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Abstract—This paper describes an unified learning 

framework for kernel networks with one hidden layer, 

including models like radial basis function networks and 

regularization networks. The learning procedure consists of 

meta-parameter tuning wrapping the standard parameter 

optimization part. Several variants of learning are described 

and tested on various classification and regression problems. It 

is shown that meta-learning can improve the performance of 

models for the price of higher time complexity. 

 

Index Terms—Radial basis function networks, shallow 

neural networks, kernel methods, hyper-parameter tuning. 

 

I. INTRODUCTION 

The family of kernel networks encompasses models like 

radial basis function (RBF) networks – an example of a 

more general class of generalized regularization networks 

defined by Poggio and Girosi – on one hand, to SVM 

models, on the other [1], [2]. 

One of the advantages of kernel networks is their 

relatively fast training. Considering particular type of kernel 

and other dependent parameters of the network, the resulting 

training algorithm is usually based on linear optimization. 

On the other hand, fixing the model in such a way creates a 

rather strong inductive bias and may relevantly influence the 

model performance. Still, the choice of kernel function, 

together with other options, referred to as meta-parameters 

here, remains largely an empirical choice at best [3]-[5]. 

In this paper we gather our work on meta-parameters 

setting for several types of kernel networks, including radial 

basis function networks and regularization networks, both 

possibly with multi-kernel units. The results show that using 

additional level of the algorithm to search the space of meta-

parameters can improve the performance of the model in a 

dramatic way for the price of increased time complexity. 

The structure of the paper is as follows. In Section II we 

introduce various types of kernel networks. In Section III we 

present several meta-parameter search methods. These 

methods are tested on several datasets representing 

classification and regression problems in Section IV. A brief 

comparison with other machine learning methods is also 

presented. Finally, the paper is concluded in Section V. 
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II. KERNEL NETWORKS 

Considering number of applications, RBF neural net- 

works represent a relatively less common and alternative 

neural network architecture. In contrast with the more 

classical models (such as multilayer perceptron) the RBF 

network contains local units, which was probably motivated 

by the presence of many local response units in human brain. 

Other motivation came from computational mathematics, 

radial basis functions were first introduced as a solution of 

real multivariate interpolation problems [6]. 

An RBF network is a feed-forward neural network 

with one hidden layer of RBF units and a linear output layer 

(see Fig. 1). By an RBF unit we mean a neuron with n real 

inputs and one real output, realizing a radial basis function 

(1), such as Gaussian. Instead of the most commonly used 

Euclidean norm it is possible to use the weighted norm 

‖ ∙ ‖𝐶  where ‖𝑥‖𝐶 =  𝐶𝑥 𝑇 𝐶𝑥 = 𝑥𝑇𝐶𝑇𝐶𝑥. 

 

 

Fig. 1. RBF network architecture. 
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There are many learning algorithms for RBF networks, 

ranging from gradient approaches to linear optimization ac- 

companied by heuristics [7]. 

To introduce the concept, consider a problem of learning 

from examples by means of regularization theory. We are 

given a set of examples   𝑥 𝑖 , 𝑦𝑖 ∈  𝑅𝑑 × 𝑅  𝑖=1
𝑁    obtained 

by random sampling of some real function 𝑦 = 𝑓(𝑥 ), and 

we would like to find this function. 

Since this problem is ill-posed, we have to consider some 

a priori knowledge about the function f. It is usually 

assumed that the function is smooth, in the sense that two 

similar inputs corresponds to two similar outputs and the 

function does not oscillate much. This is the main idea of 

the regularization theory, where the solution is found by 

minimizing the functional H[f] containing both the data 
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term and the smoothness information. 

𝐻 𝑓 =
1

𝑁
   𝑓 𝑥𝑖 − 𝑦𝑖 

2 + 𝛾Φ f ,

𝑁

𝑖=1

 

where Φ is called a stabilizer and γ > 0 is the regularization 

parameter controlling the trade off between the closeness to 

data and the smoothness of the solution. The above 

regularization scheme was first introduced by Tikhonov [8] 

and therefore it is often called a Tikhonov regularization. 

