
  


 

Abstract—This paper examines the selection of algorithm 

termination criteria in the Max Min Ant System to meet 

specified accuracy requirements. Three separate types of 

termination criteria: iterations, total stagnations, and iteration 

stagnations are examined for predictability. The study takes a 

Design of Experiments approach, using Box-Behnken Response 

Surface Methodology to examine the interactions between 

algorithm parameters, problem characteristics and solution 

accuracy relative to the algorithm’s solution at convergence. 

The response surfaces are tested for sensitivity and validated 

for predictive use. We find that it is possible to predict 

termination criteria that will meet accuracy requirements and 

that the iterations termination criterion provides the most 

predictable accuracy. 

 
Index Terms—Ant colony optimization, design of 

experiments, metaheuristic algorithms, multi-agent learning. 

 

I. INTRODUCTION 

Ant Colony Optimization (ACO) is a metaheuristic 

designed to provide approximate solutions to a variety of 

complex combinatorial problems. As a stochastic algorithm, 

its implementation in a system or decision-making 

framework requires setting algorithm parameters and 

selecting termination criteria. Significant research effort has 

focused on tuning specific algorithm parameters and the 

influence of the problem set characteristics on solution 

quality. However, the selection of termination criteria has 

received little attention: most researchers have set the criteria 

without any experimental design or otherwise rigorous basis. 

Multiple types of termination criteria have been used in 

practice, including: time limits, number of tours constructed 

and number of stagnant iterations. The lack of focus on any 

particular criterion has complicated the problem of 

determining optimal termination criteria. 

If a correlation between algorithm settings, problem 

instance characteristics, required accuracy, and optimal 

termination criteria can be established, researchers can 

conclude algorithm runs sooner with confidence in the 

quality of the solution. Our research aims to determine if 

termination criteria can be established in advance, with 

assurances of reasonable accuracy at termination. We 

compare multiple types of termination criteria to determine 

which yield the most predictable results. 

Our approach uses a Design of Experiments that runs 
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algorithms for an extended period and then looks backwards, 

asking the question ―If it was only necessary to be within a 

certain percentage of the algorithm’s solution at convergence, 

how early could the algorithm have been stopped?‖ We find 

that, when using iterations and stagnations as termination 

criteria, the optimal algorithm stopping point can be 

predictably modeled and applied. Conversely, we concluded 

that using the number of tours as a basis for termination is not 

as reliable. The remainder of this paper discusses our 

approach using the Traveling Salesman Problem (TSP) as a 

mechanism for evaluating the suitability of different 

termination criteria and presents the results in more detail. 

 

II. BACKGROUND 

The ACO metaheuristic falls within the category of swarm 

intelligence, where complex solutions are derived from the 

iterative application of simple rules and calculations, with 

minor variations. Each iteration impacts the behavior of the 

swarm, and the swarm collectively gravitates to an acceptable, 

though not always optimal, solution or action.  

ACO’s methodology is derived from its namesake: ants. 

An ant colony, through the use of pheromone deposition, is 

able to identify the shortest path to a food source, in spite of 

the fact that each individual ant is virtually blind. Ants 

deposit pheromones along the shorter path more frequently, 

resulting in a stronger pheromone trail, which subsequent 

ants reinforce by traversing the path [1]. Conversely, 

pheromones on longer paths evaporate, as they are traveled 

less frequently. Once all the pheromone has evaporated on a 

path, subsequent ants are no longer attracted to that potential 

route. 

ACO models this behavior through the implementation of 

a mechanism for stigmergy in algorithms and multi-agent 

systems [2]. In computational algorithms, this requires the 

inclusion of a pheromone variable, stored on the solution 

graph. In multi-agent systems, the stigmergy implementation 

requires an environmental abstraction or agent that each ant 

can query and influence [3], [4].  

ACO is particularly effective in solving dynamic problems, 

where decisions and option costs change during solution 

construction [3]. This is analogous to the metaheuristic’s 

natural metaphor. If an obstacle is placed in the path of an 

existing pheromone trail, the ant colony will follow the trail 

to the point of an obstruction, and then switch from path 

exploitation to exploration in order to find a suitable detour 

around the obstacle. Once a detour is discovered, the 

pheromone trail is reestablished and the colony will revert to 

exploitation of the known path. Similarly, once the obstacle is 

removed, the colony will progressively reestablish the 

original, shortest path to the food. 
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As a result, ACO has been used to solve problems where 

incomplete information is available or the problem evolves 

while the solution is being calculated [5]. It has been applied 

in both computational algorithms for solving defined 

problems and in multi-agent systems, e.g. automated fault 

management systems designed to monitor, diagnose, and 

solve system health in real time. It has also been used in 

situations where the detection of several unknown and 

unrelated conditions may be required to draw a conclusion, 

such as software virus detection [6] or to solve complex 

nonlinear problems with higher levels of dimensionality [7]. 

 

III. RELATED WORK 

Marco Dorigo [8] introduces ACO as a mechanism to 

solve complicated problems with non-convex solution spaces. 

His initial implementation, dubbed the Ant Colony System 

(AS), modeled the collective problem-solving behaviors of 

cooperating ants by way of virtual ―pheromone‖ deposition 

and evaporation. This enabled a stochastic search of the 

solution space of a problem with iterative reinforcement of 

promising solutions. 

