


Abstract—This paper describes an unified learning

framework for kernel networks with one hidden layer,

including models like radial basis function networks and

regularization networks. The learning procedure consists of

meta-parameter tuning wrapping the standard parameter

optimization part. Several variants of learning are described

and tested on various classification and regression problems. It

is shown that meta-learning can improve the performance of

models for the price of higher time complexity.

Index Terms—Radial basis function networks, shallow

neural networks, kernel methods, hyper-parameter tuning.

I. INTRODUCTION

The family of kernel networks encompasses models like

radial basis function (RBF) networks – an example of a

more general class of generalized regularization networks

defined by Poggio and Girosi – on one hand, to SVM

models, on the other [1], [2].

One of the advantages of kernel networks is their

relatively fast training. Considering particular type of kernel

and other dependent parameters of the network, the resulting

training algorithm is usually based on linear optimization.

On the other hand, fixing the model in such a way creates a

rather strong inductive bias and may relevantly influence the

model performance. Still, the choice of kernel function,

together with other options, referred to as meta-parameters

here, remains largely an empirical choice at best [3]-[5].

In this paper we gather our work on meta-parameters

setting for several types of kernel networks, including radial

basis function networks and regularization networks, both

possibly with multi-kernel units. The results show that using

additional level of the algorithm to search the space of meta-

parameters can improve the performance of the model in a

dramatic way for the price of increased time complexity.

The structure of the paper is as follows. In Section II we

introduce various types of kernel networks. In Section III we

present several meta-parameter search methods. These

methods are tested on several datasets representing

classification and regression problems in Section IV. A brief

comparison with other machine learning methods is also

presented. Finally, the paper is concluded in Section V.

Manuscript received May 21, 2018; revised July 20, 2018. This work

was partially supported by the Czech Science foundation under project

no. 15-18108S, and institutional support of the Institute of Computer

Science project no. RVO 67985807.
P. Vidnerová is with the Czech Academy of Sciences, Institute of

Computer Science, Prague (e-mail: petra@cs.cas.cz).

R. Neruda is with the Czech Academy of Sciences, Institute of
Computer Science and Charles University, Prague (e-mail:

roman@cs.cas.cz).

II. KERNEL NETWORKS

Considering number of applications, RBF neural net-

works represent a relatively less common and alternative

neural network architecture. In contrast with the more

classical models (such as multilayer perceptron) the RBF

network contains local units, which was probably motivated

by the presence of many local response units in human brain.

Other motivation came from computational mathematics,

radial basis functions were first introduced as a solution of

real multivariate interpolation problems [6].

An RBF network is a feed-forward neural network

with one hidden layer of RBF units and a linear output layer

(see Fig. 1). By an RBF unit we mean a neuron with n real

inputs and one real output, realizing a radial basis function

(1), such as Gaussian. Instead of the most commonly used

Euclidean norm it is possible to use the weighted norm

‖ ∙ ‖𝐶 where ‖𝑥‖𝐶 = 𝐶𝑥 𝑇 𝐶𝑥 = 𝑥𝑇𝐶𝑇𝐶𝑥.

Fig. 1. RBF network architecture.

𝑦 𝑥 = 𝜑
‖𝑥−𝑐‖𝐶

𝑏
 (1)

𝑓𝑠 𝑥 = 𝑤𝑗𝑠𝜑
‖𝑥 − 𝑐‖𝐶

𝑏

ℎ

𝑗=1

There are many learning algorithms for RBF networks,

ranging from gradient approaches to linear optimization ac-

companied by heuristics [7].

To introduce the concept, consider a problem of learning

from examples by means of regularization theory. We are

given a set of examples 𝑥 𝑖 , 𝑦𝑖 ∈ 𝑅𝑑 × 𝑅 𝑖=1
𝑁 obtained

by random sampling of some real function 𝑦 = 𝑓(𝑥), and

we would like to find this function.

