

Abstract—The invention of the Internet and the emergence of

the World Wide Web revolutionized people’s access to digital

data stored on electronic devices. But unlike traditional data

management applications, the new services require the ability to

share data among multiple applications and organizations, and

to integrate data in a flexible and efficient fashion. Data

integration systems enable building systems geared for flexible

sharing and integration of data across multiple autonomous data

providers. In this paper we propose the use of hash map

structure to optimize the data reconciliation over our data

integration system. We have noticed that the use of the array

data structure to store the intermediate results of the

reconciliation takes a considerable time. This led us to change it

by the hash map that assures a reconciliation runtime much less

than when using arrays. We validate our choice again

theoretically and experimentally.

Index Terms—Data integration, hash map, optimization,

reconciliation.

I. INTRODUCTION

In past years, Enterprise and Information Integration (EII)

became an established business, with academic and

commercial tools integrating data and XML sources more

readily available. These tools offer final users a uniform and a

transparent access to data. The spectacular development of

this business has been motivated by the need companies have

to be able to access data allocated over the internet and within

their intranets [1]-[4].

The construction of a data integration system is a difficult

task due to the following main factors: (a) the large number of

data sources candidate for integration; (b) the lack of semantic

sources explicitness; (c) the heterogeneity of sources; and (d)

the autonomy of sources.

To deal with semantic problems and ensure an automatic

data integration, a large number of research studies propose

the use of ontologies. Several integration systems were

proposed under this hypothesis. We can cite for instance:

COIN [5], Observer [6], OntoDaWa [7], etc.

More and more sources explicit the semantic of their data

using existing ontologies which are largely developed in

several application domains: medicine (Unified Medical

Language System), engineering (e.g., IEC [8]), biology
1
,

business intelligence applications, etc. The storage of

Manuscript received in April 5, 2018; revised June 11, 2018.

Abdelghani Bakhtouchi is with Ecole nationale Supérieure

d’Informatique (ESI) and Ecole Militaire Polytechnique (EMP), Algiers,

Algeria (e-mail: a_bakhtouchi@esi.dz).

M’hamed Mataoui is with Ecole Militaire Polytechnique, Algiers,

Algeria (e-mail: mataoui.mhamed@gmail.com).
1 http://www.iplantcollaborative.org/

ontologies in a database leads to the concept of

Ontology-Based DataBases (OBDB). Several academic and

industrial systems offer efficient solutions to store and

manage ontologies and their associated data, for instance:

Jena [9], Sesame [10], Oracle [11] and IBM Sor [12]. If we

follow this trend, OBDB sources become then candidate for

the integration process. Therefore, integration services should

be developed for this type of sources.

Once source heterogeneity is solved by the use of

ontologies, data integration designers have to propose

solutions for data reconciliation when queries are answered

over the integration system (following mediator architecture).

In [13], we have proposed a complete integration

methodology that incorporates these issues in a mediator

architecture. It is mainly motivated by a conjunction of two

main factors:

 The conceptual continuity offered by ontologies to

generate conceptual models [14] and to ease the

resolution of data heterogeneity

 The spectacular development of OBDB sources that may

need to be integrated.

One might assume that query processing in a data

integration system differs little from query processing in a

traditional DBMS. After all, the query language (whether

SQL, datalog or XQuery) is based on standard relational (or

extended relational) operations. Its goal remains to find an

efficient executable plan for the query. While data integration

queries often process distributed data, even this problem has

been studied in the context of distributed and federated

database systems [1]. Therefore, the conventional

optimization algorithms used in the databases can’t be all

applied in the case of heterogeneous data sources

optimization. This led to poor (or no) knowledge of the

properties of the manipulated data (index, distribution,

patterns or cardinality). Despite these cursory similarities,

data integration actually offers a number of challenges that

require novel solutions.

