

Abstract—A lot of algorithms performing Frequent Itemsets

Mining (FIM), however, some of the glitches in the algorithms

still require attention, particularly when the mining process

involves a high dimensional dataset. The Directed Acyclic

Graph in High Dimensional Dataset Mining (DAGHDDM) is a

graph-based mining algorithm that represents itemsets in the

complete graph before FIM takes place. Nevertheless, the

construction of complete graph creates unnecessary edges and

makes the search space large and affects the overall algorithm

performance. This research aims to speed up the searching

process by creating relevant edges in the graph to reduce the

search space by rearranging the items using the common prefix

rowset. We proposed a novel frequent itemsets mining using

row enumeration approach on graph based structure called

Frequent Row Graph Closed (FRG-Closed). Designing the

FRG-Closed involves new data structure creation known as

Frequent Row Graph (FR-Graph). We performed the

experiments to compare the performance of FRG-Closed with

DAGHDDM algorithm. The result of the experiments revealed

the FRG-Closed capability to mine the frequent closed itemsets

faster than its counterpart, DAGHDDM algorithm. Moreover,

the FRG-Closed is also able to handle lower minimum support

compared to the DAGHDDM for a larger transaction.

Index Terms—Data mining, graph theory, high dimensional,

frequent itemset.

I. INTRODUCTION

Frequent Itemset Mining (FIM) was first applied in

customer transaction database. It is also known as market

basket analysis, where the results can be used by the retailers

for marketing and promotions [1]. FIM involves a critical

process in searching for itemset of frequent itemsets, in

which its frequency is not less than the minimum support

value [2]. The discovered frequent itemsets are significant to

represent strong associations between items in the database.

However, the amount of data to be processed in memory

would affect the searching process of FIM. Nowadays,

recorded dataset has expanded dramatically since data are

captured in various types and ways. This phenomenon

introduced the „Big Data‟ era involving an enormous data

collection based on 5V‟s, which are Volume, Velocity,

Variety, Veracity and Value [3]-[5]. Volume refers to the

vast amount of data generated every second while Velocity

refers to the speed at which new data is generated at a time.

Giving example the number of transactions happened in each

minute or the number of status updated on social media every

hour. Variety refers to the different types of data that are

Manuscript received May 6, 2018; revised July 1, 2018.

Shuzlina Abdul-Rahman is with the Faculty of Computer and

Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam,

Selangor, Malaysia (email: shuzlina@tmsk.uitm.edu.my).

available today such as video, sound, image, sensor, etc.

while Veracity refers to the quality of the available data.

Lastly, Value refers to how valuable the available data is.

These massive volume of data, as a result, posed a problem in

analyzing them for understanding. Furthermore, the analysis

of large amount of data could be carried out for diverse

purposes requiring a variety of tasks.

This paper presents an algorithm that can be applied in

high dimensional large datasets; i.e. large number of items

and large number of records (rows), reflecting the first “V”

which is the data volume. Based on the previous study [6],

the high dimensional data is related to the data that have a

large number of dimension/item and a small number of

records. Examples of the high dimensional data are

microarrays, time series data in financial and neuroimaging.

There are two ways of enumerating itemsets in searching for

the frequent itemsets, namely column enumeration and row

enumeration. The column enumeration computes the

itemsets based on the variables or items contained in the

dataset. As for the row enumeration, the searching process is

done by enumerating the itemsets through the transactions or

records contained in the dataset.

Past researchers have manipulated data representation

structure, such as array, hash, tree or graph representation to

optimize the efficiency of the mining which in turn may

overcome the data volume problem. The way the dataset is

represented is by implementing the selected data structure

that is capable to optimize the mining process. Based on

literatures, the compression of dataset using a graph

representation has shown its success as it consumes less

memory compared to the FP-tree [7]. However, the two main

questions in pursuing this research are:

 How to improve the representation of transaction

database based on existing directed acyclic graph

structure?

 How to mine the frequent closed itemsets with the

improved representation?