Since this problem is ill-posed, we have to consider some

a priori knowledge about the function f. It is usually

assumed that the function is smooth, in the sense that two

similar inputs corresponds to two similar outputs and the

function does not oscillate much. This is the main idea of

the regularization theory, where the solution is found by

minimizing the functional H[f] containing both the data

Kernel Function Tuning for Single-Layer Neural

Networks

Petra Vidnerová and Roman Neruda

International Journal of Machine Learning and Computing, Vol. 8, No. 4, August 2018

354doi: 10.18178/ijmlc.2018.8.4.711

term and the smoothness information.

𝐻 𝑓 =
1

𝑁
 𝑓 𝑥𝑖 − 𝑦𝑖

2 + 𝛾Φ f ,

𝑁

𝑖=1

where Φ is called a stabilizer and γ > 0 is the regularization

parameter controlling the trade off between the closeness to

data and the smoothness of the solution. The above

regularization scheme was first introduced by Tikhonov [8]

and therefore it is often called a Tikhonov regularization.

Poggio, Girosi and Jones in [1] proposed a form of a

smoothness functional based on Fourier transform:

Φ 𝑓 = 𝑑𝑠
 𝑓 𝑠

2

𝐺 𝑠
,

𝑅𝑑
 (2)

where 𝑓
indicates the Fourier transform of f , 𝐺 is some

positive function that goes to zero for ||s|| → ∞ (i.e. 1 𝐺 is a

high-pass filter). The stabilizer (2) measures the energy in

the high frequency and so penalizes the functions with high

oscillations.

It was shown that for a wide class of stabilizers in form of

eq. (2) the solution has a form of feed-forward neural

network with one hidden layer, called regularization

network, and that different types of stabilizers lead to

different types of Regularization Networks [1], [9].

From the regularization framework point of view, RBF

networks belong to the family of generalized regularization

networks (RN). Generalized regularization networks are RN

with lower number of kernels than the number of data points,

and also it is not necessarily uniform kernels (thus, for

example the network with Gaussian kernels may use kernels

with different widths).

Poggio and Smale in [9] studied the regularization

networks derived using a Reproducing Kernel Hilbert Space

(RKHS) as the hypothesis space. Let HK be an RKHS

defined by a symmetric, positive-definite kernel function

𝐾𝑥 𝑥
′ = 𝐾(𝑥, 𝑥′)

Then if we define the stabilizer by means of norm in HK

and minimize the functional:

min
𝑓∈𝐻𝐾

𝐻[𝑓]

where

𝐻 𝑓 =
1

𝑁
 𝑓 𝑥𝑖 − 𝑦𝑖

2 + 𝛾‖𝑓‖2
𝐾

,

𝑁

𝑖=1

over the hypothesis space HK, the solution of such a

minimization is unique and has the form:

𝑓 𝑥 = 𝑐𝑖𝐾𝑥𝑖

𝑁

𝑖=1

 𝑥 ,

 𝑁𝛾𝐼 + 𝐾 𝑐 = 𝑦

where I is the identity matrix, K is the matrix Ki,j = K(xi,xj),

and y = (y1,...,yN). Girosi in [10] showed that for positive

definite functions of the form K(x−y) (such as Gaussian

function) the norm in RKHS defined by K is equivalent to

stabilizer:

‖𝑓‖𝐾
2 = 𝑑𝑠

 𝑓 𝑠
2

𝐺 𝑠
.

𝑅𝑑

This means, that using such a norm as a regularization

term indeed penalizes highly oscillating functions f.

The kernel function used in a particular application of

regularization network is typically supposed to be given in

advance, for instance chosen by a user. It reflects our prior

knowledge or assumption about the problem and its solution.

Therefore its choice is crucial for the quality of the solution

and should be always done according to the given task.

What is common to all kernel methods is the way the data

are seen by the learning algorithm. Data are not represented

individually, but through a set of pair-wise comparisons,

realized by the kernel function [11]. The data set 𝑇 =

{(𝑥𝑖 , 𝑦𝑖) ∈ 𝑅𝑑 × 𝑅}𝑖=1
𝑁 is presented by N×N matrix of pair-

wise comparisons Kij = K(xi,xj) (i.e., the matrix K in the

solution equation above).