The query execution method that we proposed involves

five steps: (1) discovery of the query functional dependency;

(2) concerned sources determining; (3) reconciliation key

derivation; (4) queries evaluation; and finally (5) results

reconciliation and fusion. It is clear that the runtime of the

first three steps is negligible compared to steps (4) and (5).

Although the step (4) is beyond the responsibility of the

integration system, it relates to interrogated sources. We

proposed a method to reduce the number of such sources to

reduce the execution time of step (4) [15]. Our final margin of

maneuver to optimize the queries response time is to reduce

the runtime of the last step, namely results reconciliation and

fusion [16].

On the Use of Hash Maps for Data Reconciliation

Optimization over a Data Integration System

Abdelghani Bakhtouchi and M’hamed Mataoui

International Journal of Machine Learning and Computing, Vol. 8, No. 4, August 2018

319doi: 10.18178/ijmlc.2018.8.4.705

http://www.iplantcollaborative.org/

We have noticed that the use of the data structure array to

store the intermediate results of the reconciliation takes a

considerable time. This led us to change it by the hash map

data structure that assures a reconciliation runtime much less

than when using arrays. We justify our choice again

theoretically and experimentally.

The remainder of this article is organized as follows:

Section II summarizes state of the art related to data

integration systems. Section III presents the reconciliation

method of a result coming from a source and the global result.

In Section IV, we give experimental results and Section V

concludes the paper.

II. RELATED WORKS

A key challenge in developing an effective reconciliation

solution is that some of the requirements are in conflict with

others, for example, efficiency and effectiveness or genericity

and facility of use. In one hand, using blocking methods

improves efficiency by reducing the search space. However,

this can eliminate some relevant entity pairs and thus reduce

the effectiveness (recall) of the reconciliation. On the other

hand, the combined use of various reconciliation algorithms

can improve effectiveness, but increase computing time and

thus reduce efficiency. Reconciling entities in different

domains with a generic reconciliation solution is more

difficult than for a single domain. A non-generic

reconciliation solution may therefore require a reduced

manual effort to provide the learning data or to find an

appropriate combination and customization of the algorithms.

In large data integration, data sources tend to be

heterogeneous in their structure. Also, many sources provide

unstructured text data and data sources are dynamic and

evolving. These characteristics make reconciliation of data

particularly a difficult task [17]. When there are a large

number of sources and a large volume of data, traditional

reconciliation methods become ineffective in practice. To

deal with the volume dimension, new techniques have been

proposed to allow parallel reconciliation of data using

MapReduce [18]. These include blocking techniques and

techniques that dispense the charge between different nodes.

When data sources are dynamic and ever-changing, applying

reconciliation from the beginning for each update becomes

unaffordable. To cope with the speed aspect, incremental

clustering techniques [19] have been proposed.

Obviously, none of the strategies are perfect for resolving

conflicts. They are all deprived of all or part of the following

three aspects: the accuracy of the sources, the freshness of the

sources and the dependencies between the sources [20].

First of all, the data sources are of different qualities and we

often trust the data from the most accurate sources, but the

precise sources may make mistakes as well. Therefore, neither

the consideration that all sources are alike, nor the taking of

all data from specific sources without verification, is

appropriate. The work in [21], [22] and [23] propose to

examine the accuracy of sources when deciding real values

through probabilistic models that calculate the iterative

accuracy of sources.

Second, the real world is dynamic and the real value often

changes over time, but it is difficult to distinguish between

incorrect values and out-of-date values. Thus, the most

common value may be a value exceeded, while the most

recent value may be a wrong value. In [24], authors propose a

probabilistic model integrating the concept of freshness of the

sources in order to solve the problem of finding the correct

values.

Third, sources can integrate instances from other sources.

As a result, errors can spread quickly. Thus, the negligence of

possible dependencies between sources can lead to biased

decisions because of the copied information. The proposal

presented in [25] and [26] take into account dependencies

between the sources during the discovery of the correct values.

They use algorithms detecting iteratively dependency

between sources.