Our work is based on Dong et al., [2] that introduced a

graph-based algorithm called Directed Acyclic Graph on

High Dimensional Dataset Mining (DAGHDDM). The

DAGHDDM uses Directed Acyclic Graph (DAG) theory as

a new dataset structure and applies the row enumeration

strategy whereby each vertex is represented as a row instead

of items. This makes the searching space smaller. However,

DAGHDDM mines on a complete graph that is created

before the mining process. In this research, we attempt to

improve the existing graph representation and adopt row

enumeration strategy by creating only the necessary edges

using the graph representation so that the unnecessary edges

path between two nodes can be removed. The rest of this

paper is organized as follows: In Section II, we describe the

preliminaries and the novel graph components. In Section III,

Mohammad-Arsyad Mohd-Yakop, Shuzlina Abdul-Rahman,

and Sofianita Mutalib

Novel Row Enumeration Approach of Graph-Based

Frequent Itemsets Mining

International Journal of Machine Learning and Computing, Vol. 8, No. 4, August 2018

doi: 10.18178/ijmlc.2018.8.4.706 324

mailto:shuzlina@tmsk.uitm.edu.my

International Journal of Machine Learning and Computing, Vol. 8, No. 4, August 2018

325

we present the FRG-closed algorithm followed by the

experimental results and analysis in Section IV. Finally, we

conclude this paper in Section V.

II. PRELIMINARIES AND NOVEL GRAPH COMPONENTS

This section presents the basic definitions and the novel

graph components required for further understanding of the

concepts. The preliminaries include the general definition of

transposed table, closed itemset and frequent itemset. The

process of creating the vertical dataset is explained next and

followed by the explanation on the novel graph data structure

components.

A. Definition

Definition 1 (transposed table)

A dataset T consists of set of rows and set of items denoted

as R = {r1, r2, r3,… , rk} and I={i1, i2, i3, …, in} respectively as

shown in Table I. TT is denoted as the transposed table

which is composed of n number of rows, where each of it is

identified by an item, im ∈ I as shown in Table II.

TABLE I: DATASET T

Row ID Item

1 a, c, f, m, p
2 a, b, c, f, l, m, o

3 b, f, o

4 b, c, p
5 a, c, f, l, m, p

TABLE II: TRANSPOSED TABLE TT OF T

Row ID Item

a 1, 2, 5

b 2, 3, 4
c 1, 2, 4, 5

f 1, 2, 3, 5

l 2, 5
m 1, 2, 5

o 2, 3

p 1, 4, 5

Definition 2 (closed itemset and closed rowset)

Each closed itemset, I, has a related closed rowset, RS,

where it contains all items in itemset I and vice versa. Itemset

S is called “closed” when it has no superset S’ that has the

same support value (sup), sup(S) ≠ sup(S’). Similarly, to the

rows, where RS is called “closed” when it has no super row

that has the same itemset, item (RS) ≠ item (RS’).

Definition 3 (frequent itemset and large rowset)

An itemset is called “frequent” if the support is equal or

greater than the threshold (minimum_support), sup(S) ≥

minimum_support. Rowset is called “large” if the number of

rows in a rowset is greater than the threshold, size(RS) ≥

minimum_support. The frequent closed itemset is

determined when the itemset is “frequent” and “closed”.

When mining frequent closed itemsets using row

enumeration strategy, the closed itemset are found by

searching the closed rowset based on Definition 2. The

discovered closed itemset then is verified to determine

whether it is a large rowset or not. Based on Definition 3, if

the rowset is “large”, then the itemset for the rowset is

“frequent”. Therefore, frequent closed itemsets are

discovered by searching the rowset that is “closed” and

“large”.

B. Creating Vertical Dataset

In order to find frequent closed itemsets and large rowsets,

the dataset firstly is being transposed and later the vertical

table is created. The creation of the vertical dataset is vital

because the item and its rowset would be used in the

construction of the FR-Graph. Each row in the vertical

dataset consists of item and rowset, that refer to the set of row

with the item. Table III shows the input dataset D and given

the minimum support equals to 2. The first step was counting

the distinct items in dataset D. In Table IV, all items in

dataset D were listed together with their frequency. After the

items frequency was counted, the next step was to remove

the infrequent items whenever the item frequency was lower

than the given threshold as shown in Table V. By performing

this process, the left itemset in the dataset was left with only

the frequent 1-itemset.