Dorigo and Gambardella improved the performance of AS 

by introducing the concept of an elitist strategy [9]. In an 

elitist strategy, only the ant that constructs the best tour in an 

iteration deposits pheromone along the traveled edges, as 

opposed to all ants. Additionally, they introduced the 

exploitation/exploration ratio, which is a percentage of time 

that an ant will automatically choose the lowest cost edge, 

instead of a probability distribution. 

Stutzle and Hoos introduced the Max Min Ant System 

(MMAS) as an improvement over previous ant systems [10]. 

Its key features are upper and lower limits on pheromone 

levels on edges, in addition to an elitist strategy. With the 

adoption of pheromone limits, they introduced the concept of 

convergence, where each node has only one edge with a 

pheromone value of τmax and all other edges have a value of 

τmin. Using this definition, they demonstrated that a 

termination criterion of 2500n tour constructions achieved 

convergence in every case. 

Dorigo and Stutzle surveyed variations of ACO and found 

that the implementations with stronger exploitation of the 

―learned‖ pheromone trails tended to perform better [3]. They 

also noted the importance of balancing α and β in addition to 

elitist strategies, candidate lists, and exploitation/exploration 

ratios. The ACO code currently available at 

(http://iridia/ulb.ac.be/~mdorigo/ACO/aco-code/public-soft

ware.html) includes the implementation of MMAS with these 

additional parameters. 

Ridge and Kudenko outlined a framework for using 

Design of Experiments based on Response Surface 

Methodology (RSM) and Minimum Run Resolution V 

Design to address the multiple degrees of freedom in tuning 

ACO parameters [11]. They developed a model that 

correlated parameter settings, solution set size and the 

problem set’s standard deviation to both algorithm accuracy 

and run time.  They used iteration stagnations (number of 

iterations without improvement) as a termination criterion. 

This approach provided the basis for using RSM to model 

MMAS behavior. However, by balancing time and accuracy 

in the same response surface, the model produces 

optimizations on complex problems that converge 

prematurely, and have unpredictable accuracies. 

They extended their methodology to demonstrate the 

significance of the problem set’s standard deviation of edge 

costs on ACO performance [12]. In this study, they used 

iterations for the stopping criterion and noted that a ―more 

formal detection of possible differences introduced by 

different stopping criteria would have required a different 

experiment design.‖ 

Stutzle et al. found that the original AS was insensitive to 

parameter tuning [13]. However, the MMAS was more 

responsive and improved performance as they adjusted 

parameters on pre-scheduled criteria. They utilized time 

limits for termination criteria to study the impact of 

parameter tuning.  

Fallahi et al. examined and updated Ridge & Kudenko’s 

Design of Experiments methodology [11] with a 

comprehensive framework for metaheuristics and improved 

modeling of the response surface. [14] They took the 

viewpoint that the number of algorithm iterations is a design 

factor to be tuned to the specific problem at hand, and used 

response surface modeling to optimize the termination 

criteria for clusters of specific problem instances. However, 

the only termination criterion used in their research was the 

number of iterations. They also balanced algorithm accuracy 

and algorithm run time within the same response model, 

causing competing objectives for parameter tuning. 

Byerly and Uskov attempted to further improve the ACO 

performance by oscillating the α and β parameters throughout 

the run, in order to prevent premature convergence in a 

MMAS based ACO design [15]. In this experiment, the α and 

β parameters were varied in a sinusoidal pattern during 

shortened ACO runs, to derive higher quality solutions more 

quickly. They used multiple termination criteria including the 

total number of iterations, the number of stagnations, and 

clock time. These criteria were selected arbitrarily, with the 

objective of stress-testing the parameter oscillation approach. 

Our research differs from previous work in that we do not 

attempt to optimize algorithm run time and algorithm 

accuracy simultaneously. Instead, we set out to determine the 

earliest point at which we can have a high degree of 

confidence that the algorithm’s solution is within a required 

accuracy, and can therefore, be terminated.  

Our study also differs from past work by using a 

Box-Behnken Response Surface Methodology. Previous 

work used Central Composite Design (CCD) due to its 

well-known usage rather than for any specific technical 

reason. Within the CCD family, many researchers selected 

the Face Centered Composite (FCC) design, because it 

allows construction of the model with parameters entirely 

within the design space, as opposed to Circumscribed Central 

Composite (CCC) designs, which require parameters to be set 

at extremes outside the design space.  

The use of Box-Behnken offers a few advantages over 

FCC. Primarily, it does not require all factors to be 

simultaneously set to their extreme values—thus reducing the 

resource load created by combined factor extremes. 

Additionally, the Box-Behnken model produces a fully 

rotatable design unlike the FCC [16]. Finally, the 

Box-Behnken model permits a reduced number of runs, 

resulting in lower resource demands. Box-Behnken only 
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requires 130 runs for a nine-factored model, as opposed to the 

FCC, which requires 156 runs. 

 

IV. PRELIMINARIES 

A. Symmetric Traveling Salesman Problem 

We apply the MMAS to finding solutions to the symmetric 

Traveling Salesman Problem (TSP) in our experiments. A 

TSP consists of a series of cities at fixed distances from each 

other.  The objective in the TSP is to find the shortest route 

that visits each city once, and then returns to the beginning. A 

symmetric TSP is an undirected graph, which means the 

distance and pheromone values between two cities are equal 

in both directions. 