III. RECONCILIATION OF QUERY RESULT

Our architecture is composed of five components, namely:

(1) a user interface; (2) an OBDB; (3) a cashing manager; (4)

a query engine; and (5) a reconciliator of results [27], [28].

(1) The user interface allows the user to express his query

and is responsible of displaying corresponding results.

(2) The used OBDB adopts the OntoDB model with

extensions of the meta-schema as presented in [13] and [29].

Our proposal consists of adding a model of mapping

between the mediator ontology and sources ontologies to the

meta-schema of the OntoDB model. In the ontology part we

store the mediator ontology, sources ontologies, the mapping

and the functional dependencies between the classes and

properties of the mediator ontology. We use the data part as

cashing, in which we save the results of recently queries in

order to a future re-use.

(3) The cashing manager allows three functionalities: (i)

identifying a class instances present in the cashing after a

request of the query engine; (ii) consulting the cashing to form

the answer to a query after a request of the reconciliator; and

(iii) updating the cashing after the execution of a query.

(4) The query engine identifies the instances present in the

cashing in order to devise the user query into two queries, the

first is executable on the cashing and the second will be sent to

the sources. It rewrites the second query written in terms of

the mediator ontology into a query written in terms of sources

ontologies using the mapping. It generates then the query

reconciliation plan. It sends each sub-query to the concerned

source and sends the query reconciliation plan to the

reconciliator.

(5) The reconciliator recomposes the results returned by the

different wrappers after consultation of the cashing and the

query reconciliation plan.

The reconciliation of result coming from a source and the

global result can be performed by Algorithm 1. This

algorithm takes each instance from the source result and

checks if there is an instance which can be reconciled with it

in the global result. If such instance exists, the algorithm

merges the properties values of the two instances in a single

instance in the global result; otherwise, the instance of the

source is added to the global result as a new instance.

A. Reconciliation Using Arrays

To reconcile the result coming from a source with the

International Journal of Machine Learning and Computing, Vol. 8, No. 4, August 2018

320

global result, we must look over the nS instances of the source

result (line (1) of the Algorithm 1), implying a complexity of

O(n). For each source instance we must look over the nG

instances of the global result looking for this instance (line (2)

of the Algorithm 1), implying a complexity of O(n). The

reconciliation therefore requires a time equal to nS × nG

iterations, a complexity of O(n
2
). The reconciliation of results

coming from n sources requires a time equal to nS × nG × n

iterations, a complexity of O(n
3
).

Algorithm 1 – Reconciliation of a source result

Input: KR: Reconciliation key;

ans(Qi
Sj) : Source result;

R: Global result;

Output: R: Global result;

Begin

(1): For each i2 ans(Qi
Sj) do

(2): If i1 R Reconcile(i1, i2) Then

i1 = FusionOf (i1, i2);

Else

Add i2 to R;

End If

End For

End

B. Reconciliation Using Hash Maps

Using a hash map to store intermediate results can look

over instances of global result in search of an instance in a

time equal to one iteration instead of nG iterations, implying a

complexity of O(1). So, the reconciliation of result coming

from n sources requires a time equal to nS × 1 × n iterations,

implying a complexity of O(n
2
).

As nG and nS are very large compared to n, so:

nS × nG × n >> nS × n

This involves that the use of hash map saves a very

considerable process time.

IV. EXPERIMENTS

In this experiment we begin first with the presentation of

the test data preparation. We present later, the response time

of queries when we use arrays to store intermediate data. We

then present, the response time of queries when hash maps are

used. Finally, we make a comparison between these two

response times to validate our choice.

A. Test Data Preparation

To measure the efficiency of our proposition, we conduct

experiments using dataset of Lehigh University Benchmark

(LUBM) and its 14 queries
2
. The used ontology of LUBM has

45 classes and 32 properties (including 25 object properties

and 7 data type properties). Based on this ontology a set of

ontology-based databases is generated. The experimental

protocol used is described as follows:

1) Generation of 30 sources (OWL files) based on the

LUBM benchmark ontology using the data generation

tool UBA 1.7.