TABLE III: INPUT DATASET T

Row ID Item

1 a, c, d, f, i, g, m, p

2 a, b, c, f, l, m, o
3 b, f, j, h, o

4 b, c, k, p, s

5 a, c, e, f, l, m, n, p

TABLE IV: ITEMS AND THEIR FREQUENCY FROM DATASET D

Item a b c d e f g h i j k l m n o p

Frequency 3 3 4 1 1 4 1 1 1 1 1 2 3 1 2 3

TABLE V: ITEMS AND THEIR FREQUENCY AFTER REMOVING INFREQUENT

ITEM

Item c f a b p m l o

Frequency 4 4 3 3 3 3 2 2

TABLE VI: VERTICAL DATASET FROM DATASET

Row ID Item Sorted Rowset

a 1, 2, 5 2, 5, 1
b 2, 3, 4 2, 3, 4

c 1, 2, 4, 5 2, 5, 1, 4

f 1, 2, 3, 5 2, 5, 1, 3
l 2, 5 2, 5

m 1, 2, 5 2, 5, 1

o 2, 3 2, 3
p 1, 4, 5 5, 1, 4

TABLE VII: ROWID HEADER TABLE

Row 2 5 1 3 4

Number of item 7 6 5 3 3

After the removal process of the infrequent items was

performed, the creation of the vertical dataset was initiated as

shown in Table VI. The frequent 1-itemset was listed in the

first column in a vertical dataset. In the second column, the

rowset of the item was inserted. The rowset is the list of rows

where the item is available. For example, if rowset of item a

is {1,2,5}, item a exists at row 1, 2, and 5 in the dataset. The

third column is the sorted rowset by refering to the number of

items in each row, and these numbers are recorded as

RowIDHeader in Table VII. By sorting the itemset according

to the edges, the creation of the graph construction process

can be minimized. This concept was inspired by the FP-Tree

data structure which used the common prefix of the itemset

to rearrange the item. Instead of using the itemset, the

FR-Graph used the rowset as the common prefix.

C. Constructing the Frequent Row Graph

After the vertical dataset was created, the novel

graph-based data structure called Frequent Row Graph

(FR-Graph) was constructed. In the following sections, the

components of the FR-Graph and its attributes are explained

first, followed by how the FR-Graph was constructed from

the vertical dataset and lastly, the property of the graph.

FR-Graph Components

The graph representation would organize the items in the

dataset and benefit the searching process to be more efficient.

The FR-Graph consists of three components as defined

below:

i. Class FRGEdge

o Integer source
o Integer destination

o Set<Integer> items
ii. Class FRGNode

o Integer row_id

o List<FRGEdge> edges
iii. List<Integer> RowIDHeader

Firstly, FRGEdge is a class that stores the information of

the dataset. It consists of three elements: source, destination,

and items. The first and second elements are the source and

the destination which indicates the direction of the edge from

what node to what node it is pointed to. The third element is

the variable items that is used to store the item that is

available in both nodes of source and destination.

Fig. 1. The FRGNode illustration.

Next, the second component, FRGNode is a class that

represents the node in the graph that consists of two elements:

row_id and edges. The row_id is a variable that holds the

value of rowID. The edges element is a list of FRGEdge

object. Unlike the usual implementation of the directed graph,

the edges held by the corresponding node is the edge that

points to that node. For example, the list of edges in element

edge for node 2 (row_id = 2) includes edge(1, 2) and edge(3,

2), as in Fig. 1. The third component in the FR-Graph is the

RowIDHeader where it is a list of rowID and it is referred to

to sort the rows for vertical table.

(a) After item a insertion

(b) After item b insertion

Fig. 2. Constructed FR-Graph after item a and b insertion.

Fig. 3. Complete FR-Graph.

FR-Construction Process

Once the dataset has been transposed, the graph structure

was used to represent the dataset. Firstly, the enumeration of

all the items was done in the vertical dataset. To visualize the

algorithm process, Fig. 2 shows the insertion of item a with

rowset {2, 5, 1} and item b with rowset {2, 3, 4} in the

FR-Graph. Three nodes are created and linked with the two

edges as shown as an item a is inserted in the graph as

illustrated in Fig. 2(a). Then, for item b, another two nodes

and two edges are created as illustrated in Fig. 2(b). After all

items in Table III are inserted, the graph construction is

completed. Fig. 3 shows the illustrated FR-Graph.