In this context, kernels are often understood as measures

of similarity, i.e. the higher K(x,y) is, the more similar data

points x and y are. The prior knowledge of the problem may

suggest suitable similarity measure.

In theory, mostly symmetric and positive-definite

functions are considered as kernels. In practice, wider range

of functions can be considered, for example in [12], it was

demonstrated that kernels which are only conditionally

positive definite can possibly outperform classical kernels.

Examples of kernel functions (that are used further in our

experiments) are:

 Gaussian: 𝑓 𝑥, 𝑦 = 𝑒−𝛾‖𝑥−𝑦‖
2

 multiquadric: 𝑓 𝑥, 𝑦 = 1 + 𝛾 ∗ ‖𝑥 − 𝑦‖
 polyspline:

𝑓 𝑥, 𝑦 =
‖𝑥 − 𝑦‖𝛾 ; if 𝛾 is even

‖𝑥 − 𝑦‖𝛾 ln ‖𝑥 − 𝑦‖ ; if 𝛾 is odd.

Here, γ is a parameter of the kernel.

All kernels mentioned above work with numerical data. It

was pointed out in [13] that kernels make it possible to work

with non-vectorial data. This is due to the fact that kernels

automatically provide a vectorial representation of the data

in the feature space. Some examples on nonvectorial kernels

may be found in [14].

In recent years, several methods have been proposed to

combine multiple kernels instead of using a single one [15].

These multi-kernel algorithms are mainly designed for SVM

learning.

One motivation for multi-kernel approach stems from the

multi-modal nature of data. Each set of these features may

require a different notion of similarity (i.e., a different

kernel). Instead of building a specialized kernel for such

applications, is it possible to define just one kernel for each

of these modes and linearly combine them.

In our previous work [16]-18], we have also proposed

composite types of kernel functions to be used in RN

learning. Following the reasoning of Aronszajn’s

breakthrough paper [19], where products, sums and linear

combinations of reproducing kernels are considered, it can

be easily shown that these types of kernels can be used as

activation functions in the regularization networks (cf. [16]).

Moreover, kernel functions that are created as a combination

of simpler kernel functions might better reflect the character

of data.

Let K1,...,Kk be kernel functions defined on Ω1,...,Ωk (Ωi ⊂

R
di

), respectively. Let Ω = Ω1 × Ω2 × ··· × Ωk. The kernel

International Journal of Machine Learning and Computing, Vol. 8, No. 4, August 2018

355

function K defined on Ω that satisfies:

K(~x1,~x2,...,~xk,~y1,~y2,...,~yk) =

= K1(~x1,~y1)K2(~x2,~y2)···Kk(~xk,~yk), (3)

where ~xi ∈ Ωi, we call a product kernel.

By a sum kernel we mean a kernel function K that can be

expressed as K(x,y) = K1(x,y) + K2(x,y), where K1 and K2 are

kernel functions.

In eq. (3), we can combine different kernel functions or

two kernel functions of the same type but with different

parameters, such as two Gaussians of different widths (note

that in this case the Gaussians have the same center).

III. META-PARAMETERS SELECTION

All of the additional parameters of the model are called

meta-parameters in this work. Their proper choice is crucial

for the performance of the learning algorithm. Their setup

requires a hands on experience with the learning algorithm

and it often leads to wasting time of the user by the trial and

error method (cf. Fig. 2).

In this section we explore methods for automatic meta-

parameters setup. A standard way is to optimize the cross

validation error, and then learn the whole training set with

the best parameters found.

By cross-validation we mean the process in which the

data sets are divided in K sub samples. The learning process

is executed K-times, where one sub sample is taken as the

testing data set and the rest as the training data set, each time.

The average evaluation of each run will express our estimate

of the true machine-learning model generalization abilities

over the given data.

