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Abstract—A lot of algorithms performing Frequent Itemsets 

Mining (FIM), however, some of the glitches in the algorithms 

still require attention, particularly when the mining process 

involves a high dimensional dataset. The Directed Acyclic 

Graph in High Dimensional Dataset Mining (DAGHDDM) is a 

graph-based mining algorithm that represents itemsets in the 

complete graph before FIM takes place. Nevertheless, the 

construction of complete graph creates unnecessary edges and 

makes the search space large and affects the overall algorithm 

performance. This research aims to speed up the searching 

process by creating relevant edges in the graph to reduce the 

search space by rearranging the items using the common prefix 

rowset. We proposed a novel frequent itemsets mining using 

row enumeration approach on graph based structure called 

Frequent Row Graph Closed (FRG-Closed). Designing the 

FRG-Closed involves new data structure creation known as 

Frequent Row Graph (FR-Graph). We performed the 

experiments to compare the performance of FRG-Closed with 

DAGHDDM algorithm. The result of the experiments revealed 

the FRG-Closed capability to mine the frequent closed itemsets 

faster than its counterpart, DAGHDDM algorithm. Moreover, 

the FRG-Closed is also able to handle lower minimum support 

compared to the DAGHDDM for a larger transaction. 

 
Index Terms—Data mining, graph theory, high dimensional, 

frequent itemset. 

 

I. INTRODUCTION 

Frequent Itemset Mining (FIM) was first applied in 

customer transaction database. It is also known as market 

basket analysis, where the results can be used by the retailers 

for marketing and promotions [1]. FIM involves a critical 

process in searching for itemset of frequent itemsets, in 

which its frequency is not less than the minimum support 

value [2]. The discovered frequent itemsets are significant to 

represent strong associations between items in the database. 

However, the amount of data to be processed in memory 

would affect the searching process of FIM. Nowadays, 

recorded dataset has expanded dramatically since data are 

captured in various types and ways. This phenomenon 

introduced the „Big Data‟ era involving an enormous data 

collection based on 5V‟s, which are Volume, Velocity, 

Variety, Veracity and Value [3]-[5]. Volume refers to the 

vast amount of data generated every second while Velocity 

refers to the speed at which new data is generated at a time. 

Giving example the number of transactions happened in each 

minute or the number of status updated on social media every 

hour. Variety refers to the different types of data that are 
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available today such as video, sound, image, sensor, etc. 

while Veracity refers to the quality of the available data. 

Lastly, Value refers to how valuable the available data is. 

These massive volume of data, as a result, posed a problem in 

analyzing them for understanding. Furthermore, the analysis 

of large amount of data could be carried out for diverse 

purposes requiring a variety of tasks.  

This paper presents an algorithm that can be applied in 

high dimensional large datasets; i.e. large number of items 

and large number of records (rows), reflecting the first “V” 

which is the data volume. Based on the previous study [6], 

the high dimensional data is related to the data that have a 

large number of dimension/item and a small number of 

records. Examples of the high dimensional data are 

microarrays, time series data in financial and neuroimaging. 

There are two ways of enumerating itemsets in searching for 

the frequent itemsets, namely column enumeration and row 

enumeration. The column enumeration computes the 

itemsets based on the variables or items contained in the 

dataset. As for the row enumeration, the searching process is 

done by enumerating the itemsets through the transactions or 

records contained in the dataset.  

Past researchers have manipulated data representation 

structure, such as array, hash, tree or graph representation to 

optimize the efficiency of the mining which in turn may 

overcome the data volume problem. The way the dataset is 

represented is by implementing the selected data structure 

that is capable to optimize the mining process. Based on 

literatures, the compression of dataset using a graph 

representation has shown its success as it consumes less 

memory compared to the FP-tree [7]. However, the two main 

questions in pursuing this research are: 

 How to improve the representation of transaction 

database based on existing directed acyclic graph 

structure? 

 How to mine the frequent closed itemsets with the 

improved representation? 