Property of FR-Graph

Three properties of FR-Graph can be observed from the

construction process:

Property 1: The number of nodes equals or less to the number

of rows at most

Proof: In the FR-Graph, each node represents a row and

the number of nodes equals to the number of rows in the

dataset. Assuming that, the dataset has several infrequent

items, if these infrequent items are deleted, there may exist

rows that contain only these infrequent items, which will also

be deleted. In this case, the number of the nodes is less than

the number of the rows.

Property 2: Only necessary edges are created

Proof: The reason why rowset of each item is sorted based

on RowIDHeader is to reduce the number of edges creation.

By sorting the rowset, the common rowID is shared among

all items. This will compress the graph by sharing the

common prefix rowset.

Property 3: The FR-Graph contains the complete information

about the dataset with fewer edges created

2

3

4 1

5

Items: b, o

Items: b

Items: a, c, f, l, m

Items: a, c, f, m, p
Items: f

Items: c, p

2

3

4 1

5

Items: b

Items: b

Items:

Items: aItems: a

2

1

5

aItems: a

International Journal of Machine Learning and Computing, Vol. 8, No. 4, August 2018

326

Proof: Based on the construction of FR-Graph, each item

in a dataset is inserted into the edges. These items have met

the condition as frequent items. The edge shows the existing

items between the nodes. For example, edge(2, 5) contains

items a, c, f, l, and m which mean all these items are available

in rowID 2 and 5. Moreover, only the relevant edge is created

during the construction process. This means, the pruning

process has been done prior to the creation of FR-Graph.

III. FREQUENT ROW GRAPH-CLOSED ALGORITHM

This section discusses a novel strategy to improve the

searching process of frequent itemsets by adopting a row

enumeration approach on graph-based representation. The

proposed algorithm was based on the DAGHDDM algorithm

[2] that adopts graph-based dataset representation with row

enumeration strategy. We name the algorithm Frequent Row

Graph-Closed or FRG-Closed. We begin by explaining the

two theorems namely, the path retrieving and the item

merging.

A. Theorem 1 (Path Retrieving)

The constructed graph (FR-Graph) allows the retrieval of

the large rowset by traversing the nodes in the reverse

direction.

Proof: To prove theorem 1, a new method called getPaths

was created. Given an example based on Fig. 3, each node

was named as nX, where n is the node and X indicates the

rowID. All possible paths that can be travelled from each

node is [n4] = {{n4, n1, n5, n2}, {n4, n3, n1, n5, n2}, {n4, n3,

n2}}, [n3] = {{n3, n1, n5, n2}; {n3, n2}}, [n1] = {{n1, n5,

n2}}, [n5] = {{n5, n2}}, [n2] = {{n2}}.

To get the possible largest path, depth first search manner

was performed. For example, n4 was identified as the

starting node. First, these paths were initialized as null. This

path_list is meant to store the list of paths that were found

while traversing the graph. This process was initiated at node

n4 and then traversed to node n1 with itemset {c, p}.

As the first move, the itemset {c, p} with path {n4, n1}

was inserted into path_list with the support of 2. Before it

travels to the next node which is n5, the intersection between

items on the edge(5, 1), {c, f, a, m, p} and current itemset, {c,

p} was performed, and resulted in this itemset {c, p}. If the

intersection itemset was not empty, then the process

proceeded to the node n5. Next, at node n5, the itemset in the

path_list was checked again. The resulting itemset {c, p}

produced a new path, which was {n4, n1, n5} with the

support value of 3. Since the current itemset was contained in

the path_list, so the path_list was updated from {n4, n1} to

{n4, n1, n5} and the support value from 2 to 3. After

updating the path and the support value, the algorithm would

make a check to see where the preceeding node traverse to.

From node n5, edge(2, 5) was the only edge found in n5.

Again the intersection was performed with the current

itemset and edge(2, 5).items, similarly to {c, f, a, m, l} ∩ {c,

p} = {c}. The searching process was terminated here since

there was no edge that pointed to node n2 or the intersection

item of the edge and the current itemset was empty. The

getPaths function returns the pair of rowset and itemset list.

In the end, the paths retrieved from node n4 is [n4] = {{n4,

n1, n5, n2} : {c}, {n4, n1, n5} : {c, p}, {n4, n3, n2} : {b}}.