Our scenario of applying a kernel network to data

typically consists of the following parts:

• a kernel network model

• a meta-parameter space (possible widths of Gaussians,

number of units, other parameters)

• a method for searching for optimal meta-parameters

(genetic algorithm, grid search, etc.)

• a cross-validation scheme (e.g. K-fold)

• a score or error function (such as precision, recall, or κ

metrics)

Now we briefly describe optimization methods that can

be used for the search for optimal meta-parameters.

Fig. 2. Possibilities of parameter setting.

A. Grid Search

By a grid search we understand a technique where

various couples of parameters are tried and the one with the

best cross validation accuracy is picked. Though grid search

can be easily parallelized, it can be quite time-consuming.

Therefore it is using a coarse grid first. After identifying a

better region on the grid, a finer grid search on that region

can be conducted.

The grid search is also recommended in the libSVM

library [20].

B. Genetic Search

Genetic algorithms (GA) [21] represent a sound and

robust technique used to find approximate solutions to

optimization and search problems. The use of GA gives us

versatility, thus with suitable solution encoding, we can

search for different type of kernel units within the

framework of one algorithm.

The genetic algorithms typically work with a population

of individuals embodying abstract representations of

feasible solutions. Each individual is assigned a fitness that

is a measure of how good solution it represents. The better

the solution, the higher the fitness value.

The population evolves towards better solutions. The

evolution starts from a population of completely random

individuals and iterates in generations. In each generation,

the fitness of each individual is evaluated. Individuals are

stochastically selected from the current population (based on

their fitness), and modified by means of operators mutation

and crossover to form a new population. The new

population is then used in the next iteration of the algorithm.

In our case, the individuals are encoding the type of

kernel function, its additional parameters, and the

parameters of the algorithm (C in case of SVM, γ in case of

RN).

For example for the case of SVM:

I = {type of kernel function, kernel parameters, C}

I = {Gaussian, width = 0.5, C = 0.001}

The fitness value is given by the cross-validation error.

The lower the cross-validation error is, the higher the fitness

value is.

C. Simulated Annealing

Another available optimization method is the simulated

annealing [22], [23]. Simulated annealing assigns a small

probability even to moves which make the evaluation worse.

The acceptance rate of the worse solutions depends on the

difference between the actual solution and the neighbor, and

a parameter called temperature. With a higher temperature,

the acceptance rate is higher, and with a low temperature,

the algorithm accepts only a small proportion of the non-

improving moves. In the procedure, the temperature slowly

declines with time. In the beginning, the algorithm explores

larger parts of the search space and in the end later after

lowering the temperature it converges toward only better

evaluated solutions. There are various cooling strategies [24]

which ensure such a decrease of the temperature variable.

IV. EXPERIMENTAL RESULTS

This section reports on two experiments performed with

our approach. The first one is a classification task on two

different datasets – wine quality [25] and wilt [26] from the

UCI Machine learning repository. The second is a regression

task from real world air pollution sensor data. The

experiments were realized using python scikit-learn [27]

International Journal of Machine Learning and Computing, Vol. 8, No. 4, August 2018

356

package with our own extensions.

A. Classification Data

Both classification datasets represent a middle-sized task

with less than 5000 thousands data items and six, or twelve,

respectively, attributes. A quadratic weighted kappa metrics

(from python ml-metrics package) have been used as a

measure of success for the model. The κ is a number

between -1 and 1, where larger values represent a better

performance. Each individual result represent a mean value

from 5-fold stratified cross-validation. The meta-parameter

search was performed by a grid search algorithm. We have

used networks both with simple kernel functions (Gaussian,

multiquadric and polyharmonic spline kernels) and multi-

kernels (Sum Kernels). First, we tried various network sizes

(see Figs. 3, 4, 5, 6, 7, 8). Then, we decided to use networks

with 450 units and performed a finer grid search. The

centers were set up at random, the output layer is optimized

by linear optimization. This is done for three times, and the

centers with the best fit are picked up (having higher

number of tries does not help, since it leads to over-fitting

and makes the cross-validated scores worse). These results

have been compared with other models, whose optimal

parameters have also been set by a grid search. The

comparison models were support vector classification

(SVC), logistic regression (LR), Gaussian naive Bayes

(GNB), and decision tree (DT).