Our work is based on Dong et al., [2] that introduced a 

graph-based algorithm called Directed Acyclic Graph on 

High Dimensional Dataset Mining (DAGHDDM). The 

DAGHDDM uses Directed Acyclic Graph (DAG) theory as 

a new dataset structure and applies the row enumeration 

strategy whereby each vertex is represented as a row instead 

of items. This makes the searching space smaller. However, 

DAGHDDM mines on a complete graph that is created 

before the mining process. In this research, we attempt to 

improve the existing graph representation and adopt row 

enumeration strategy by creating only the necessary edges 

using the graph representation so that the unnecessary edges 

path between two nodes can be removed. The rest of this 

paper is organized as follows: In Section II, we describe the 

preliminaries and the novel graph components. In Section III, 
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we present the FRG-closed algorithm followed by the 

experimental results and analysis in Section IV. Finally, we 

conclude this paper in Section V.

II. PRELIMINARIES AND NOVEL GRAPH COMPONENTS

This section presents the basic definitions and the novel 

graph components required for further understanding of the 

concepts. The preliminaries include the general definition of 

transposed table, closed itemset and frequent itemset. The 

process of creating the vertical dataset is explained next and 

followed by the explanation on the novel graph data structure 

components. 

A. Definition

Definition 1 (transposed table)

A dataset T consists of set of rows and set of items denoted 

as R = {r1, r2, r3,… , rk} and I={i1, i2, i3, …, in} respectively as 

shown in Table I. TT is denoted as the transposed table 

which is composed of n number of rows, where each of it is 

identified by an item, im ∈ I as shown in Table II.

TABLE I: DATASET T

Row ID Item

1 a, c, f, m, p
2 a, b, c, f, l, m, o

3 b, f, o

4 b, c, p
5 a, c, f, l, m, p

TABLE II: TRANSPOSED TABLE TT OF T

Row ID Item

a 1, 2, 5

b 2, 3, 4
c 1, 2, 4, 5

f 1, 2, 3, 5

l 2, 5
m 1, 2, 5

o 2, 3

p 1, 4, 5

Definition 2 (closed itemset and closed rowset)

Each closed itemset, I, has a related closed rowset, RS, 

where it contains all items in itemset I and vice versa. Itemset 

S is called “closed” when it has no superset S’ that has the 

same support value (sup), sup(S) ≠ sup(S’). Similarly, to the 

rows, where RS is called “closed” when it has no super row 

that has the same itemset, item (RS) ≠ item (RS’).

Definition 3 (frequent itemset and large rowset)

An itemset is called “frequent” if the support is equal or 

greater than the threshold (minimum_support), sup(S) ≥ 

minimum_support. Rowset is called “large” if the number of 

rows in a rowset is greater than the threshold, size(RS) ≥ 

minimum_support. The frequent closed itemset is 

determined when the itemset is “frequent” and “closed”. 

When mining frequent closed itemsets using row 

enumeration strategy, the closed itemset are found by 

searching the closed rowset based on Definition 2. The 

discovered closed itemset then is verified to determine 

whether it is a large rowset or not. Based on Definition 3, if 

the rowset is “large”, then the itemset for the rowset is 

“frequent”. Therefore, frequent closed itemsets are 

discovered by searching the rowset that is “closed” and 

“large”.

B. Creating Vertical Dataset

In order to find frequent closed itemsets and large rowsets, 

the dataset firstly is being transposed and later the vertical 

table is created. The creation of the vertical dataset is vital 

because the item and its rowset would be used in the 

construction of the FR-Graph. Each row in the vertical 

dataset consists of item and rowset, that refer to the set of row 

with the item. Table III shows the input dataset D and given 

the minimum support equals to 2. The first step was counting 

the distinct items in dataset D. In Table IV, all items in 

dataset D were listed together with their frequency. After the 

items frequency was counted, the next step was to remove 

the infrequent items whenever the item frequency was lower 

than the given threshold as shown in Table V. By performing 

this process, the left itemset in the dataset was left with only 

the frequent 1-itemset.