Note that the path {n4, n3, n1, n5, n2} was not included in

the paths list because there was no itemset produced by the

intersection between items on edge(3, 4), {f} and items on

edge(1, 3), {b}. The rowset returned from the getPaths

method did not have any complete itemset.

Fig. 4 shows the algorithm of the getPaths method. First,

paths list was created to store the list of pair itemset and path

found (Fig. 4: getPaths function, line:1). At line 4, the

getPaths function will enumerate all edges that link to the

startNode. The empty list called path is created to store the

traversed node and the first node (startNode) was inserted

(Fig. 4: getPaths function, line:3-4). For itemset, the items in

the enumerated edges is stored in the list just like path (Fig. 4:

getPaths function, line:5). Then, the getPathsSub function is

called with updated itemset, path and sourceNode as the

input (Figure 4: getPaths function, line:6). In the

getPathsSub function, the input itemset is checked whether it

is exist in the paths list or not. If not exist, insert into paths

list, else, only insert if the rowset size in the paths list is

smaller than path size +1 (Fig. 4: getPathsSub function,

line:1-6). Then for each edge in the sourceNode, if the

intersection of the item in the edge and itemset is not empty,

the getPathsSub is recursively called (Fig. 4: getPathsSub

function, line:8-12). At the end, the paths list should contain

the pair of itemset and path that start with specific node.

Input: FR-Graph G,startNode

Output: list of the largest rowset with its itemset

getPaths(G, 4)
Begin

1. Map<itemset, rowset> paths = null;

2. For each edge in startNode.edges
3. List path = null;

4. path.add(startNode);

5. itemset = edge.items;

6. getPathsSub(edge.source, itemset, path,

paths);

7. //end foreach
8. return paths;

End

getPathsSub(currentNode,itemset, path, paths)

Begin

1. If itemset does not exist in paths.key
2. paths.put(itemset, path currentNode)

3. Else

4. If (path ∪ currentNode).size > rowset of

the itemset in paths
5. paths.put(itemset, path ∪

currentNode)

6. //end if

7. //end if
8. For each edge in currentNode.edges

9. If itemset ∩ edge.items ≠ ∅

10. getPathsSub(edge.source,

itemset ∩ edge.items, path,

paths);

11. //end if

12. //end foreach

Fig. 4. The getpaths method.

B. Theorem 2 (Item-Merging)

Since the getPaths method retrieved all the possible large

rowsets, the closed sub-rowset (rowset.size-1) could be

established by performing an intersection of two large

rowsets. Since each node was represented as a row, the path

in the graph was considered as a rowset.

Proof: Since the getPaths method would return the largest

rowset with its intersection itemset, further checking was

International Journal of Machine Learning and Computing, Vol. 8, No. 4, August 2018

327

required to ensure that the rowset had the complete itemset.

Closed sub-rowset can be obtained by following these two

rules:

Rule1: The size of the rowset must be compared to a larger

or an equal size of rowset.

Rule 2: Performing an intersection between two rowsets

and storing both items from two rowsets as the new

intersection rowset.

Path Rowset Itemset

Path1 4, 1, 5, 2 {c}

Path2 4, 1, 5 {c, p}

Path3 4, 3, 2 {b}

Path Rowset Itemset

Path1 4, 1, 5, 2 {c}

Path2 4, 1, 5 {c, p}

Path3 4, 3, 2 {b}

Path4 4, 2 {c, b}

Fig. 5. Illustration of Item-merging.

A notation of <RS : I> is assumed as a set of path where RS

is the rowset and I is the itemset for the RS. For example, <{4,

1, 5, 2} : {c}>, <{4, 1, 5} : {c, p}>, <{4, 3, 2} : {b}> is path1,

path2 and path3 respectively. path1 would not be checked

since it has the largest rowset in the list. path3 would be

examined to have a better view on how the item-merging

works. The checking process can be initialized by comparing

path3 with path1. Since path3.rowset path1.rowset, the

AND operation has to be performed to get an intersection

between these two paths. The intersection of path3.rowset

and path1.rowset is {4, 3, 2} {4, 1, 5, 2} = {4, 2}. Now,

the new path, namely path4, is created with the rowset {4, 2}.