Fig. 3. Parameter search for best κ (Gaussians, wine dataset).

Fig. 4. Parameter search for best κ (Gaussians, wilt dataset).

The results are gathered in Table I. The following figures

illustrate the grid search situation for individual methods. It

can be seen that in general kernel networks perform very

well for both tasks, always competing for the best results.

The sum kernel network is the best, while Gaussian kernel

network is a close runner-up.

Fig. 5. Parameter search for best κ (multiquadric, wine dataset).

Fig. 6. Parameter search for best κ (multiquadrics, wilt dataset).

B. Regression Data

The dataset used for our regression experiments consists

of real-world data from the application area of sensor

networks for air pollution monitoring. The data contain tens

of thousands measurements of gas multi-sensor MOX array

devices recording concentrations of several gas pollutants

collocated with a conventional air pollution monitoring

station that provides labels for the data. The data are

recorded in 1 hour intervals, and there is quite a large

number of gaps due to sensor malfunctions. There are

altogether 5 sensors as inputs and we have chosen three

target output values representing concentrations of CO, NO2

and NOx.

For the experiment we have divided the whole time

period into five distinct intervals. These are used to perform

a special kind of five-fold crossvalidation learning

procedure. To describe it in detail – for five different runs

we always chose one part for training, while the rest is again

utilized for testing. This task is more difficult for two

reasons. First, the training data is rather small compared to

testing data. Second, the prediction is performed also in

different parts of the year than the learning, e.g. the model

trained on data obtained during winter may perform worse

during summer (as was suggested by experts in the

application area).

TABLE I: PERFORMANCE COMPARISON KERNEL NETWORKS WITH OTHER

CLASSIFIERS. THE NUMBER REPRESENTS A MEAN VALUE OF QUADRATIC

WEIGHTED Κ FROM 5-FOLD STRATIFIED CROSSVALIDATION

dataset Wine quality tuned Wilt tuned

SVC 0.3359 0.8427

LR 0.3812 0.6341

GNB 0.4202 0.2917

DT 0.4283 0.8229

Gaussian network 0.438 0.849

Polyspline network 0.399 0.826

Multiquadric network 0.425 0.845

Best kernel network 0.438 0.849

Sum-kernel network 0.440 0.857

fu
n

ctio
n

 p
aram

 (w
id

th
)

fu
n

ctio
n

 p
aram

 (w
id

th
)

International Journal of Machine Learning and Computing, Vol. 8, No. 4, August 2018

357

TABLE II: OVERVIEW OF DATA SETS SIZES

Task train set test set

CO i1-5 1469 5875

NO2 i1-5 1479 5914

NOx i1-5 1480 5916

Table II brings overview of data sets sizes. All tasks have

5 input values and 1 output (predicted value). All values are

normalized between 0,1 .

Fig. 7. Parameter search for best κ (multiquadric, wine dataset).

Fig. 8. Parameter search for best κ (multiquadrics, wilt dataset).

The genetic algorithm described in the previous section

was applied in this experiment. For our models, the

Gaussian and product kernels were evolved. Among the

possible sub-kernels, there were Gaussian, multiquadric,

inverse multiquadric, and sigmoid functions. The genetic

algorithm was run for 300 generations, with population of

20 individuals. We were also using the elite mechanism

heuristics with the size of the elite set to 2 individuals, i.e.

10 per cent. For fitness evaluation, the 10 folds cross-

validation is used to ensure good generalization performance

and to prevent overfitting of the evolved models.

Errors are computed as follows:

𝐸 = 100
1

𝑁
 ‖𝑦𝑖 − 𝑓(𝑥𝑖)‖

2 .