Poggio, Girosi and Jones in [1] proposed a form of a 

smoothness functional based on Fourier transform: 

Φ 𝑓 =   𝑑𝑠 
 𝑓  𝑠  

2

𝐺  𝑠 
,

𝑅𝑑
                               (2) 

where 𝑓  
indicates the Fourier transform of f , 𝐺  is some 

positive function that goes to zero for ||s|| → ∞ (i.e. 1 𝐺   is a 

high-pass filter). The stabilizer (2) measures the energy in 

the high frequency and so penalizes the functions with high 

oscillations. 

It was shown that for a wide class of stabilizers in form of 

eq. (2) the solution has a form of feed-forward neural 

network with one hidden layer, called regularization 

network, and that different types of stabilizers lead to 

different types of Regularization Networks [1], [9]. 

From the regularization framework point of view, RBF 

networks belong to the family of generalized regularization 

networks (RN). Generalized regularization networks are RN 

with lower number of kernels than the number of data points, 

and also it is not necessarily uniform kernels (thus, for 

example the network with Gaussian kernels may use kernels 

with different widths). 

Poggio and Smale in [9] studied the regularization 

networks derived using a Reproducing Kernel Hilbert Space 

(RKHS) as the hypothesis space. Let HK be an RKHS 

defined by a symmetric, positive-definite kernel function 

𝐾𝑥 𝑥
′ =  𝐾(𝑥, 𝑥′) 

Then if we define the stabilizer by means of norm in HK 

and minimize the functional:  

min
𝑓∈𝐻𝐾

𝐻[𝑓] 

where 

𝐻 𝑓 =
1

𝑁
   𝑓 𝑥𝑖 − 𝑦𝑖 

2 + 𝛾‖𝑓‖2
𝐾

,

𝑁

𝑖=1

 

over the hypothesis space HK, the solution of such a 

minimization is unique and has the form: 

𝑓 𝑥 =  𝑐𝑖𝐾𝑥𝑖

𝑁

𝑖=1

 𝑥 , 

 𝑁𝛾𝐼 + 𝐾 𝑐 = 𝑦 

where I is the identity matrix, K is the matrix Ki,j = K(xi,xj), 

and y = (y1,...,yN). Girosi in [10] showed that for positive 

definite functions of the form K(x−y) (such as Gaussian 

function) the norm in RKHS defined by K is equivalent to 

stabilizer: 

‖𝑓‖𝐾
2 =   𝑑𝑠 

 𝑓  𝑠  
2

𝐺  𝑠 
.

𝑅𝑑
 

This means, that using such a norm as a regularization 

term indeed penalizes highly oscillating functions f. 

The kernel function used in a particular application of 

regularization network is typically supposed to be given in 

advance, for instance chosen by a user. It reflects our prior 

knowledge or assumption about the problem and its solution. 

Therefore its choice is crucial for the quality of the solution 

and should be always done according to the given task. 

What is common to all kernel methods is the way the data 

are seen by the learning algorithm. Data are not represented 

individually, but through a set of pair-wise comparisons, 

realized by the kernel function [11]. The data set 𝑇 =

{(𝑥𝑖 , 𝑦𝑖) ∈ 𝑅𝑑 × 𝑅}𝑖=1
𝑁  is presented by N×N matrix of pair-

wise comparisons Kij = K(xi,xj) (i.e., the matrix K in the 

solution equation above). 

In this context, kernels are often understood as measures 

of similarity, i.e. the higher K(x,y) is, the more similar data 

points x and y are. The prior knowledge of the problem may 

suggest suitable similarity measure. 

In theory, mostly symmetric and positive-definite 

functions are considered as kernels. In practice, wider range 

of functions can be considered, for example in [12], it was 

demonstrated that kernels which are only conditionally 

positive definite can possibly outperform classical kernels. 

Examples of kernel functions (that are used further in our 

experiments) are: 

 Gaussian: 𝑓 𝑥, 𝑦 =  𝑒−𝛾‖𝑥−𝑦‖
2
 

 multiquadric: 𝑓 𝑥, 𝑦 =   1 +  𝛾 ∗ ‖𝑥 − 𝑦‖   
 polyspline:  

𝑓 𝑥, 𝑦 =   
‖𝑥 − 𝑦‖𝛾 ;                             if 𝛾 is even

‖𝑥 − 𝑦‖𝛾 ln ‖𝑥 − 𝑦‖ ;     if 𝛾 is odd.
  