TABLE III: INPUT DATASET T

Row ID Item

1 a, c, d, f, i, g, m, p

2 a, b, c, f, l, m, o
3 b, f, j, h, o

4 b, c, k, p, s

5 a, c, e, f, l, m, n, p

TABLE IV: ITEMS AND THEIR FREQUENCY FROM DATASET D

Item a b c d e f g h i j k l m n o p

Frequency 3 3 4 1 1 4 1 1 1 1 1 2 3 1 2 3

TABLE V: ITEMS AND THEIR FREQUENCY AFTER REMOVING INFREQUENT 

ITEM

Item c f a b p m l o

Frequency 4 4 3 3 3 3 2 2

TABLE VI: VERTICAL DATASET FROM DATASET

Row ID Item Sorted Rowset

a 1, 2, 5 2, 5, 1
b 2, 3, 4 2, 3, 4

c 1, 2, 4, 5 2, 5, 1, 4

f 1, 2, 3, 5 2, 5, 1, 3
l 2, 5 2, 5

m 1, 2, 5 2, 5, 1

o 2, 3 2, 3
p 1, 4, 5 5, 1, 4

TABLE VII: ROWID HEADER TABLE

Row 2 5 1 3 4

Number of item 7 6 5 3 3

After the removal process of the infrequent items was 

performed, the creation of the vertical dataset was initiated as 

shown in Table VI. The frequent 1-itemset was listed in the 

first column in a vertical dataset. In the second column, the 

rowset of the item was inserted. The rowset is the list of rows 

where the item is available. For example, if rowset of item a 

is {1,2,5}, item a exists at row 1, 2, and 5 in the dataset. The 

third column is the sorted rowset by refering to the number of 

items in each row, and these numbers are recorded as 

RowIDHeader in Table VII. By sorting the itemset according 

to the edges, the creation of the graph construction process 

can be minimized. This concept was inspired by the FP-Tree 

data structure which used the common prefix of the itemset 

to rearrange the item. Instead of using the itemset, the 

FR-Graph used the rowset as the common prefix.



  

C. Constructing the Frequent Row Graph 

After the vertical dataset was created, the novel 

graph-based data structure called Frequent Row Graph 

(FR-Graph) was constructed. In the following sections, the 

components of the FR-Graph and its attributes are explained 

first, followed by how the FR-Graph was constructed from 

the vertical dataset and lastly, the property of the graph. 

FR-Graph Components 

The graph representation would organize the items in the 

dataset and benefit the searching process to be more efficient. 

The FR-Graph consists of three components as defined 

below: 

 
i. Class FRGEdge 

o Integer source 
o Integer destination 

o Set<Integer> items 
ii. Class FRGNode 

o Integer row_id 

o List<FRGEdge> edges 
iii. List<Integer> RowIDHeader 

Firstly, FRGEdge is a class that stores the information of 

the dataset. It consists of three elements: source, destination, 

and items. The first and second elements are the source and 

the destination which indicates the direction of the edge from 

what node to what node it is pointed to. The third element is 

the variable items that is used to store the item that is 

available in both nodes of source and destination. 
 

 
Fig. 1. The FRGNode illustration. 

 

Next, the second component, FRGNode is a class that 

represents the node in the graph that consists of two elements: 

row_id and edges. The row_id is a variable that holds the 

value of rowID. The edges element is a list of FRGEdge 

object. Unlike the usual implementation of the directed graph, 

the edges held by the corresponding node is the edge that 

points to that node. For example, the list of edges in element 

edge for node 2 (row_id = 2) includes edge(1, 2) and edge(3, 

2), as in Fig. 1. The third component in the FR-Graph is the 

RowIDHeader where it is a list of rowID and it is referred to 

to sort the rows for vertical table. 
 

 

(a) After item a insertion 

 
(b) After item b insertion 

Fig. 2. Constructed FR-Graph after item a and b insertion. 
 

 
Fig. 3. Complete FR-Graph. 

  

FR-Construction Process 

Once the dataset has been transposed, the graph structure 

was used to represent the dataset. Firstly, the enumeration of 

all the items was done in the vertical dataset. To visualize the 

algorithm process, Fig. 2 shows the insertion of item a with 

rowset {2, 5, 1} and item b with rowset {2, 3, 4} in the 

FR-Graph. Three nodes are created and linked with the two 

edges as shown as an item a is inserted in the graph as 

illustrated in Fig. 2(a). Then, for item b, another two nodes 

and two edges are created as illustrated in Fig. 2(b). After all 

items in Table III are inserted, the graph construction is 

completed. Fig. 3 shows the illustrated FR-Graph. 

Property of FR-Graph 

Three properties of FR-Graph can be observed from the 

construction process: 

Property 1: The number of nodes equals or less to the number 

of rows at most 

Proof: In the FR-Graph, each node represents a row and 

the number of nodes equals to the number of rows in the 

dataset. Assuming that, the dataset has several infrequent 

items, if these infrequent items are deleted, there may exist 

rows that contain only these infrequent items, which will also 

be deleted.  In this case, the number of the nodes is less than 

the number of the rows. 