𝑁

𝑖=1

Each computation was repeated 10 times, and then the

average errors and their standard deviations were computed

and recorded.

The results of the experiment can be found in Table III,

Table IV, where training and test errors are listed, and Fig. 9.

The results present comparison between the performance of

Gaussian and product kernels that were evolved. In terms of

training errors, the product kernels were better in 10 cases

from 15. In terms of testing errors, the product kernels were

superior only in 7 cases. Note that if we compare the

minimal values instead of average values, the product

kernels are winning in almost all cases (except 1 in case of

training errors, and except 3 in case of test errors). That may

indicate there is still space for improvement for the optimal

product kernel search, because the search algorithm provides

results with high variance.

It is also interesting to note that the resulting product

networks are mainly combinations of Gaussian and inverse

multiquadric functions, indicating that hybrid models

combining different kernels can be better in practice.

Fig. 9. Task 2: Example of prediction of CO concentration during 40 hours

(in period not used for training).

TABLE III: COMPARISON OF TRAINING ERRORS FOR NETWORKS TRAINED ON SINGLE EPOCHS

 Gaussian kernel Product kernels

Task Eavg stddev min max Eavg stddev Min max

CO-i1 0.050 0.000 0.050 0.050 0.051 0.002 0.049 0.055

CO-i2 0.049 0.000 0.049 0.049 0.046 0.002 0.043 0.050

CO-i3 0.054 0.000 0.053 0.054 0.056 0.003 0.054 0.065

CO-i4 0.333 0.001 0.332 0.334 0.347 0.016 0.325 0.378

CO-i5 0.133 0.000 0.132 0.133 0.097 0.018 0.077 0.142

NO2-i1 0.096 0.002 0.093 0.101 0.100 0.015 0.091 0.141

NO2-i2 0.133 0.001 0.131 0.134 0.122 0.014 0.105 0.148

NO2-i3 0.388 0.001 0.384 0.389 0.314 0.077 0.214 0.434

NO2-i4 0.297 0.002 0.295 0.299 0.287 0.012 0.265 0.307

NO2-i5 0.375 0.001 0.374 0.376 0.389 0.032 0.330 0.435

NOx-i1 0.018 0.000 0.018 0.018 0.017 0.001 0.016 0.020

NOx-i2 0.026 0.000 0.026 0.027 0.025 0.002 0.021 0.028

NOx-i3 0.156 0.001 0.154 0.158 0.152 0.019 0.121 0.184

NOx-i4 0.231 0.002 0.229 0.234 0.230 0.017 0.203 0.258

NOx-i5 0.106 0.023 0.087 0.132 0.095 0.011 0.083 0.122

International Journal of Machine Learning and Computing, Vol. 8, No. 4, August 2018