Here, γ is a parameter of the kernel. 

All kernels mentioned above work with numerical data. It 

was pointed out in [13] that kernels make it possible to work 

with non-vectorial data. This is due to the fact that kernels 

automatically provide a vectorial representation of the data 

in the feature space. Some examples on nonvectorial kernels 

may be found in [14]. 

In recent years, several methods have been proposed to 

combine multiple kernels instead of using a single one [15]. 

These multi-kernel algorithms are mainly designed for SVM 

learning. 

One motivation for multi-kernel approach stems from the 

multi-modal nature of data. Each set of these features may 

require a different notion of similarity (i.e., a different 

kernel). Instead of building a specialized kernel for such 

applications, is it possible to define just one kernel for each 

of these modes and linearly combine them. 

In our previous work [16]-18], we have also proposed 

composite types of kernel functions to be used in RN 

learning. Following the reasoning of Aronszajn’s 

breakthrough paper [19], where products, sums and linear 

combinations of reproducing kernels are considered, it can 

be easily shown that these types of kernels can be used as 

activation functions in the regularization networks (cf. [16]). 

Moreover, kernel functions that are created as a combination 

of simpler kernel functions might better reflect the character 

of data. 

Let K1,...,Kk be kernel functions defined on Ω1,...,Ωk (Ωi ⊂ 

R
di

), respectively. Let Ω = Ω1 × Ω2 × ··· × Ωk. The kernel 
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function K defined on Ω that satisfies: 

K(~x1,~x2,...,~xk,~y1,~y2,...,~yk) = 

= K1(~x1,~y1)K2(~x2,~y2)···Kk(~xk,~yk),  (3) 

where ~xi ∈ Ωi, we call a product kernel. 

By a sum kernel we mean a kernel function K that can be 

expressed as K(x,y) = K1(x,y) + K2(x,y), where K1 and K2 are 

kernel functions. 

In eq. (3), we can combine different kernel functions or 

two kernel functions of the same type but with different 

parameters, such as two Gaussians of different widths (note 

that in this case the Gaussians have the same center). 

 

III. META-PARAMETERS SELECTION 

All of the additional parameters of the model are called 

meta-parameters in this work. Their proper choice is crucial 

for the performance of the learning algorithm. Their setup 

requires a hands on experience with the learning algorithm 

and it often leads to wasting time of the user by the trial and 

error method (cf. Fig. 2). 

In this section we explore methods for automatic meta-

parameters setup. A standard way is to optimize the cross 

validation error, and then learn the whole training set with 

the best parameters found. 

By cross-validation we mean the process in which the 

data sets are divided in K sub samples. The learning process 

is executed K-times, where one sub sample is taken as the 

testing data set and the rest as the training data set, each time. 

The average evaluation of each run will express our estimate 

of the true machine-learning model generalization abilities 

over the given data. 

Our scenario of applying a kernel network to data 

typically consists of the following parts: 

• a kernel network model 

• a meta-parameter space (possible widths of Gaussians, 

number of units, other parameters) 

• a method for searching for optimal meta-parameters 

(genetic algorithm, grid search, etc.) 

• a cross-validation scheme (e.g. K-fold) 

• a score or error function (such as precision, recall, or κ 

metrics) 

Now we briefly describe optimization methods that can 

be used for the search for optimal meta-parameters. 
 

 

Fig. 2. Possibilities of parameter setting. 

A. Grid Search 

By a grid search we understand a technique where 

various couples of parameters are tried and the one with the 

best cross validation accuracy is picked. Though grid search 

can be easily parallelized, it can be quite time-consuming. 

Therefore it is using a coarse grid first. After identifying a 

better region on the grid, a finer grid search on that region 

can be conducted. 

The grid search is also recommended in the libSVM 

library [20]. 

B. Genetic Search 

Genetic algorithms (GA) [21] represent a sound and 

robust technique used to find approximate solutions to 

optimization and search problems. The use of GA gives us 

versatility, thus with suitable solution encoding, we can 

search for different type of kernel units within the 

framework of one algorithm. 