2) Recuperation of data sources (OWL files) in a database

(BaseTriplets) as triplets (Subject, Predicate, object)

2 http://swat.cse.lehigh.edu/projects/lubm/

using the knowledge base management system ontowiki
3
.

3) Creation of a database schema from the univ-bench.owl

ontology.

4) Transformation of the database schema into an ontology

based database conforming to OntoDB model.

5) Insertion of the univ-bench.owl ontology in a starting

ontology based database OBDB_Init.

6) Creation of 60 ontology-based databases (obdb1, ...,

obdb60) from OBDB_Init.

7) Importation of data to sources from BaseTriplets

containing triplets.

8) Creation of a mediator and importation of the

univ-bench.owl ontology to it.

9) Integration of the 60 ontology-based databases in the

mediator.

10) Execution of the 14 queries over 10, 20, 30, 30, 40, 50 and

60 databases.

All experiments have been carried out on an Intel platform,

with 3.2 GHz processor clock frequency, under the Windows

operating system.

B. Using Arrays

We implemented our first prototypes using the "array" data

structure. We conducted a series of tests on the collection of

generated data. Experiments are performed on a set of 60

ontology-based databases, each contains a table

Students(personId, name, address, age). The number of

instance of the table Students is varied using: 128, 1024,

16384 and 131072 instances.

The following query is executed over 10, 20, 30, 40, 50 and

60 databases:

SELECT name, address FROM Students WHERE name like "...%"

We recorded two different times: (1) The response time of

the query before the results reconciliation and (2) the response

time of the query after the results reconciliation.

The aim of these experiments is to compare the results

reconciliation related to the query execution time.

We compared the response time of queries for tables

containing 128, 1024, 16380 and 131072 instances. We

varied the number of query result of 4, 64, 256 and all table

instances.

Fig. 1. Response time of a query whose the result contains 4 instances when

using arrays.

Fig. 1, Fig. 2 and Fig. 3 respectively show the results for

3 www.ontowiki.net

International Journal of Machine Learning and Computing, Vol. 8, No. 4, August 2018

321

queries whose response contains 4, 64 and 256 instances.

These figures show that the response time increases rapidly

when the number of instances that contains the query

increases. This implies that the choice of using arrays was an

inappropriate choice.

Fig. 2. Response time of a query whose the result contains 64 instances when

using arrays.

Fig. 3. Response time of a query whose the result contains 256 instances

when using arrays.

C. Using Hash Maps

We performed the same tests as before using hash maps.

By using the hash maps structure, the response time after

reconciliation has significantly improved to a point where the

difference between the time without reconciliation and after

reconciliation is negligible except when the query result from

each source contains more than 1000 instances.

Fig. 4. Response time of a query whose the result contains 256 instances

when using hash maps.

Fig. 4 (respectively Fig. 5) shows the results for queries

whose response contains 256 instances (respectively 16380).

We notice that the response time increases very slowly when

the number of instances containing the query increases. This

implies that the choice of using hash maps can be considered

as a good choice.

Fig. 5. Response time of a query whose the result contains 16380 instances

when using hash maps.

D. Comparing Response Times by Using Arrays vs Hash

Maps

Fig. 6 shows a comparison of a query response times

related to the use of arrays and those related to hash maps. The

two queries results contain 16380 instances.

This figure clearly shows a large divergence between the

two curves, which confirms that hash maps structures are

much better than using arrays in our context.

Fig. 6. Comparison between response times related to the use of arrays and

hash maps for a query result containing 16380 instances.

V. CONCLUSION

The last and crucial phase in a data integration system is the

result fusion. The needed time to achieve this phase defines

the efficiency of such system. To improve the reconciliation

of our integration system that used the “array” data structure

to store the reconciliation intermediate results, we proposed

to change the “array” data structure by the “hash map” data

structure which provides a reconciliation runtime much less.