B. Essential Elements of ACO 

In the original implementation of ACO as the Ant Colony 

System (AS) [8], ants traverse a problem graph across 

decision nodes via edges that connect them. At each decision 

node, the ant randomly selects an edge based on the 

probability distribution given by (1). 

Within (1): P is the probability that an ant on node i, at time 

t, will select the path to node j from the number of available 

paths k; τ is the pheromone information stored on the path; η 

is the heuristic information at each option; α and β are tuned 

parameters, which adjust the importance of pheromone 

information and heuristic information, respectively [3]. 
 

𝑷𝒊𝒋
𝒌  𝒕 =

 𝝉𝒊𝒋 𝒕  
𝜶
∗ 𝜼𝒊𝒋 

𝜷

  𝝉𝒊𝒍 𝒕  
𝜶∗ 𝜼𝒊𝒍 

𝜷
𝒍∈𝑵𝒊

𝒌
            (1) 

 

Each ant continues traveling the graph until it has 

completed a tour. Once a tour is completed, the pheromone 

on the edges of the graph evaporates and ants deposit 

pheromone according to (2) where ρ is the evaporation rate, 

Lk is the tour for ant k; m is the number of ants, and Δτ
k
ij is the 

pheromone deposition by ant k along its path at time t. 

𝝉𝒊𝒋 𝒕 + 𝟏 =  𝟏 − 𝝆 𝝉𝒊𝒋 𝒕 +  ∆

𝒎

𝒌=𝟏

𝝉𝒊𝒋
𝒌   

where ∆𝝉𝒊𝒋
𝒌 =

𝟏

𝑳𝒌
                                        (2) 

C. Max Min Ant System (MMAS) 

ACO implementation requires that the potential solution 

set, or search area, be modeled as a graph consisting of 

decision points as nodes and options as edges that connect the 

decision points. [5] Each edge has a heuristic value, η, 

specific to the problem at hand.  

With the TSP, the heuristic value for each edge between cities 

is 1/d, where d is distance between cities. 

Each edge is also characterized by a pheromone value, τ. 

Unlike the heuristic value, which is unique to the problem 

instance and static throughout the algorithm run, the 

pheromone value changes by pheromone deposition and 

evaporation in each algorithm iteration. 

Fig. 1 is a graphical representation of this concept with 

solid lines representing heuristic information and dotted lines 

representing pheromone information. The graph shows the 

paths available to an ant on node 1. In a generic ACO 

implementation, the probability of an ant traveling from node 

1 to any of the other 4 nodes is calculated by (1). 

 

 
Fig. 1. An ACO problem representation. 

 

 
Fig. 2. Options after traveling from node 1 to 2. 

 

 
Fig. 3. An ant concludes its TSP tour. 

 

 
Fig. 4. Candidate list length of 2. 

 

If the ant travels from node 1 to node 2, its path options 

would then appear as in Fig. 2. In the case of a TSP instance, 

the ant continues constructing a tour until it has traveled to all 

graph nodes then returns to its starting location, as seen in Fig. 

3. This is a complete tour. 

The MMAS algorithm builds on this process with some 

variations. Ants, the quantity of which is assigned the 

variable m, are randomly placed on nodes throughout the 

graph at the beginning of each iteration. Each ant then begins 

constructing a tour using candidate lists. 

Candidate lists enumerate the number of options an ant 

evaluates for travel at each node. Truncating a candidate list 

can provide computational advantages. When a candidate list 

is truncated, only the top candidate edges, based on values 

calculated by Fig. 1, are evaluated at each node. For example, 

Fig. 4 shows the paths an ant on node 1 could possibly take if 

the candidate list length were two. The length of the 

candidate list, assigned the variable nnAnts, is an algorithm 

parameter that we employ in the evaluation. 

Another parameter we employ is the 

exploitation/exploration ratio assigned the variable q0. At 
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each decision node, a random number, q, is chosen between 

zero and one. If q is less than q0, then the ant chooses to 

exploit: it deterministically selects to travel along the 

available edge with the highest value calculated by (1). If q is 

greater than q0, then the ant chooses to explore by 

probabilistically selecting the next edge to travel from the 

candidate list according to the probability distribution given 

by (1). 

Once every ant in an iteration finishes a complete tour, the 

total distance of each tour is compared. The shortest tour in 

that iteration is the iteration best solution s
ib

 where i is the 

iteration, b denotes best, and the ant that traveled it is the 

iteration best ant. 

Pheromone is evaporated from every edge in the graph 

according to the algorithm’s evaporation factor, ρ. Next, each 

edge along the path traveled by iteration best ant receives a 

pheromone deposition equal 1/s
ib

. No other edges receive 

additional pheromone.  

Finally, edge pheromone values are adjusted to ensure no 

edge has a pheromone value outside of the algorithm’s 

maximum/minimum (MaxMin) pheromone range. 

Pheromone values falling outside the MaxMin range are 

adjusted to the Max or Min limit as appropriate. If a new 

global best tour has been found, then the MaxMin ranges are 

adjusted according to (3) and (4) [10]. Pheromone updating is 

the last step of an MMAS iteration. If the termination 

criterion has not yet been met, then the ants are removed from 

the graph and a new iteration is started with updated 

pheromone levels at each edge. If the termination criterion 

has been met, then the algorithm run concludes, and the best 

solution found across all iterations is reported. 
 