The genetic algorithms typically work with a population 

of individuals embodying abstract representations of 

feasible solutions. Each individual is assigned a fitness that 

is a measure of how good solution it represents. The better 

the solution, the higher the fitness value. 

The population evolves towards better solutions. The 

evolution starts from a population of completely random 

individuals and iterates in generations. In each generation, 

the fitness of each individual is evaluated. Individuals are 

stochastically selected from the current population (based on 

their fitness), and modified by means of operators mutation 

and crossover to form a new population. The new 

population is then used in the next iteration of the algorithm. 

In our case, the individuals are encoding the type of 

kernel function, its additional parameters, and the 

parameters of the algorithm (C in case of SVM, γ in case of 

RN). 

For example for the case of SVM: 

I = {type of kernel function, kernel parameters, C} 

I = {Gaussian, width = 0.5, C = 0.001} 

The fitness value is given by the cross-validation error. 

The lower the cross-validation error is, the higher the fitness 

value is. 

C. Simulated Annealing 

Another available optimization method is the simulated 

annealing [22], [23]. Simulated annealing assigns a small 

probability even to moves which make the evaluation worse. 

The acceptance rate of the worse solutions depends on the 

difference between the actual solution and the neighbor, and 

a parameter called temperature. With a higher temperature, 

the acceptance rate is higher, and with a low temperature, 

the algorithm accepts only a small proportion of the non-

improving moves. In the procedure, the temperature slowly 

declines with time. In the beginning, the algorithm explores 

larger parts of the search space and in the end later after 

lowering the temperature it converges toward only better 

evaluated solutions. There are various cooling strategies [24] 

which ensure such a decrease of the temperature variable. 

 

IV. EXPERIMENTAL RESULTS 

This section reports on two experiments performed with 

our approach. The first one is a classification task on two 

different datasets – wine quality [25] and wilt [26] from the 

UCI Machine learning repository. The second is a regression 

task from real world air pollution sensor data. The 

experiments were realized using python scikit-learn [27] 
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package with our own extensions. 

A. Classification Data 

Both classification datasets represent a middle-sized task 

with less than 5000 thousands data items and six, or twelve, 

respectively, attributes. A quadratic weighted kappa metrics 

(from python ml-metrics package) have been used as a 

measure of success for the model. The κ is a number 

between -1 and 1, where larger values represent a better 

performance. Each individual result represent a mean value 

from 5-fold stratified cross-validation. The meta-parameter 

search was performed by a grid search algorithm. We have 

used networks both with simple kernel functions (Gaussian, 

multiquadric and polyharmonic spline kernels) and multi-

kernels (Sum Kernels). First, we tried various network sizes 

(see Figs. 3, 4, 5, 6, 7, 8). Then, we decided to use networks 

with 450 units and performed a finer grid search. The 

centers were set up at random, the output layer is optimized 

by linear optimization. This is done for three times, and the 

centers with the best fit are picked up (having higher 

number of tries does not help, since it leads to over-fitting 

and makes the cross-validated scores worse). These results 

have been compared with other models, whose optimal 

parameters have also been set by a grid search. The 

comparison models were support vector classification 

(SVC), logistic regression (LR), Gaussian naive Bayes 

(GNB), and decision tree (DT). 

 

 
Fig. 3. Parameter search for best κ (Gaussians, wine dataset). 

 

 
Fig. 4. Parameter search for best κ (Gaussians, wilt dataset). 

 

The results are gathered in Table I. The following figures 

illustrate the grid search situation for individual methods. It 

can be seen that in general kernel networks perform very 

well for both tasks, always competing for the best results. 

The sum kernel network is the best, while Gaussian kernel 

network is a close runner-up. 

 
Fig. 5. Parameter search for best κ (multiquadric, wine dataset). 

 

 
Fig. 6. Parameter search for best κ (multiquadrics, wilt dataset). 

 

B. Regression Data 

The dataset used for our regression experiments consists 

of real-world data from the application area of sensor 

networks for air pollution monitoring. The data contain tens 

of thousands measurements of gas multi-sensor MOX array 

devices recording concentrations of several gas pollutants 

collocated with a conventional air pollution monitoring 

station that provides labels for the data. The data are 

recorded in 1 hour intervals, and there is quite a large 

number of gaps due to sensor malfunctions. There are 

altogether 5 sensors as inputs and we have chosen three 

target output values representing concentrations of CO, NO2 

and NOx. 