We have demonstrated the effectiveness of this choice

theoretically and through performed experiments comparison.

An improvement can be done in the future is to implement

more technical for data fusion.

REFERENCES

[1] A. Doan, A. Y. Halevy, and Z. G. Ives, Principles of Data Integration,

2012.

International Journal of Machine Learning and Computing, Vol. 8, No. 4, August 2018

322

International Journal of Machine Learning and Computing, Vol. 8, No. 4, August 2018

323

[2] A. Gusmini and M. Leida, “Data integration system,” U.S. Patent

0,006,968 A1, January 3, 2013.

[3] A. D. Sarma, X. L. Dong, and A. Y. Halevy, “Data integration with

dependent sources,” in Proc. 14th International Conference on

Extending Database Technology, Uppsala, Sweden, 2011, pp.

401–412.

[4] A. Y. Halevy, N. Ashish, D. Bitton, M. J. Carey, D. Draper, J. Pollock,

A. Rosenthal, and V. Sikka, “Entreprise information integration:

successes, challenges and controversies,” SIGMOD, pp. 778–787,

2005.

[5] C. Goh, S. Bressan, E. Madnick, and M. D. Siegel, “Context

interchange: New features and formalisms for the intelligent

integration of information,” ACM Transactions on Information

Systems, vol. 17, no. 3, pp. 270–293, 1999.

[6] E. Mena, V. Kashyap, A. P. Sheth, and A. Illarramendi, “Observer: An

approach for query processing in global information systems based on

interoperation across pre-existing ontologies,” CoopIS pp. 14–25,

1996.

[7] D. N. Xuan, L. Bellatreche, and G. Pierra, “A versioning management

model for ontology-based data warehouses,” in Proc. the International

Conference on Data Warehousing and Knowledge Discovery, Krakow,

Poland, 2006, pp. 195–206.

[8] ISO13584-25: Industrial automation systems and integration - parts

library - part 25: Logical resource: Logical model of supplier library

with aggregate values and explicit content. Technical report,

International Standards Organization, Genève, 2004.

[9] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K.

Wilkinson, “Jena: implementing the semantic web recommendations,”

in Proc. the 13th international World Wide Web Conference, New

York, USA, 2004, pp. 74–83.

[10] J. Broekstra, A. Kampman, and F. van Harmelen, “Sesame: A generic

architecture for storing and querying rdf and rdf schema,” in Proc.

International Semantic Web Conference, Springer, Sardinia, Italy,

2002, pp. 54–68.

[11] S. Das, E. I. Chong, G. Eadon, and J. Srinivasan, “Supporting

ontology-based semantic matching in RDBMS,” in Proc. the

International Conference on Very Large Databases, Toronto, Canada,

2004, pp. 1054–1065.

[12] J. Lu, L. Ma, L. Zhang, J.-S. Brunner, C. Wang, Y. Pan, and Y. Yu,

“Sor: a practical system for ontology storage, reasoning and search,” in

Proc. the International Conference on Very Large Databases, Vienna,

Austria, 2007, pp. 1402–1405.

[13] A. Bakhtouchi, L. Bellatreche, S. Jean and Y. Aït-Ameur, “MIRSOFT:

mediator for integrating and reconciling sources using ontological

functional dependencies” International Journal of Web and Grid

Services, vol. 8, no. 1, pp. 72-110, 2012.

[14] L. Bellatreche, Y. Aït-Ameur, and C. Chakroun, “A design

methodology of ontology based database applications,” Logic Journal

of the IGPL, vol. 19, no. 5, pp. 648–665, 2011.

[15] A. Bakhtouchi, “Annotation des propriétés des ontologies: Une

approche d’optimisation des requêtes sur un médiateur de sources de

données à base ontologique,”Technique et Science Informatiques,

Revue des Sciences et Technologies de L'information, vol. 33, no. 4,

pp. 371-398, 2014.