To get the itemset for path4, the UNION operation was

performed. Since path3 and path1 itemse in the new path4

with rowset {4, 2} and itemset {b, c}. Fig. 5 illustrates the

paths before and after the item-merging process.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this experiment, seven synthetic datasets were prepared

and two experiments were conducted. The datasets were

generated using the SPMF library [4]. To generate the dataset,

function generateDatabase was called requiring three input

parameters: number of transactions, number of dimensions

and maximum number of item per transaction. As the result,

transaction dataset with predetermined numerical value was

generated. In the generated dataset, the numerical value

represented an item. This generated dataset was named D#T#

in which D# referred to the number of dimensions which is

the number of distinct items in the dataset, and T# is the

number of transactions. These synthetic datasets were

generated based on the pre-defined parameter values as

shown in Table IX.

The number of dimensions and transactions generated was

based on the previous studies [8], [10], [11] as the

benchmark to determine the range value of dimension and

transaction as high dimensional dataset. The number of

transactions in the high dimensional dataset is between 40 to

80 transactions while the dimension is starting from 4,000 to

100,000 dimensions. Two sets of experiment were conducted

to examine the algorithm performance based on different

dimensionality of the datasets and different number of

transactions. The results are discussed based on the

execution time at different values of minimum support which

are 10%, 20%, 30%, and 40%. The dash “-“ value in the

result is when the algorithms were not able to finish the

mining process in 3 hours or hit the not-enough-memory

error.

TABLE IX: DATASET USED IN THE EXPERIMENTS

Dataset Dimension Transaction

D10kT50 10,000 50

D60kT50 60,000 50
D100kT50 100,000 50

D4000T40 4000 40

D4000T50 4000 50
D4000T60 4000 60

D4000T80 4000 80

A. Experiment I (Dimensionality) Result

(a) D10kT50

(b) D60kT50

(c) D100kT50

Fig. 6. Result of experiment I at different number of dimensions.

10% 20% 30% 40%

FRG-Closed (10k) 130.691 8.9262 0.0876

DAGHDDM (10k) 2160.7354 300.8832 19.4798

0

500

1000

1500

2000

2500

Ex
e

cu
ti

o
n

 t
im

e
 (

se
c)

10% 20% 30% 40%

FRG-Closed (60k) 294.7736 1.136

DAGHDDM (60k) 3213.335 128.5086

0

500

1000

1500

2000

2500

3000

3500

Ex
e

cu
ti

o
n

 t
im

e
 (

se
c)

10% 20% 30% 40%

FRG-Closed (100k) 698.1888 1.3092

DAGHDDM (100k) 4989.48 192.4514

0

1000

2000

3000

4000

5000

6000

Ex
e

cu
ti

o
n

 t
im

e
 (

se
c)

-

-

-

-
-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

International Journal of Machine Learning and Computing, Vol. 8, No. 4, August 2018

328

Experiment I was conducted to evaluate the performance

of FRG-Closed by comparing to the DAGHDDM, as the

most similar existing algorithm with the respect to different

values of dimension. There are three different dimensions:

10000, 60000, and 100000 dimensions. The execution time

and the memory usage were observed throughout the

experiment. The results of Experiment I showed that

FRG-Closed was generally faster than DAGHDDM. This

experiment further showed that both the FRG-Closed and

DAGHDDM algorithms could not complete the mining

process with the minimum support of 10% for the dataset

D10kT50 and minimum support of 20% for datasets

D60kT50 and D100kT50 after 3 hours of execution. Fig. 6

shows the result on execution time taken to complete the

mining process.

Since both algorithms could complete the mining process

at the minimum support of 30%, the graph was plotted to

show the effect of dataset dimensions on both algorithms as

shown in Fig. 7. This trend shows that the increment of

dimension does affect the execution time. The DAGHDDM

algorithm showed an increment in the execution time from

300 seconds at 10,000 dimensions to 4,989 seconds at

100,000 dimensions. There was a dramatic increment of the

execution time for the DAGHDDM algorithm when the

dataset dimensions became larger. For the FRG-Closed,

execution time began with 9 seconds at 10,000 dimensions

up to 698 seconds execution time at 100,000 dimensions. In

contrary to the DAGHDDM, the FRG-Closed showed a

slight execution time increment when the dataset dimensions

grew.