Property 2: Only necessary edges are created 

Proof: The reason why rowset of each item is sorted based 

on RowIDHeader is to reduce the number of edges creation. 

By sorting the rowset, the common rowID is shared among 

all items. This will compress the graph by sharing the 

common prefix rowset. 

Property 3: The FR-Graph contains the complete information 

about the dataset with fewer edges created 
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Proof: Based on the construction of FR-Graph, each item 

in a dataset is inserted into the edges. These items have met 

the condition as frequent items. The edge shows the existing 

items between the nodes. For example, edge(2, 5) contains 

items a, c, f, l, and m which mean all these items are available 

in rowID 2 and 5. Moreover, only the relevant edge is created 

during the construction process. This means, the pruning 

process has been done prior to the creation of FR-Graph.  

 

III. FREQUENT ROW GRAPH-CLOSED ALGORITHM 

This section discusses a novel strategy to improve the 

searching process of frequent itemsets by adopting a row 

enumeration approach on graph-based representation. The 

proposed algorithm was based on the DAGHDDM algorithm 

[2] that adopts graph-based dataset representation with row 

enumeration strategy. We name the algorithm Frequent Row 

Graph-Closed or FRG-Closed. We begin by explaining the 

two theorems namely, the path retrieving and the item 

merging. 

A. Theorem 1 (Path Retrieving) 

The constructed graph (FR-Graph) allows the retrieval of 

the large rowset by traversing the nodes in the reverse 

direction. 

Proof: To prove theorem 1, a new method called getPaths 

was created. Given an example based on Fig. 3, each node 

was named as nX, where n is the node and X indicates the 

rowID. All possible paths that can be travelled from each 

node is [n4] = {{n4, n1, n5, n2}, {n4, n3, n1, n5, n2}, {n4, n3, 

n2}}, [n3] = {{n3, n1, n5, n2}; {n3, n2}}, [n1] = {{n1, n5, 

n2}}, [n5] = {{n5, n2}}, [n2] = {{n2}}. 

To get the possible largest path, depth first search manner 

was performed. For example, n4 was identified as the 

starting node. First, these paths were initialized as null. This 

path_list is meant to store the list of paths that were found 

while traversing the graph. This process was initiated at node 

n4 and then traversed to node n1 with itemset {c, p}.  

As the first move, the itemset {c, p} with path {n4, n1} 

was inserted into path_list with the support of 2. Before it 

travels to the next node which is n5, the intersection between 

items on the edge(5, 1), {c, f, a, m, p} and current itemset, {c, 

p} was performed, and resulted in this itemset {c, p}. If the 

intersection itemset was not empty, then the process 

proceeded to the node n5. Next, at node n5, the itemset in the 

path_list was checked again. The resulting itemset {c, p} 

produced a new path, which was {n4, n1, n5} with the 

support value of 3. Since the current itemset was contained in 

the path_list, so the path_list was updated from {n4, n1} to 

{n4, n1, n5} and the support value from 2 to 3. After 

updating the path and the support value, the algorithm would 

make a check to see where the preceeding node traverse to. 

From node n5, edge(2, 5) was the only edge found in n5. 

Again the intersection was performed with the current 

itemset and edge(2, 5).items, similarly to {c, f, a, m, l} ∩ {c, 

p} = {c}. The searching process was terminated here since 

there was no edge that pointed to node n2 or the intersection 

item of the edge and the current itemset was empty. The 

getPaths function returns the pair of rowset and itemset list. 

In the end, the paths retrieved from node n4 is [n4] = {{n4, 

n1, n5, n2} : {c}, {n4, n1, n5} : {c, p}, {n4, n3, n2} : {b}}. 

Note that the path {n4, n3, n1, n5, n2} was not included in 

the paths list because there was no itemset produced by the 

intersection between items on edge(3, 4), {f} and items on 

edge(1, 3), {b}. The rowset returned from the getPaths 

method did not have any complete itemset.  