[16] A. Bakhtouchi “Méthodes de réconciliation et de fusion des données:

un survey,” in Proc. 6th International Conference on Software

Engineering and New Technologies, Hammamet, Tunisia, 2017.

[17] D. X. Luna and D. Srivastava, “Big data integration,” Synthesis

Lectures on Data Management, vol. 7, no. 1, pp. 1-198, 2015.

[18] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on

large clusters,” 2008, Communications of the ACM, vol. 51, no. 1, pp.

107-113.

[19] G. Anja, X. L. Dong, and D. Srivastava, “Incremental record

linkage,” in Proc. the VLDB Endowment, vol. 7, no. 9, pp. 697-708,

2014.

[20] D. X. Luna and F. Naumann, “Data fusion: Resolving data conflicts for

integration,” in Proc. the VLDB Endowment, vol. 2, no. 2, 2009, pp.

1654-1655.

[21] X. Yin, J. Han, and S. Y. Philip, “Truth discovery with multiple

conflicting information providers on the web,” IEEE Transactions on

Knowledge and Data Engineering, vol. 20, no. 6, pp. 796-808, 2008

[22] M. J. Wu and A. Marian, “Corroborating answers from multiple web

sources,” WebDB, 2007.

[23] S. A. Das, X. L. Dong, and A. Halevy, “Data integration with

dependent sources,” in Proc. the 14th International Conference on

Extending Database Technology, ACM, 2011.

[24] X. L. Dong, B.-E. Laure, and D. Srivastava, “Truth discovery and

copying detection in a dynamic world,” Proceedings of the VLDB

Endowment, vol. 2, no. 1, pp. 562-573, 2009.

[25] B.-E. Laure et al., “Sailing the information ocean with awareness of

currents: Discovery and application of source dependence,” arXiv

preprint arXiv:0909.1776, 2009.

[26] X. L. Dong, B.-E. Laure, and D. Srivastava. “Integrating conflicting

data: the role of source dependence,”Proceedings of the VLDB

Endowmen , vol. 2, no. 1, pp. 550-561, 2009.

[27] A. Bakhtouchi, “Intégration et réconciliation des données hétérogènes:

Une approche ontologique dans une architecture de médiation,”

Presses Académiques Francophones, 2013.

[28] A. Bakhtouchi, L. Bellatreche, S. Jean, and Y. Aït-Ameur, “Ontologies

as a solution for simultaneously integrating and reconciliating data

sources,” in Proc. Sixth International Conference on Research

Challenges in Information Science (RCIS), 2012, pp. 1-12.

[29] A. Bakhtouchi, C. Chakroun, L. Bellatreche, and Y. Aït-Ameur,

“Mediated data integration systems using functional dependencies

embedded in ontologies,” Book Chapter by Springer Verlag in Recent

Trends Information Reuse and Integration Book, pp. 227-256, 2011.

Abdelghani Bakhtouchi was born in Algeria in 1977.

He received a PhD degree in computer science from

Ecole nationale Supérieure d’Informatique (ESI),

Algiers, Algeria, in 2013. He received a master’s

degree in computer science from the same school in

2007. He received an engineer’s degree in computer

science from Ecole Militaire Polytechnique (EMP),

Algiers, Algeria, in 2001. He has more than sixteen

years of teaching, research and industry experience. He has various

publications and worked for committees in national and international

journals and conferences. His current interest includes data integration and

sentiment analysis.

M’hamed Mataoui was born in Algeria in 1979. He

received a PhD degree in computer science from

Université M'Hamed Bougara de Boumerdès

(UMBB), Algeria, in 2016. He received a master’s

degree in computer science from the same university in

2007. He received an engineer’s degree in computer

science from Ecole Militaire Polytechnique (EMP),

Algiers, Algeria, in 2003. He has more than fifteen

years of teaching, research and industry experience. He has various

publications and worked for many committees in national and international

conferences. His current interest includes information retrieval, natural

language processing and sentiment analysis.