Fig. 7. Result on dimensionality effect at minimum support 30%.

The recorded increment of time indicates that the

FRG-Closed algorithm is capable of processing faster than

the DAGHDDM algorithm. In general, FRG-Closed has

recorded more than 90% reduction of execution time as

compared to DAGHDDM. The dataset D100kT50, at the

minimum support of 40%, recorded the highest difference in

the percentage of 99.48%. It proved the proposed algorithm

FRG-Closed has successfully reduced the execution time in

the range of 95% average.

B. Experiment II (Transactions) Result

Fig. 8 exhibits the results of Experiment II for algorithm

testing on four datasets with different number of transactions

and similar number of dimensions. The dataset D4000T40

was the only dataset that can be mined at the minimum

support of 10% for both algorithms. The result showed that

the decrease of minimum support value caused a longer

execution time. The FRG-Closed took a longer time

compared to the DAGHDDM algorithm at the minimum

support of 10% and this reduced dramatically at 20% of

minimum support. For dataset D4000T50 and D4000T60,

the results appeared for both algorithms. There was not much

difference in execution time recorded for both datasets at any

minimum support value. However, when the transactions

increased, D4000T80, clearly showed that the gap in both

algorithms can be identified, as DAGHDDM was only able

to mine at 40% of minimum support. This experiment

revealed that the FRG-Closed can process the dataset with

the number of transactions at 50 onwards, at the lowest

minimum support of 20%. Prediction of quality is lower than

the prediction given by the arithmetic mean of the dependent

variable of the sample.

(a) D4000T40

 (b) D4000T50

(c) D4000T60

 (d) D4000T80

Fig. 8. Result of experiment II at different number of transactions.

8
.9

2
6

2

3
0

0
.8

8
3

2

2
9

4
.7

7
3

6

3
2

1
3

.3
3

5

6
9

8
.1

8
8

8

4
9

8
9

.4
8

F R G - C L O S E D D A G H D D M

EX
EC

U
TI

O
N

 T
IM

E
(S

EC
O

N
D

S)

M I N I M U M _ S U P P O R T = 3 0 %

D10kT50 D60kT50 D100kT50

International Journal of Machine Learning and Computing, Vol. 8, No. 4, August 2018

329

As can be seen in this result, FRG-Closed has

demonstrated the ability to reduce the execution time greatly.

Beginning at 50 transactions onwards, FRG-Closed reached

up to 99% reduction time. Meanwhile, for the lowest

transaction number, D4000T40, at the minimum support of

10%, FRG-Closed recorded an increment of 300% in

execution time compared to DAGHDDM algorithm.

However, at the minimum support of 20% to 40%, it again

showed a reduction in execution time up to 89%. Based on

the presented results in the previous sections, several

findings are highlighted as below:

Finding 1: For dataset D4000T40, the execution time for

the FRG-Closed was much higher than the DAGHDDM at

the minimum support of 10%. The high execution time was

required in FRG-Closed as many item-merging processes

were needed during the mining process. The item-merging

process was performed after retrieving all paths that starts

from each node. Since the item-merging process was done to

compare each itemset with the rest of the paths list, it resulted

in a burden when the retrieving paths were large. Generally,

the more paths were retrieved for one node, the more

item-merging processes were performed. Unlike the

DAGHDDM algorithm, there was no item-merging process

involved in the algorithm.

Finding 2: With lesser number of edges created in the

FR-Graph data structure, it helps in mining efficiently even

at a low minimum support, such as 10 – 20%, in larger

transactions dataset. This was proven when FRG-Closed has

shown its capability to mine the dataset that contained up to

80 transactions at the lowest minimum support of 20% even

though it required more time. By having less edges, the

traversing path in the graph was narrow and straightforward.

Finding 3: Even though the row enumeration strategy was

applied in both graph-based algorithms (FRG-Closed and

DAGHDDM), problem still occur to mine lower minimum

support for many transactions. This is because many rows

meant that there was more nodes creation in the graph. This

leads to a high number of edges creation as well as the

number of traversing paths.