Fig. 4 shows the algorithm of the getPaths method. First, 

paths list was created to store the list of pair itemset and path 

found (Fig. 4: getPaths function, line:1). At line 4, the 

getPaths function will enumerate all edges that link to the 

startNode. The empty list called path is created to store the 

traversed node and the first node (startNode) was inserted 

(Fig. 4: getPaths function, line:3-4). For itemset, the items in 

the enumerated edges is stored in the list just like path (Fig. 4: 

getPaths function, line:5). Then, the getPathsSub function is 

called with updated itemset, path and sourceNode as the 

input (Figure 4: getPaths function, line:6). In the 

getPathsSub function, the input itemset is checked whether it 

is exist in the paths list or not. If not exist, insert into paths 

list, else, only insert if the rowset size in the paths list is 

smaller than path size +1 (Fig. 4: getPathsSub function, 

line:1-6). Then for each edge in the sourceNode, if the 

intersection of the item in the edge and itemset is not empty, 

the getPathsSub is recursively called (Fig. 4: getPathsSub 

function, line:8-12). At the end, the paths list should contain 

the pair of itemset and path that start with specific node. 
 

Input: FR-Graph G,startNode 

Output: list of the largest rowset with its itemset 

getPaths(G, 4) 
Begin 

1. Map<itemset, rowset> paths = null; 

2. For each edge in startNode.edges 
3. List path = null; 

4. path.add(startNode); 

5. itemset = edge.items; 

6. getPathsSub(edge.source, itemset, path, 

paths); 

7. //end foreach 
8. return paths; 

End 

 
getPathsSub(currentNode,itemset, path, paths) 

Begin 

1. If itemset does not exist in paths.key 
2. paths.put(itemset, path currentNode) 

3. Else 

4. If (path ∪ currentNode).size > rowset of 

the itemset in paths  
5. paths.put(itemset, path ∪ 

currentNode) 

6. //end if 

7. //end if 
8. For each edge in currentNode.edges 

9. If itemset ∩ edge.items ≠ ∅ 

10. getPathsSub(edge.source, 

itemset ∩ edge.items, path, 

paths); 

11. //end if 

12. //end foreach 
 

Fig. 4. The getpaths method. 
 

B. Theorem 2 (Item-Merging) 

Since the getPaths method retrieved all the possible large 

rowsets, the closed sub-rowset (rowset.size-1) could be 

established by performing an intersection of two large 

rowsets. Since each node was represented as a row, the path 

in the graph was considered as a rowset. 

Proof: Since the getPaths method would return the largest 

rowset with its intersection itemset, further checking was 
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required to ensure that the rowset had the complete itemset. 

Closed sub-rowset can be obtained by following these two 

rules: 

 

Rule1: The size of the rowset must be compared to a larger 

or an equal size of rowset. 

Rule 2: Performing an intersection between two rowsets 

and storing both items from two rowsets as the new 

intersection rowset. 
 

 
Path Rowset Itemset 

Path1 4, 1, 5, 2 {c} 

Path2 4, 1, 5 {c, p} 

Path3 4, 3, 2 {b} 

 

 
Path Rowset Itemset 

Path1 4, 1, 5, 2 {c} 

Path2 4, 1, 5 {c, p} 

Path3 4, 3, 2 {b} 

Path4 4, 2 {c, b} 
 

Fig. 5. Illustration of Item-merging. 
 

A notation of <RS : I> is assumed as a set of path where RS 

is the rowset and I is the itemset for the RS. For example, <{4, 

1, 5, 2} : {c}>, <{4, 1, 5} : {c, p}>, <{4, 3, 2} : {b}> is path1, 

path2 and path3 respectively. path1 would not be checked 

since it has the largest rowset in the list. path3 would be 

examined to have a better view on how the item-merging 

works. The checking process can be initialized by comparing 

path3 with path1. Since path3.rowset path1.rowset, the 

AND operation has to be performed to get an intersection 

between these two paths. The intersection of path3.rowset 

and path1.rowset is {4, 3, 2}  {4, 1, 5, 2} = {4, 2}. Now, 

the new path, namely path4, is created with the rowset {4, 2}. 

To get the itemset for path4, the UNION operation was 

performed. Since path3 and path1 itemse in the new path4 

with rowset {4, 2} and itemset {b, c}. Fig. 5 illustrates the 

paths before and after the item-merging process. 