𝜏𝑚𝑎𝑥 =
1

1−𝜌

1

𝑠𝑔𝑏
                               (3) 

 

𝜏𝑚𝑖𝑛 =
𝜏𝑚𝑎𝑥

2𝑛
                                (4) 

 

V. PROBLEM DESCRIPTION 

The problem we address here is to answer the following 

two questions: 

1) Given a set of MMAS parameter values, can we prescribe 

a termination criterion with a measurable degree of 

confidence in its quality?  Specifically, can we estimate a 

model that prescribes a specific termination criterion for 

a given set of MMAS parameter values and problem 

characteristics? 

2) What factors contribute most to the optimal termination 

criterion?  

There are multiple options for selecting an ACO 

termination criterion. Generally, researchers have used a 

maximum number of algorithm iterations, algorithm tours, a 

time limit, or a number of iterations of stagnation. The 

number of tours is equal to the number of iterations 

multiplied by the number of ants, as each ant constructs one 

tour during an iteration. The time limit criterion, while 

commonly used and included in the source code, is not a 

reproducible result without identical hardware and 

configurations. Therefore, we did not examine time limits in 

this study. In the case of limiting the number of iteration 

stagnations, the algorithm terminates after a predetermined 

number of iterations are performed without improvement in 

the algorithm’s best tour cost. 

A. Solution Quality 

We use relative error, defined as the percentage difference 

between the algorithm’s solution and some baseline solution, 

as the measure for a solution’s quality. In each instance where 

relative error is used, we have identified the baseline used in 

that instance. 

B. Optimal Termination Criteria 

We define optimal termination criteria as criteria that will 

stop the algorithm run as soon as the solution reaches a 

required level of accuracy relative to the algorithm’s solution 

at convergence. 

 

VI. METHODOLOGY 

A. Objectives 

There were several objectives to this experiment. The 

primary objective was to determine if termination criteria, for 

a required accuracy, can be predictably modeled. Secondarily, 

we wanted to identify which type of termination criteria 

provided the most predictable results. Finally, we wanted to 

examine which algorithm parameters and problem 

characteristics have the greatest effect on the optimal 

termination criteria for the MMAS ACO, and how broadly 

these effects could be applied. 

B. Box-Behnken RSM 

Response Surface Methodology (RSM) is a design of 

experiments technique used to create a model where the 

response of interest is affected by many variables [17].  

Box-Behnken designs for RSM provide data to fit linear 

and quadratic models for both first and second order 

coefficients with rotatable designs. The design must have 

three equally spaced levels per factor: low, medium and high. 

Unlike CCD RSM, Box-Behnken does not contain a factorial 

or fractional factorial design. Instead, these designs combine 

factorials with incomplete block designs [19], where a block 

is a balanced set of treatments for a specific group of 

variables. 

The treatments in Box-Behnken include the mid-point of 

the process area, and the mid-point of the edges of the cube 

encapsulating the process area. [16] In our nine-factor 

experiment, Box-Behnken prescribes varying three factors 

across 12 blocks, with additional measurements at the 

midpoint to create a full RSM. 

To analyze the significance and strength of the effects in 

the response, we generate an Analysis of Variance (ANOVA) 

table with the data from the experiment. In the analysis, an 

error rate of 0.05 is used to determine whether an effect is 

significant. The F-value, which is the ratio of variance 

between groups to the variance within groups, is used to rank 

the strength of the effects. 

C. Factors (Independent Variables) 

1) MMAS parameters 

The factors listed in Table I were used in this study and are 

described as follows: 

α and β are parameters in (1). High and low ranges were 

selected based on the ranges used in previous literature [11]. 

ρ denotes the evaporation rate in (2).  
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m denotes the number of ants that are randomly placed at 

starting nodes at the beginning of an algorithm iteration. This 

is also the number of tours constructed during each algorithm 

iteration. The upper bound of this range was limited to 50%, 

based on previous research indicating higher numbers of ants 

are not beneficial to algorithm performance [11], [14]. 

q0 refers to the exploitation/exploration ratio, discussed in 

Section IV.  

nnAnts denotes the candidate list length, which is the 

maximum the maximum number of cities that will considered 

at each node. The lower bound of this range was set to 5% in 

order to allow some degree of exploration in all problem sets. 

The upper bound of this range was limited to 85% as previous 

research [11] indicates higher values are not beneficial to 

algorithm performance. 

 
TABLE I: BOX-BEHNKEN FACTOR LEVELS 

Variable Description Low (-1) Medium (0) High (+1) 

MMAS Algorithm Parameters 

α pheromone influence factor 1.0 7.0 13.0 

β heuristic influence factor 1.0 7.0 13.0 

ρ pheromone Evaporation Factor 0.01 0.5 0.99 

m Number of Ants as a % of n 1% 25% 50% 

q0 Exploitation/exploration ratio 0.01 0.5 0.99 

nnAnts length of candidate list as a % of n 5% 45% 85% 

Problem Characteristics 

n Number of Nodes in Problem Instance 100 250 400 

ση Standard Deviation of Edge Costs 30 50 70 

ε Require Accuracy  

(Maximum relative error compared to best tour at 1000n iterations) 

0.1% 1.55% 3% 

 

2) Problem characteristics 

n, the number of nodes, refers to the number of cities in a 

TSP instance, where there is a one-to-one correspondence 

between nodes and cities.  