V. CONCLUSION

Generally, this research contributes in constructing a

compact graph representation for transaction database and

proposes an efficient mining algorithm by adopting the depth

first search method. The FRG-Closed algorithm has

introduced a novel data structure called FR-Graph to arrange

the dataset more efficiently. The evaluation in this research

has shown that FRG-Closed has managed to mine faster than

the DAGHDDM algorithm on high dimensional datasets.

FRG-Closed employed a novel data structure representation

by adopting a graph-based approach in which each node was

represented in a row while edge represented the availability

of the items between the two nodes. The order of rowset in

the vertical dataset shared the common prefix rowset. This

made the number of edges created in the graph less, but still

having all the required information, itemsets and nodes.

ACKNOWLEDGMENT

The authors would like to thank to the Ministry of Higher

Education, Malaysia for the research grant FRGS 156/2013

and also to Research Management Centre, Universiti

Teknologi MARA, Selangor, Malaysia for the research

support.

International Journal of Machine Learning and Computing, Vol. 8, No. 4, August 2018

330

REFERENCES

[1] R. Agrawal, T. Imieliński, and A. Swami, "Mining association rules
between sets of items in large databases," ACM Sigmod Record, vol.

22, no. 2, pp. 207-216, 1993.

[2] J. Dong et al., "A DAG-based algorithm of mining frequent closed
itemsets in high dimensional datasets," International Journal of

Advancements in Computing Technology, vol. 4, no. 19, 2012.

[3] J. Fan, H. Fang, and L. Han, "Challenges of big data
analysis," National Science Review, vol. 1, no. 2, pp. 293-314, 2014.

[4] P. Fournier-Viger, A. Gomariz, A. T. Soltani, C.-W. Wu, and V. S.

Vincent, "SPMF: A Java open-source pattern mining library," The
Journal of Machine Learning Research, vol. 15, no. 1, 3389-3393,

2014.

[5] D. Laney, "3D data management: Controlling data volume, velocity
and variety," META Group Research Note, vol. 6, no. 70, 2001.

[6] H. D. K. Moonesinghe, Graph Based Methods for Pattern Mining,

Michigan State University, 2007.
[7] M. J. Zaki, S, Parthasarathy, M. Ogihara, and W. Li, "New algorithms

for fast discovery of association rules," KDD, vol. 97, pp. 283-286,

1997.
[8] P. F. Cong, G. Tung, A. K. Yang, and M. J. Zaki, “Finding closed

patterns in long biological datasets,” in Proc. the Ninth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining,
2003, pp. 637-642.

[9] R. Vimieiro and P. Moscato, "Disclosed: An efficient depth-first,

top-down algorithm for mining disjunctive closed itemsets in
high-dimensional data," Information Sciences, vol. 280, pp. 171-187,

2014.

[10] S. Yin and O. Kaynak, "Big data for modern industry: Challenges and
trends [point of view]," IEEE, vol. 103, no. 2, pp. 143-146, 2015.

[11] L. Yu and H. Liu, "Feature selection for high-dimensional data: A fast

correlation-based filter solution," in Proc. the 20th international
Conference on Machine Learning.

Mohammad Arsyad Mohd Yakop received his
bachelor‟s degree in information technology

(intelligent systems engineering) with honours from

Universiti Teknologi MARA in 2013 and M.Sc in
Computer Science from Universiti Teknologi

MARA, Malaysia in 2017. He is currently work as an

application engineer in banking industry. His research
interest includes data analytics, semantic analysis and

machine learning.

Shuzlina Abdul Rahman received her bachelor‟s

degree in computer science from Universiti Sains

Malaysia in 1996, master of science in information
technology from Universiti Utara Malaysia in 2000

and PhD in science and system management from

Universiti Kebangsaan Malaysia in 2012. She is
currently working as an associate professor at the

Faculty of Computer & Mathematical Sciences,
Universiti Teknologi MARA, Malaysia. Her research

interest includes computational intelligence, machine learning and data

analytics & optimization.

Sofianita Mutalib is currently working as a senior

lecturer in the Faculty of Computer and Mathematical
Sciences, Universiti Teknologi MARA, Malaysia.

She had received bachelor and master degrees from

Universiti Kebangsaan Malaysia in 1998 and 1999.
She is actively doing research in applied data mining

and data analytics, for various area and different types

of data. Her interest also has been shown through
yearly publications in proceedings and journals.