358

TABLE IV: COMPARISON OF TEST ERRORS FOR NETWORKS TRAINED ON SINGLE EPOCHS

 Gaussian kernel Product kernels

Task Eavg stddev min max Eavg stddev min max

CO-i1 0.210 0.005 0.205 0.217 0.214 0.020 0.192 0.248

CO-i2 1.134 0.007 1.116 1.142 0.878 0.088 0.709 0.988

CO-i3 0.233 0.009 0.221 0.254 0.228 0.019 0.197 0.267

CO-i4 0.326 0.002 0.323 0.329 0.749 0.512 0.433 1.921

CO-i5 0.296 0.005 0.287 0.301 0.321 0.050 0.204 0.374

NO2-i1 2.151 0.052 2.096 2.267 2.263 0.540 1.189 2.997

NO2-i2 5.260 0.045 5.161 5.319 3.928 1.447 2.661 6.874

NO2-i3 0.718 0.004 0.709 0.721 1.033 0.218 0.764 1.351

NO2-i4 0.735 0.011 0.726 0.757 0.734 0.069 0.669 0.908

NO2-i5 0.678 0.024 0.655 0.735 0.913 0.183 0.709 1.302

NOx-i1 2.515 0.015 2.495 2.538 2.409 0.159 2.093 2.658

NOx-i2 3.113 0.019 3.081 3.139 2.495 0.068 2.416 2.592

NOx-i3 1.105 0.008 1.088 1.114 0.956 0.267 0.730 1.689

NOx-i4 0.952 0.008 0.941 0.970 1.256 0.520 0.774 2.610

NOx-i5 0.730 0.102 0.642 0.850 0.748 0.091 0.544 0.856

V. CONCLUSION

We have proposed a general meta-parameter setting

algorithm for kernel networks that can be applied to various

flavors of kernel networks, from RBF to networks with

multi-kernel units. Different search algorithms have been

tested, including genetic algorithm and grid search. The

results on several classification and regression tasks show

that kernel networks perform competitively with other

methods such as support vector classifiers or classification

trees. Moreover, with meta-parameter tuning, they usually

outperformed other methods (also tuned for optimal meta-

parameter values). It is interesting to note that sum and

product kernel units provided superior solution in many

cases.

In the future work we will focus on comparison of search

algorithms for different network architectures. Since the

meta-parameter search problem is naturally very time

consuming, involving many evaluations of the model, the

efficiency of search is crucial. While methods such as grid

search or simulated annealing perform well on a smaller

number of real valued parameters, the genetic algorithm has

the advantage to master more complex parameters such as a

type of kernel or its combination. It would be also

interesting to study the applicability of our approach to the

area of deep convolutional networks that have achieved

surprisingly good results in several applications recently.

ACKNOWLEDGMENT

This work was partially supported by the Czech Science

Foundation project no. GA15-18108S, and by the

institutional support of the Institute of Computer Science,

Czech Academy of Sciences RVO 67985807.

REFERENCES

[1] T. Poggio and F. Girosi, “A theory of networks for approximation and

learning,” Cambridge, MA, USA, Tech. Rep., a. I. Memo No. 1140,

C.B.I.P. Paper NO. 31, 1989.
[2] S. Salcedo-Sanz, J. L. Rojo-Alvarez, M. Martinez-Ramon, and G.

Camps-Valls, “Support vector machines in engineering: An overview,”

Wiley Int. Rev. Data Min. and Knowl. Disc., vol. 4, no. 3, pp. 234-267,
May 2014.

[3] M. Kim, “Accelerated max-margin multiple kernel learning,” Applied

Intelligence, vol. 38, no. 1, pp. 45-57, Jan. 2013.
[4] P. Koch, B. Bischl, O. Flasch, T. Bartz-Beielstein, C. Weihs, and W.

Konen, “Tuning and evolution of support vector kernels,”

Evolutionary Intelligence, vol. 5, no. 3, pp. 153-170, 2012.

[5] L. Diosan, A. Rogozan, and J.-P. Pecuchet, “Improving classification

performance of support vector machine by genetically optimising

kernel shape and hyper-parameters,” Applied Intelligence, vol. 36, no.
2, pp. 280-294, 2012.

[6] M. Powel, “Radial basis functions for multivariable interpolation: A

review,” in Proc. IMA Conference on Algorithms for the
Approximation of Functions and Data, RMCS, Shrivenham, England,

1985, pp. 143-167.

[7] R. Neruda and P. Kudová, “Learning methods for radial basis
functions networks,” Future Generation Computer Systems, vol. 21,

pp. 1131-1142, 2005.

[8] A. Tikhonov and V. Arsenin, Solutions of Ill-posed Problems, W.H.
Winston, Washington, D.C, 1977.

[9] T. Poggio and S. Smale, “The mathematics of learning: Dealing with
data,” Notices of the AMS, vol. 50, pp. 536-544, 5 2003.

[10] F. Girosi, M. Jones, and T. Poggio, “Regularization theory and Neural

Networks architectures,” Neural Computation, vol. 2, pp. 219-269, 7
1995.