For the experiment we have divided the whole time 

period into five distinct intervals. These are used to perform 

a special kind of five-fold crossvalidation learning 

procedure. To describe it in detail – for five different runs 

we always chose one part for training, while the rest is again 

utilized for testing. This task is more difficult for two 

reasons. First, the training data is rather small compared to 

testing data. Second, the prediction is performed also in 

different parts of the year than the learning, e.g. the model 

trained on data obtained during winter may perform worse 

during summer (as was suggested by experts in the 

application area). 

TABLE I: PERFORMANCE COMPARISON KERNEL NETWORKS WITH OTHER 

CLASSIFIERS. THE NUMBER REPRESENTS A MEAN VALUE OF QUADRATIC 

WEIGHTED Κ FROM 5-FOLD STRATIFIED CROSSVALIDATION 

dataset Wine quality tuned Wilt tuned 

SVC 0.3359 0.8427 

LR 0.3812 0.6341 

GNB 0.4202 0.2917 

DT 0.4283 0.8229 

Gaussian network 0.438 0.849 

Polyspline network 0.399 0.826 

Multiquadric network 0.425 0.845 

Best kernel network 0.438 0.849 

Sum-kernel network 0.440 0.857 
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TABLE II: OVERVIEW OF DATA SETS SIZES 

Task train set test set 

CO i1-5 1469 5875 

NO2 i1-5 1479 5914 

NOx i1-5 1480 5916 
 

Table II brings overview of data sets sizes. All tasks have 

5 input values and 1 output (predicted value). All values are 

normalized between  0,1 . 
 

 
Fig. 7. Parameter search for best κ (multiquadric, wine dataset). 

 

 
Fig. 8. Parameter search for best κ (multiquadrics, wilt dataset). 

 

The genetic algorithm described in the previous section 

was applied in this experiment. For our models, the 

Gaussian and product kernels were evolved. Among the 

possible sub-kernels, there were Gaussian, multiquadric, 

inverse multiquadric, and sigmoid functions. The genetic 

algorithm was run for 300 generations, with population of 

20 individuals. We were also using the elite mechanism 

heuristics with the size of the elite set to 2 individuals, i.e. 

10 per cent. For fitness evaluation, the 10 folds cross-

validation is used to ensure good generalization performance 

and to prevent overfitting of the evolved models. 

Errors are computed as follows: 

𝐸 = 100
1

𝑁
 ‖𝑦𝑖 − 𝑓(𝑥𝑖)‖

2 .

𝑁

𝑖=1

 

Each computation was repeated 10 times, and then the 

average errors and their standard deviations were computed 

and recorded. 

The results of the experiment can be found in Table III, 

Table IV, where training and test errors are listed, and Fig. 9. 

The results present comparison between the performance of 

Gaussian and product kernels that were evolved. In terms of 

training errors, the product kernels were better in 10 cases 

from 15. In terms of testing errors, the product kernels were 

superior only in 7 cases. Note that if we compare the 

minimal values instead of average values, the product 

kernels are winning in almost all cases (except 1 in case of 

training errors, and except 3 in case of test errors). That may 

indicate there is still space for improvement for the optimal 

product kernel search, because the search algorithm provides 

results with high variance. 

It is also interesting to note that the resulting product 

networks are mainly combinations of Gaussian and inverse 

multiquadric functions, indicating that hybrid models 

combining different kernels can be better in practice. 
 

 
Fig. 9. Task 2: Example of prediction of CO concentration during 40 hours 

(in period not used for training). 