 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

In this experiment, seven synthetic datasets were prepared 

and two experiments were conducted. The datasets were 

generated using the SPMF library [4]. To generate the dataset, 

function generateDatabase was called requiring three input 

parameters: number of transactions, number of dimensions 

and maximum number of item per transaction. As the result, 

transaction dataset with predetermined numerical value was 

generated. In the generated dataset, the numerical value 

represented an item. This generated dataset was named D#T# 

in which D# referred to the number of dimensions which is 

the number of distinct items in the dataset, and T# is the 

number of transactions. These synthetic datasets were 

generated based on the pre-defined parameter values as 

shown in Table IX. 

The number of dimensions and transactions generated was 

based on the previous studies [8], [10], [11] as the 

benchmark to determine the range value of dimension and 

transaction as high dimensional dataset. The number of 

transactions in the high dimensional dataset is between 40 to 

80 transactions while the dimension is starting from 4,000 to 

100,000 dimensions. Two sets of experiment were conducted 

to examine the algorithm performance based on different 

dimensionality of the datasets and different number of 

transactions. The results are discussed based on the 

execution time at different values of minimum support which 

are 10%, 20%, 30%, and 40%. The dash “-“ value in the 

result is when the algorithms were not able to finish the 

mining process in 3 hours or hit the not-enough-memory 

error. 

 
TABLE IX: DATASET USED IN THE EXPERIMENTS 

Dataset Dimension Transaction 

D10kT50 10,000 50 

D60kT50 60,000 50 
D100kT50 100,000 50 

D4000T40 4000 40 

D4000T50 4000 50 
D4000T60 4000 60 

D4000T80 4000 80 

 

A. Experiment I (Dimensionality) Result 

 

 
(a) D10kT50 

 

 
(b) D60kT50 

 

 
(c) D100kT50 

Fig. 6. Result of experiment I at different number of dimensions. 





10% 20% 30% 40%

FRG-Closed (10k) 130.691 8.9262 0.0876

DAGHDDM (10k) 2160.7354 300.8832 19.4798

0

500

1000

1500

2000

2500

Ex
e

cu
ti

o
n

 t
im

e
 (

se
c)

10% 20% 30% 40%

FRG-Closed (60k) 294.7736 1.136

DAGHDDM (60k) 3213.335 128.5086

0

500

1000

1500

2000

2500

3000

3500

Ex
e

cu
ti

o
n

 t
im

e
 (

se
c)

10% 20% 30% 40%

FRG-Closed (100k) 698.1888 1.3092

DAGHDDM (100k) 4989.48 192.4514

0

1000

2000

3000

4000

5000

6000

Ex
e

cu
ti

o
n

 t
im

e
 (

se
c)

- 

- 

- 

- 
- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

International Journal of Machine Learning and Computing, Vol. 8, No. 4, August 2018

328



  

Experiment I was conducted to evaluate the performance 

of FRG-Closed by comparing to the DAGHDDM, as the 

most similar existing algorithm with the respect to different 

values of dimension. There are three different dimensions: 

10000, 60000, and 100000 dimensions. The execution time 

and the memory usage were observed throughout the 

experiment. The results of Experiment I showed that 

FRG-Closed was generally faster than DAGHDDM. This 

experiment further showed that both the FRG-Closed and 

DAGHDDM algorithms could not complete the mining 

process with the minimum support of 10% for the dataset 

D10kT50 and minimum support of 20% for datasets 

D60kT50 and D100kT50 after 3 hours of execution. Fig. 6 

shows the result on execution time taken to complete the 

mining process.  

Since both algorithms could complete the mining process 

at the minimum support of 30%, the graph was plotted to 

show the effect of dataset dimensions on both algorithms as 

shown in Fig. 7. This trend shows that the increment of 

dimension does affect the execution time. The DAGHDDM 

algorithm showed an increment in the execution time from 

300 seconds at 10,000 dimensions to 4,989 seconds at 

100,000 dimensions. There was a dramatic increment of the 

execution time for the DAGHDDM algorithm when the 

dataset dimensions became larger. For the FRG-Closed, 

execution time began with 9 seconds at 10,000 dimensions 

up to 698 seconds execution time at 100,000 dimensions. In 

contrary to the DAGHDDM, the FRG-Closed showed a 

slight execution time increment when the dataset dimensions 

grew. 

 

 
Fig. 7. Result on dimensionality effect at minimum support 30%. 