ση, standard deviation of edge costs, refers to the 

population standard deviation of all the distances between 

cities within a TSP. The parameter ranges for the problem 

characteristics were selected based on values used in 

previous research [12], [14], and the need to constrain the 

size of the problem instances to meet resource constraints. 

ε, the required accuracy, is a percentage of maximum 

acceptable relative error, compared to the algorithm run’s 

solution at 1000n iterations. 

We assume that all algorithm runs converge before 1000n 

iterations. For most treatments, this assumption meets or 

exceeds the findings in [10], that all runs converge after 

2500n tours. The only exception is those treatments where 

both the number of nodes (n) and the number of ants (m) are 

set to 100 and 1%, respectively. In these treatments, we 

verified convergence was reached before algorithm 

termination. 

D. Responses  

1) Termination criteria 

We evaluated three separate termination criteria: the 

number of iterations; the total number of stagnations; and the 

number of effective iteration stagnations. We generated a 

response surface for each, where the basis was composed of 

the variable in Table I and the response variable was a count 

of the number of iterations, stagnations, and the number of 

iteration stagnations, respectively. 

The first measure is a count of the number of iterations the 

algorithm has gone through before reaching a solution within 

the required accuracy. 

The second measure is a count of the number of iterations 

that have occurred in the algorithm run without resulting in 

improvement. This number accumulates over the run and 

does not reset when an iteration results in an improvement. 

For example, as shown in the solid box Fig. 5, the algorithm 

found a best tour cost solution of 15391 at iteration 150; the 

number of total number of stagnations at this point was 140, 

the sum of all stagnations that have occurred in the algorithm 

run up to that point. 

 

 
Fig. 5. A sample improvement log from a MMAS run. 
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The third measure is frequently used as the basis for a 

termination criterion [11], [15]. It is the number of iterations 

that have passed without any improvement since the last 

improvement. Note that the number of iteration stagnations 

does not uniformly increase throughout the course of a 

MMAS algorithm run in general. 

Because our experiment determines run-time accuracy 

after the fact, we must account for the non-uniform increase 

in iteration stagnations by recording the largest number of 

iteration stagnations to have occurred within the algorithm 

run plus one. 

The rationale behind this process is to examine and model 

the frequently used iteration stagnation criteria in a manner 

that can be used for prediction. Based on the non-progressive 

behavior observed in Fig. 5, recording the most recent 

number of iteration stagnations to determine iteration 

stagnations would result in early termination of algorithm 

runs before the required accuracy was reached. 

Using the example in Fig. 5, when the algorithm has found 

the best solution of 15391 in the solid box, the recorded 

number of iteration stagnations is equal to 80+1=81, because 

80 is the maximum number of iteration stagnations to have 

occurred up to that solution. Alternately, when the algorithm 

has found the best solution of 15294, in the dashed box, the 

recorded number of iteration stagnations is equal to 

162+1=163, because the most recent number of iteration 

stagnations is the maximum number that have occurred. 

2) Convergence accuracy 

We generated a fourth response surface for the relative 

error in the algorithm’s solution at 1000n iterations, 

compared to the best solution found for the TSP problem 

instance. This response surface was generated for two 

reasons. The first was to provide a comparison for the 

tradeoffs in optimizing an algorithm’s termination criteria 

and its convergence accuracy. The second objective was to 

compare the results of the Box-Behnken model to the results 

of previous research, which also studied relative error. 

Optimally, we would have deterministically computed the 

global optimum for each of the problem instances and used 

this value as the baseline for relative error comparison. 

However, resource constraints made this approach 

prohibitive. 

E. Problem Instances 

Because specific problem characteristics were independent 

variables in this experiment, we created unique TSP 

problems to match the parameters in Table 1. Nine problem 

instances were generated using a version of the DIMACS 

portmgen code available from the 8th DIMACS Challenge 

Benchmark library at 

http://dimacs.rutgers.edu/Challenges/TSP/download.html. 

We ported the original code over to Python and modified it to 

accommodate the selection of custom standard deviations 

and means for the edge costs. All instances were generated 

with a mean edge cost of 200. 

F. Computation 

We conducted algorithm runs across seven separate, 

similar, but not identical machines provisioned with LINUX 

Ubuntu 16.10 distributions. Because algorithm run time was 

not considered as part of this experiment, we did not consider 

nuisance factors such as background processes and variations 

to be consequential to the results. 

We modified the original code base to accommodate 

parallel processing using the Open MP library—allowing for 

parallel tour construction during each iteration. We added 

logging to track of the number of stagnations that occur 

between improvements. Finally, as part of experiment 

controls, we removed the branching factor reset, time limit 

termination, and tour limit termination processes from the 

code. 

We performed experimental design generation and statistical 

calculations with Minitab 18. 

G. Model Fitting 

Our Box-Behnken design uses the nine factors outlined in 

Table I, with 10 center points per replicate, and 10 replicates, 

resulting in a total of 1300 ACO runs. 