[11] J. P. Vert, K. Tsuda, and B. Scholkopf, “A primer on kernel methods,”

Kernel Methods in Computational Biology, pp. 35-70.
[12] S. Boughorbel, J.-P. Tarel, and N. Boujemaa, “Conditionally positive

definite kernels for svm based image recognition,” in Proc. ICME,

2005, pp. 113-116.
[13] B. Schoelkopf and A. J. Smola, Learning with Kernels, MIT Press,

Cambridge, Massachusetts, 2002.

[14] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern
Analysis, Cambridge University Press, 2004.

[15] M. Goenen and E. Alpaydin, “Multiple kernel learning algorithms,”

Journal of Machine Learning Research, vol. 12, pp. 2211–2268, Jul.
2011.

[16] P. Kudová and T. Šámalová, “Sum and product kernel regularization

networks,” Artificial Intelligence and Soft Computing, 2006, pp. 56-
65.

[17] P. Vidnerová and R. Neruda, “Evolutionary learning of regularization

networks with product kernel units,” in Proc. SMC, IEEE, 2011, pp.
638-643.

[18] P. Vidnerová and R. Neruda, “Evolving sum and composite kernel

functions for regularization networks,” in Proc. ICANNGA, vol. 6593,
Springer, 2011, pp. 180-189.

[19] N. Aronszajn, “Theory of reproducing kernels,” Transactions of the

AMS, vol. 68, pp. 337-404, 1950.
[20] C. Hsu, C. Chang, and C. Lin, A Practical Guide to Support Vector

Classification, 2000.

[21] M. Mitchell, An Introduction to Genetic Algorithms, Cambridge, MA:
MIT Press, 1996.

[22] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by

simulated annealing,” Science, vol. 220, pp. 671-680, 1983.
[23] V. Černý, “Thermodynamical approach to the traveling salesman

problem: An efficient simulation algorithm,” Journal of Optimization

Theory and Applications, vol. 45, no. 1, pp. 41-51, 1985.

[24] Y. Nourani and B. Andresen, “A comparison of simulated annealing

cooling strategies,” Journal of Physics A: Mathematical and General,

vol. 31, no. 41, pp. 8373-8385, 1998.
[25] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis, “Modeling

wine preferences by data mining from physicochemical properties,”

Decision Support Systems, Elsevier, vol. 47, no. 4, pp. 547-553, 2009.
[26] B. A. Johnson, R. Tateishi, and N. T. Hoan, “A hybrid pansharpening

approach and multiscale object-based image analysis for mapping

diseased pine and oak trees,” International Journal of Remote Sensing,
vol. 34, no. 20, pp. 6969-6982, Oct. 2013.

International Journal of Machine Learning and Computing, Vol. 8, No. 4, August 2018

359

[27] F. Pedregosa, G. Varoquaux, A. Gramfort et al., “Scikit-learn:

Machine learning in Python,” Journal of Machine Learning Research,

vol. 12, pp. 2825-2830, 2011.

Petra Vidnerová is a researcher at the Czech

Academy of Sciences, Institute of Computer Science

in Prague, where she has worked since 2001. She
received her Ph.D. in 2007, the topic of her thesis was

learning with regularization networks. Currently she

works at the Department of Machine Learning. Her
research interests include machine learning, namely

kernel methods, deep learning, hyper-parameter

search and meta-learning, evolutionary and hybrid
approaches.

Roman Neruda is a researcher at the Czech

Academy of Sciences, Institute of Computer Science,

and a lecturer at Charles University in Prague,

Faculty of mathematics and physics. He received his

Ph.D. in 1999 in theoretical computer science at

Czech Academy of Sciences, the topic of his thesis
was Genetic learning of RBF Networks. Currently, he

works at the Department of Machine Learning. His

research interests include machine learning, deep
learning, hyper-parameter search and meta-learning,

evolutionary and hybrid approaches, and multi-agent systems.

International Journal of Machine Learning and Computing, Vol. 8, No. 4, August 2018

360