 
TABLE III: COMPARISON OF TRAINING ERRORS FOR NETWORKS TRAINED ON SINGLE EPOCHS 

 Gaussian kernel Product kernels 

Task Eavg stddev min max Eavg stddev Min max 

CO-i1 0.050 0.000 0.050 0.050 0.051 0.002 0.049 0.055 

CO-i2 0.049 0.000 0.049 0.049 0.046 0.002 0.043 0.050 

CO-i3 0.054 0.000 0.053 0.054 0.056 0.003 0.054 0.065 

CO-i4 0.333 0.001 0.332 0.334 0.347 0.016 0.325 0.378 

CO-i5 0.133 0.000 0.132 0.133 0.097 0.018 0.077 0.142 

NO2-i1 0.096 0.002 0.093 0.101 0.100 0.015 0.091 0.141 

NO2-i2 0.133 0.001 0.131 0.134 0.122 0.014 0.105 0.148 

NO2-i3 0.388 0.001 0.384 0.389 0.314 0.077 0.214 0.434 

NO2-i4 0.297 0.002 0.295 0.299 0.287 0.012 0.265 0.307 

NO2-i5 0.375 0.001 0.374 0.376 0.389 0.032 0.330 0.435 

NOx-i1 0.018 0.000 0.018 0.018 0.017 0.001 0.016 0.020 

NOx-i2 0.026 0.000 0.026 0.027 0.025 0.002 0.021 0.028 

NOx-i3 0.156 0.001 0.154 0.158 0.152 0.019 0.121 0.184 

NOx-i4 0.231 0.002 0.229 0.234 0.230 0.017 0.203 0.258 

NOx-i5 0.106 0.023 0.087 0.132 0.095 0.011 0.083 0.122 
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TABLE IV: COMPARISON OF TEST ERRORS FOR NETWORKS TRAINED ON SINGLE EPOCHS 

 Gaussian kernel Product kernels 

Task Eavg stddev min max Eavg stddev min max 

CO-i1 0.210 0.005 0.205 0.217 0.214 0.020 0.192 0.248 

CO-i2 1.134 0.007 1.116 1.142 0.878 0.088 0.709 0.988 

CO-i3 0.233 0.009 0.221 0.254 0.228 0.019 0.197 0.267 

CO-i4 0.326 0.002 0.323 0.329 0.749 0.512 0.433 1.921 

CO-i5 0.296 0.005 0.287 0.301 0.321 0.050 0.204 0.374 

NO2-i1 2.151 0.052 2.096 2.267 2.263 0.540 1.189 2.997 

NO2-i2 5.260 0.045 5.161 5.319 3.928 1.447 2.661 6.874 

NO2-i3 0.718 0.004 0.709 0.721 1.033 0.218 0.764 1.351 

NO2-i4 0.735 0.011 0.726 0.757 0.734 0.069 0.669 0.908 

NO2-i5 0.678 0.024 0.655 0.735 0.913 0.183 0.709 1.302 

NOx-i1 2.515 0.015 2.495 2.538 2.409 0.159 2.093 2.658 

NOx-i2 3.113 0.019 3.081 3.139 2.495 0.068 2.416 2.592 

NOx-i3 1.105 0.008 1.088 1.114 0.956 0.267 0.730 1.689 

NOx-i4 0.952 0.008 0.941 0.970 1.256 0.520 0.774 2.610 

NOx-i5 0.730 0.102 0.642 0.850 0.748 0.091 0.544 0.856 

 

V. CONCLUSION 

We have proposed a general meta-parameter setting 

algorithm for kernel networks that can be applied to various 

flavors of kernel networks, from RBF to networks with 

multi-kernel units. Different search algorithms have been 

tested, including genetic algorithm and grid search. The 

results on several classification and regression tasks show 

that kernel networks perform competitively with other 

methods such as support vector classifiers or classification 

trees. Moreover, with meta-parameter tuning, they usually 

outperformed other methods (also tuned for optimal meta-

parameter values). It is interesting to note that sum and 

product kernel units provided superior solution in many 

cases. 

In the future work we will focus on comparison of search 

algorithms for different network architectures. Since the 

meta-parameter search problem is naturally very time 

consuming, involving many evaluations of the model, the 

efficiency of search is crucial. While methods such as grid 

search or simulated annealing perform well on a smaller 

number of real valued parameters, the genetic algorithm has 

the advantage to master more complex parameters such as a 

type of kernel or its combination. It would be also 

interesting to study the applicability of our approach to the 

area of deep convolutional networks that have achieved 

surprisingly good results in several applications recently. 
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