 
TABLE I: TOP FIVE RANKED EFFECTS FOR EACH OF THE THREE TERMINATION CRITERIA RESPONSE SURFACES 

Iterations Total Stagnations Effective Iteration Stagnations 

Parameter F-Value Parameter F-Value Parameter F-Value 

α 1014 α 910 nnAnts 797 

ρ  908 nnAnts 764 α 740 

nnAnts 741 ρ 763 α2 588 

α2 454 α2 695 nnAnts2 430 

nnAnts2 369 ρ2 655 ρ 400 

 

All four responses produced non-normal data with peaks 

near zero and a long, one-sided tail. ANOVA testing requires 

normal data to determine an effect’s significance and relative 

strength. Therefore, we used the Box-Cox transformation 

method [20] to produce a normal distribution for analysis. In 

this methodology, response values are raised to a power λ to 

produce data that is a normal distribution for analysis. For 

each response variable, the statistical software calculated an 

optimal value of λ, through brute force, to produce a normal 

distribution for model fit. The λ values for iterations, total 

stagnations, iteration stagnations, and convergence accuracy 

were -0.279, -0.334, -0.319, and 0.242 respectively. 

This research differs from previous research that used 

RSM with the ACO metaheuristic, in that outliers were not 

removed or replaced at part of the model fitting process. This 

decision was based in the research objective to determine the 

predictability of the termination criteria. Because outliers 

represent real data, their inclusion is necessary for an 

objective assessment of the models’ predictive values. 

 

VII. RESULTS 

After generating the four response surfaces from data 

taken from MMAS algorithm runs we analyzed the first and 

second order effects in the models; evaluated the models’ 

predictive fit to the data, conducted trial runs to validate 
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model use; and conducted a sensitivity analysis to determine 

how broadly our findings could be applied. 

A. Significant Effects 

1) Termination criteria 

In Table II, the top five effects, ranked by ANOVA 

F-Values, are shown. Each of the surface models shows the 

most significant factors to be α, ρ, and nnAnts in each case. 

Figs. 7-9 shows the specific impact of each of these first order 

effects to be generally the same for all of the termination 

criteria, with an increase in any of these parameters resulting 

in earlier optimal termination criteria. 
 

 
Fig. 6. Main first order effects for iterations response. 

 

 
Fig. 7. Main first order effects for total stagnations response. 

 

 
Fig. 8. Main first order effects for iteration stagnations. 

 

Comparing these factors with the plots of the convergence 

accuracy model in Fig. 10, we see there is a direct tradeoff in 

modifying the α, ρ, and nnAnts parameters between early 

algorithm accuracy and convergence accuracy. By increasing 

α, ρ and nnAnts the algorithm reaches the required accuracy, 

relative to its final solution at convergence, much earlier in 

the run. However, these same parameter modifications 

significantly deteriorate the algorithm’s solution at 

convergence.  

Second order effects had a much weaker impact on the 

response surfaces, accounting for approximately 15% of the 

variation in each model. The most significant second order 

effect for the termination criteria was ρ*nnAnts, which had 

an F-value of 247.2 in the iterations model. This effect is 

shown in Fig. 6. 

While only the top five important factors are discussed 

here, 35 out of 55 coefficients were shown to be statistically 

significant in the termination criteria response models. This 

high number of significant factors indicates the screening 

experiments, as performed in previous literature [14], should 

generally be avoided. 

An additional noteworthy finding is the factors that did not 

have a strong impact. The number of ants, m, did not have a 

significant effect on the optimal termination criteria. This 

indicates that, because the number of tours constructed is 

directly proportional to the number of ants, the use of tours is 

a poor criterion for algorithm termination. 

On the other hand, the number of nodes is a significant 

factor in the model, which indicates that using multiples of 

the problem size for algorithm termination limit, such as 

1000n, can maintain algorithm performance across a range of 

problem sets. 

2) Convergence accuracy 

The most significant effects in the model were β, q0, the 

interaction of β*q0, and nnAnts. These findings align well  

with previous literature [11] [14], validating the use of the 

Box-Behnken RSM for ACO modeling.  

 

 
Fig. 9. α, ρ, and nnAnts first order effects for convergence accuracy model. 

 

 
Fig. 10. ρ*nnAnts effect plot for the iterations response. 

 

B. Predictive Measures 

We evaluated each of the three models for fit by 

calculating the R
2
Prediction metric, which is an estimation of  the 

amount of variability the model is able to describe in new 

observations. R
2
Prediction is calculated using (6) with the 

prediction sum of squares (PRESS), given by (5) [15]. A 

higher value of R
2
Prediction, indicates a more predictive model. 

Table III shows each response surface had a R
2

Prediction value 

above 75%, with the iterations and total stagnations 
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termination criteria closer to 80%, indicating a slightly higher 

predictive value.  

Regarding our original objectives, these results indicate 

that termination criteria can be reliably modeled, and that the 

number of iterations is the preferred termination criterion, in 

terms of predictability. 