 

The recorded increment of time indicates that the 

FRG-Closed algorithm is capable of processing faster than 

the DAGHDDM algorithm. In general, FRG-Closed has 

recorded more than 90% reduction of execution time as 

compared to DAGHDDM. The dataset D100kT50, at the 

minimum support of 40%, recorded the highest difference in 

the percentage of 99.48%. It proved the proposed algorithm 

FRG-Closed has successfully reduced the execution time in 

the range of 95% average. 

B. Experiment II (Transactions) Result 

Fig. 8 exhibits the results of Experiment II for algorithm 

testing on four datasets with different number of transactions 

and similar number of dimensions. The dataset D4000T40 

was the only dataset that can be mined at the minimum 

support of 10% for both algorithms. The result showed that 

the decrease of minimum support value caused a longer 

execution time. The FRG-Closed took a longer time 

compared to the DAGHDDM algorithm at the minimum 

support of 10% and this reduced dramatically at 20% of 

minimum support. For dataset D4000T50 and D4000T60, 

the results appeared for both algorithms. There was not much 

difference in execution time recorded for both datasets at any 

minimum support value. However, when the transactions 

increased, D4000T80, clearly showed that the gap in both 

algorithms can be identified, as DAGHDDM was only able 

to mine at 40% of minimum support. This experiment 

revealed that the FRG-Closed can process the dataset with 

the number of transactions at 50 onwards, at the lowest 

minimum support of 20%. Prediction of quality is lower than 

the prediction given by the arithmetic mean of the dependent 

variable of the sample. 
 

 
(a) D4000T40 

 
 (b) D4000T50 

 
(c) D4000T60 

 
 (d) D4000T80 

Fig. 8. Result of experiment II at different number of transactions. 
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As can be seen in this result, FRG-Closed has 

demonstrated the ability to reduce the execution time greatly. 

Beginning at 50 transactions onwards, FRG-Closed reached 

up to 99% reduction time. Meanwhile, for the lowest 

transaction number, D4000T40, at the minimum support of 

10%, FRG-Closed recorded an increment of 300% in 

execution time compared to DAGHDDM algorithm. 

However, at the minimum support of 20% to 40%, it again 

showed a reduction in execution time up to 89%. Based on 

the presented results in the previous sections, several 

findings are highlighted as below: 

Finding 1: For dataset D4000T40, the execution time for 

the FRG-Closed was much higher than the DAGHDDM at 

the minimum support of 10%. The high execution time was 

required in FRG-Closed as many item-merging processes 

were needed during the mining process. The item-merging 

process was performed after retrieving all paths that starts 

from each node. Since the item-merging process was done to 

compare each itemset with the rest of the paths list, it resulted 

in a burden when the retrieving paths were large. Generally, 

the more paths were retrieved for one node, the more 

item-merging processes were performed. Unlike the 

DAGHDDM algorithm, there was no item-merging process 

involved in the algorithm. 

Finding 2: With lesser number of edges created in the 

FR-Graph data structure, it helps in mining efficiently even 

at a low minimum support, such as 10 – 20%, in larger 

transactions dataset. This was proven when FRG-Closed has 

shown its capability to mine the dataset that contained up to 

80 transactions at the lowest minimum support of 20% even 

though it required more time. By having less edges, the 

traversing path in the graph was narrow and straightforward.  

Finding 3: Even though the row enumeration strategy was 

applied in both graph-based algorithms (FRG-Closed and 

DAGHDDM), problem still occur to mine lower minimum 

support for many transactions. This is because many rows 

meant that there was more nodes creation in the graph. This 

leads to a high number of edges creation as well as the 

number of traversing paths. 

 

V. CONCLUSION 

Generally, this research contributes in constructing a 

compact graph representation for transaction database and 

proposes an efficient mining algorithm by adopting the depth 

first search method. The FRG-Closed algorithm has 

introduced a novel data structure called FR-Graph to arrange 

the dataset more efficiently. The evaluation in this research 

has shown that FRG-Closed has managed to mine faster than 

the DAGHDDM algorithm on high dimensional datasets. 

FRG-Closed employed a novel data structure representation 

by adopting a graph-based approach in which each node was 

represented in a row while edge represented the availability 

of the items between the two nodes. The order of rowset in 

the vertical dataset shared the common prefix rowset. This 

made the number of edges created in the graph less, but still 

having all the required information, itemsets and nodes.  
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