM-SVD has reducing time less than one-fifth of 

original SimpSVM, or otherwise it can run faster original one 

up to 5 times without any loss in predictive accuracy. Between 

improved SimpSVMs, SimpSVM-SVD runs faster than 

SimpSVM-SGD in most datasets. 
 

 
Fig. 1. Comparison of reducing time between SimpSVMs. 

 

In the third experiment, we compare our improved 

SimpSVMs, original SimpSVM and the SVM simplification 

methods described in [4], [10] on the “usps” handwritten 

recognition dataset. In our experiment, SVM in LibSVM 

produces 45 one-vs-one SVMs with a total number of support 

vectors are 1459 (with Gaussian kernel), and the accuracy is 

95.32%. The comparison in Fig. 2 shows that the 

SimpSVM-SVD produces competitive performance in term 

of speeding-up rate and preserving the predictive accuracy of 

simplified SVMs. 

 

 
Fig. 2. Comparison of number of RVs and predictive accuracy between 

SimpSVMs. 

 

B. Sign Language Recognition 

There are many sign languages in the world, in which 

Auslan is the sign language used by the Non-vocal and Deaf 

community in Australia. In Auslan sign language, to express a 

meaning, each sign is expressed as a series of gestural patterns 

(Fig. 3). There are multiple signs in Auslan language so this is 

a multi-class classification problem. 

 
Fig. 3. Some sample images of signs in Auslan sign language. 

1) Data 

We took the dataset from the UCI Machine Learning 

Repository [13], the dataset was captured from a native 

Auslan singer by using two Fifth Dimension Technologies 

(5DT) gloves with two high-quality position trackers over a 

period of nine weeks. In this data set, each data sample 

contains a series of 22-dimensional value vectors: x, y, z, yaw, 

pitch, roll, Little finger bend, Ring finger bend, Middle finger 

bend, Forefinger bend, Thumb bend... for both hands and 

their details are described in [14]. The dataset consists of a 

total of 2565 samples belonging to 95 distinctive signs with an 

average of 27 samples per sign. 

2) Feature extraction  

There have been many suggested methods to extract 

various features from the 22 channels of information. In this 

experiment, we used the method as described in [14] to 

extract the global features and meta-features. 

First, we computed the global features: extracting various 

stream features as a whole including: minima/maxima/mean 

(of each channel). From 22 channels of information, we 

computed the above three information to achieve 66 global 

features [15]. 

Next, we computed the meta-features: extracting the 

original events, clustering them to generate the basis of 

synthetic event attributes. With each raw stream, the value of 

the synthetic event attribute is a confidence metric that 

original event as belonging to that cluster. For each channel, 

we used the following five events: localmin, localmax, flat (no 

perceptible change in gradient), decreasing/increasing (an 

extended period with considerable negative/positive gradient). 

For two decreasing and increasing events, we computed four 

parameters: average gradient, the average value of the 

channel, start time, duration. For the flat event, we computed 

three parameters: average value, the start time and duration. 

For two localmin/localmax events, we computed two 

parameters: time of the minimum/maximum and the value. 

The number of extracted meta-features is dependent on the 

results of clustering events [15]. 

Finally, the data from the global features and meta-features 

are recombined in a form suitable for classification. 

3) Sign classification 

For ease of comparison with the results of other studies that 

were previously published, we used 5-fold cross-validation 

procedure for experimentation. 

In Fig. 4, we compared the predictive performance and 

reducing time of SimpSVM-SVD and original SimpSVM on 

the three types of features: global features, meta-features and 

both. The results show that both methods increase the 

classification accuracy when the number of features increases. 

If using a combination of both feature types, SimpSVM-SVD 

obtains the high classification accuracy (98,13%) as close to 

the original SimpSVM (98,17%), but it needs only 564 

seconds for reducing time while original one needs to 2094 

seconds. On all types of features, SimpSVM-SVD can run 

faster than original SimpSVM 4 times while the prediction 

accuracy has not been changed much. 

With these above results, we believe that the improved 

SimpSVMs can reduce the time for simplifying SVM since 

they allow to improve overall training time of SimpSVM. 

International Journal of Machine Learning and Computing, Vol. 8, No. 4, August 2018

375



  

 

 
Fig. 4. The error rates and reducing times of models learned by SimpSVMs 

on Auslan datasets.  

 

VI. CONCLUSION 

In this paper, we have presented two improved SimpSVM 

algorithms for classification problems. The capability of these 

algorithms was investigated through the performance of 

several experiments on some datasets. Experimental results 

show the effectiveness of our approaches that they can reduce 

the time for simplifying SVM while keeping the predictive 

performance of simplified SVMs has not been changed much. 

The future work will be to validate our approaches to other 

datasets and real-life problems.  
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