𝑷𝑹𝑬𝑺𝑺 =  [𝒚𝒊 − ý(𝒊)]𝟐𝒏
𝒊=𝟏         (5) 

𝑅Predictio 𝑛
2 =

𝑃𝑅𝐸𝑆𝑆

𝑆𝑆𝑇
         (6) 

 
TABLE III: R2

PREDICTION VALUES FOR THE RESPONSE SURFACES GENERATED 

FOR EACH OF THE RESPONSES STUDIED 

Termination Criteria R2
Prediction 

Iterations 80.22% 

Total stagnations 79.56% 

Iteration stagnations 75.65% 

 

C. Model Validation 

Models were validated with the objective that response 

surfaces provide termination criteria for a given set of 

parameters with a 95% degree of confidence that the 

algorithm is within the accuracy band. 

The models generated were validated using three new 

problem instances and MMAS parameters shown in Table IV. 

Each new instance was run five times, to a stopping point of 

1000n iterations. The model’s 95% confidence, upper bound 

stopping criteria was then compared to the actual optimal 

termination criteria in Table IV.  

All three types of termination criteria used in the validation 

run produced results which met the required accuracy. The 

actual optimal stopping criterion for each ACO run was well 

below the model’s upper bound. 

 
TABLE IV: VALIDATION PROBLEM PARAMETERS AND TERMINATION 

CRITERIA PREDICTED BY RESPONSE SURFACES 

Factor VProb1 VProb2 VProb3 

α 1 2 4 

β 12 3 4 

n 150 300 200 

ση 40 60 50 

ρ 0.02 0.5 0.98 

m 10% (15) 5% (15) 40%(80) 

q0 0.8 0.3 0.1 

nnAnts 40% 10% 60% 

ε 2% 0.5% 1% 

Modeled iterations 41 745 5 

Actual iterations (average) 6.8 8.8 2 

Modeled total stagnations 72 263 2 

Actual number of total 

stagnations (average) 

4.6 1.4 1 

Modeled iteration 
stagnations 

165 6211 3 

Actual iteration stagnations 

(average) 

3.8 1.6 1 

 

D. Sensitivity Analysis 

We performed a sensitivity analysis to determine how 

broadly the response surfaces could be applied to larger 

ranges of parameters. 

Due to resource constraints, only the required accuracy (ε) 

was adjusted. First the response surfaces were rebuilt with ε 

levels of 1%, 3%, and 5%. The same observations from the 

initial experiment were used. 

The resulting termination criteria response surfaces were 

significantly different. The first order effects α and ρ 

maintained a similar impact as before. However, nnAnts 

exhibited significantly decreased influence, as seen in a 

comparison of Fig. 11 to Fig. 12. The new model also had 

higher relative F-value rankings for q0 and ε, indicating a 

reordering of the strength of first order effects. Additionally, 

the impact of second order effects became more prominent, 

accounting for approximately 20% of the model’s variation. 

The shape of the second order interaction also changed, as 

seen in comparing Fig. 12 with Fig. 6. 

 

 
Fig. 11. First order effects plot for iterations response in sensitivity analysis. 

 

 
Fig. 12. ρ*nnAnts response surface for iterations response in sensitivity 

analysis. 

 

By achieving significant changes in the termination criteria 

in the responses through slight modifications in ε, we found 

that there is a high degree of specificity in the response 

surfaces for a given set of problem characteristics. Broad 

conclusions should not be drawn between a response surface, 

its effects and a differing data set. This finding aligns well 

with previous research that has concluded that optimal ACO 

parameter settings are highly problem specific [15]. 

 

VIII.  CONCLUSION 

A. Discussion 

Our study finds that termination criteria, for a given set of 

parameters, problem characteristics, and required accuracy, 

can be predicted using response surface methodology. While 

all types of termination criteria yielded predictive models, the 

iterations criterion yielded the best results across all bands of 

ε. 

Finally, our sensitivity analysis shows the effect of each 

factor changes with even small alterations to the process area. 

This indicates that generalizations on parameter impact are a 

poor substitute for a model fitted to specific problem 
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characteristics. 

B. Recommendations 

Our finding that an early termination criterion can be 

predicted for a required accuracy provides an alternative to 

attempting to balance two competing measures, such as time 

and accuracy, in a single response. Instead, a set of 

observations can be used to create multiple response surfaces 

to model a metaheuristic’s behavior at both early termination 

and convergence. These can then be iteratively analyzed to 

meet specific accuracy requirements. 

With regard to selecting a type of termination criteria, the 

number of iterations termination criterion maintained the 

highest R
2
Prediction across the studies and is the conceptually 

easiest to employ. Therefore, we recommend iterations as the 

preferred method for terminating an ACO run, unless an 

application has a specific need to choose an alternate method.  

We also identified Box-Behnken method to be useful in 

developing predictive models for the ACO algorithm. It is 

recommended in cases where the algorithm is expected to run 

in a region of normally distributed problem characteristics 

due to the lower number of required observations and its 

rotatability. 

C. Future Work 

This study did not examine the modeling of time as 

termination criteria, as it is not reproducible without identical 

equipment and configurations. However, modeling the time 

termination criteria may be useful, particularly when ACO is 

considered for use in fielded system. 

We also limited the scope of this study to the symmetrical 

TSP in order to build on previous research. Validating RSM 

for parameter and termination criteria tuning in other 

problem areas would be a useful examination of the breadth 

of the method’s applicability. 

Finally, this and previous research indicated that the ACO 

parameter optimums switch between high and low extremes 

at some yet undefined threshold. A study examining decision 

trees and stochastic machine learning algorithms may 

provide insight into this behavior. 

REFERENCES 

[1] J. L. Fernandez-Marquez, G. D. Serugendo, S. Montaga, M Viroli, and 
J. L. Arcos, ―Description and composition of bio-inspired design 

patterns: a complete overview,‖ Natural Computing, pp. 43-67, 2013. 

[2] F. Zambonelli et al., ―Developing pervasive multi-agent systems with 
nature-inspired coordination,‖ Pervasive and Mobile Computing, pp. 

236–252, 2015. 

[3] M. Dorigo and T. Stutzle, ―The ant colony optimization metaheuristic: 
Algorithms, applications, and advances,‖ Metaheuristcs Handbook, pp. 

251-285, 2003. 

[4] D. Weyns, A. Omicini, and J. Odell, ―Environment as a first class 
abstraction in multiagent systems,‖ Autonomous Agent Multi-Agent 

Systems, pp. 5-30, 2007. 

[5] H. M. Maier et al., ―Ant colony optimization for design of water 
distribution systems,‖ Journal of Water Resources Management and 

Planning, pp. 200-209, 2003 

[6] J. N. Haack, G. A. Fink, W. M. Maiden, S. J. Templeton, and E. W. 
Pulp, ―Ant-based cyber security,‖ in Proc. the 8th International 

Conference on Information Technology New Generations, 2011, pp. 

918-926. 

[7] J. M. Szemis, G. C. Dandy, and H. R. Maier, ―A multiobjective ant 
colony optimization approach for scheduling environmental flow 

management alternatives with application to the River Murray, 

Australia,‖ Water Resources Research, pp. 6393-6411, 2013 
[8] M. Dorigo, ―Optimization, learning and natural algorithms,‖ Ph.D. 

dissertation Politecnico di Milano, Italy, 1992. 

[9] M. Dorigo and L. M. Gambardella, ―Ant colony system: A cooperative 
learning approach to the traveling salesman problem,‖ IEEE 

Transactions on Evolutionary Computation, vol. 1, pp. 53-66, 1997. 

[10] T. Stutzle and H. H. Hoos, ―Max-min ant system,‖ Future Generation 
Computer Systems, pp. 889-914, 2000. 

[11] E. Ridge and D. Kudenko, ―Tuning the performance of MMAS 

heuristic,‖ Engineering Stochastic Local Search Algorithms Designing, 
Implementing and Analyzing Effective Heuristics,. Berlin Heidelberg : 

Springer-Verlag, pp. 46-60, 2007. 

[12] E. Ridge and D. Kudenko, ―Determining whether a problem 
characteristic affects heuristic performance: A rigorous design of 

experiments approach,‖ Recent Advances in Evolutionary 

Computation for Combinatorial Optimization,Springer, pp. 21-35, 
2008. 

[13] Stutzle, Thoms et al., ―Parameter adaptation in ant colony 

optimization,‖ Autonomous Search, pp. 195-211, 2011. 
[14] M. Fallahi, S. Amiri, and Y. Masoud, ―A parameter tuning 

methodology for metaheuristics based on design of experiments,‖ 

International Journal of Engineering and Technology sciences (IJETS), 
pp. 497-521, 2014. 

[15] A. Byerly and A. Uskov, ―A novel approach to avoiding early 

stagnation in Ant Colony Optimization algorithms,‖ International 
Journal of Knowledge-based and Intelligent Engineering Systems, pp. 

113-121, 2016. 

[16] National Institute of Standards and Technology. Comparisons of 
response surface designs. Engineering Statistics Handbook. [Online] 

Available: 

http://www.itl.nist.gov/div898/handbook/pri/section3/pri3363.htm 
[17] D. C. Montgomery, Design and Analysis of Experiments. Hoboken, NJ: 

John Wiley & Sons, pp. 470-472, 478-554, 2013 

[18] M. Dorigo, V. Maniezzo, and A. Colorni, ―Ant system: Optimaization 
by a colony of cooperating agents,‖ IEEE Transactions on System, 

Man, and Cybernetics, Part B Cybernetics, vol. 26, 1996. 
[19] G. E. P. Box and D. W. Behnken, ―Some new three level designs for 

the study of quantitative variables,‖ Technometrics, vol. 2, no. 4, pp 

455-475, 1960. 
[20] G. E. P. Box and D. R. Cox, ―An analysis of transmorfations,‖ Journal 

of the Royal Statistical Society, Series B, vol. 2, pp. 211-252, 1964. 

 
 

Chase  W. Gruszewski holds a masters of science in 

systems engineering from Johns Hopkins University, in 
Baltimore Maryland and a bachelors of science ocean 

engineering from the United States Naval Academy in 

Annapolis Maryland.  
He currently works as a programmer at CWPDEV in 

Washington State.  

 
 

 

Matthew H. Henry holds a doctor of philosophy in 
systems and information engineering from the University 

of Virginia. 

He is a lecturer with the Johns Hopkins University 
Whiting School of Engineering. He has over twenty 

years in research and development in the aerospace, 

automotive, and cyber domains.  He has published 
dozens of papers in peer-reviewed journals and 

conferences and has written several book chapters. His current work focuses 

on new algorithmic approaches to autonomy and complex adaptive systems. 
 

 

International Journal of Machine Learning and Computing, Vol. 8, No. 4, August 2018

353


