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Abstract—Differential evolution (DE) is among the more 

prominent branch of evolutionary algorithm (EA) innovated 

for multiple optimization properties. It has been improvised in 

various practical solutions, whether it is for benchmark testing 

or real world situations. As compared with other stochastic 

optimization algorithms such as nature inspired algorithms 

and evolutionary ones, DE possesses savvy traits in terms of 

exploration and exploitation within its own domain. With its 

motives of locating optimal points and minimized solution steps 

for objective functions, DE relied heavily on the necessity to 

specify parameter settings that is catered for achieving 

appropriate convergence values. The exhibited parameter 

value is seen directly correlated with the quality of the 

solutions for the underlying optimization problem. However, 

selection of appropriate parameter values occasionally 

necessitate for a priori experience and problem dependent on 

user. In most cases, users emphasize more on solving the 

optimization problem rather than solving the algorithm itself. 

Besides that, research work related to parameter study in DE 

lacks of proper and clear guidance to users. Therefore, there is 

a need to develop a DE which can adaptively determine the 

appropriate parameters to solve different optimization 

problems with minimum guidance from users. In this research, 

we take the opportunity to develop a DE model which 

combines self-adaptive and ensemble mechanisms to 

dynamically change the control parameters as well as mutation 

strategy during evolution with minimum intervention from 

users. The experimental results have shown that the proposed 

model is able to perform adequately well in twenty different 

benchmark problems without depending on user to determine 

the parameters explicitly. 

 
Index Terms—Differential evolution, parameters, mutation 

strategy, self-adaptive. 

 

I. INTRODUCTION 

A consistent pattern of trend rising in consecutive years 

since the introduction of DE into the field of EAs by Storn 

and Price [1] towards rectifying problems associating with 

optimization problems, where among the main factors that 

contribute to this could be seen in the robust, simplicity and 

reliability that DE constitutes to deal with non-differentiable 

and multi-modal optimization problems. Just like any EA, 

the effectiveness of DE relies on the setting on two main 

components, i.e., mutation strategies and control parameters. 

Mutation strategies refers to ways that population vectors 
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being selected to go through differential mutation process. 

Control parameters refers to population size, scale factor and 

crossover rate. In this regard, the setting of mutation 

strategies and control parameter influences the generation of 

potential population vectors which are the potential 

solutions of an optimization problem. Therefore, users who 

like to use DE to solve an optimization problem need to first 

find the good settings for the control parameters as well as 

mutation strategy. 

To use DE appropriately, users need to equip themselves 

with some knowledge and experiences because selection of 

relevant parameters in DE is very task dependent [2], [3]. 

Even guidance is provided in selecting control parameters of 

DE, but the guidance could either be lacking in justification 

or causing conflicting results [2]. Besides that, most of the 

researches focus specifically on the setting of crossover rate 

and scale factor but only a few are on population size. The 

research on setting mutation strategy is even less. Therefore, 

the common approach adopted by DE users is the trial-and-

error method [2], [3]. The approach is time consuming but 

there is no guarantee that the optimal solutions are obtained. 

In reality, most of the DE users are interested to solve the 

underlying optimization problem only rather than the 

algorithm itself. Therefore, the main objective of our 

research it to find a solution that enable DE to operate by 

itself with minimum intervention from users in parameter 

setting but still perform adequately. This means that the 

proposed DE can adaptively determine the appropriate 

population size, crossover rate scale factor as well as 

mutation strategy to solve different optimization problems. 

Another potential advantage of our proposed DE is that 

the model could still produce optimal solutions as close as 

possible to the global optimal solutions even if they have 

been shifted or changed over time. When there is a change 

in the underlying optimization problem, the previous set of 

parameters may not be appropriate anymore to find the 

shifted global optimal points. In our proposed DE model, we 

use both self-adaptive and ensemble mechanisms to find the 

appropriate set of control parameters and mutation strategy. 

The implementation of the mechanisms are described in 

Section III. With the proposed mechanisms, different values 

of population size, crossover rate scale factor as well as 

mutation strategy are used in different stages of evolution. 

Owing to this, we are interested to know that whether the 

proposed DE model can still perform as adequate of some of 

the existing models such as differential evolution in relative 

coding (DE-Rel) and an ensemble of mutation strategies and 

control parameters with the differential evolution (ESPDE). 

The rest of this paper is organized as follows. Section II 

describes related work to DE. Section III presents the 

methodology of our proposed DE model and Section IV 

describes the experimental setup. Discussion of the 

experimental results through the analysis methodology 
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follows in Section V. Finally, Section VI presents 

conclusions and future work. 

 

II. LITERATURE REVIEW 

Computational intelligence-based techniques is regarded 

as practical and powerful solution schemes to obtain the 

global or quasi-global optimum solution to engineering 

optimization problems [4]. There is a rose in need for 

algorithms that perform well on designating multiple 

problems simultaneously [5]. EA is adept in identifying 

multiple solution within a population in a single simulation 

run and possesses a clear advantage over the classical 

optimization technique [6]. It can be used to resolve 

optimization problems which can be either single objective, 

multi-objectives and constrained optimization problems. 

DE has an edge over relative EAs in terms of floating- 

point encoding aside with lead combinations of evolutionary 

operators, mutation step size adaptation, and elitist selection 

[7]. The success of DE is contributed by its two-phase 

operation, i.e., exploration and exploitation. Exploration is 

about exploring the search space for good solutions, while 

exploitation is about refining the solutions. The two-phase 

operation highly depends on the parameter setting of 

crossover rate (CR) and scale factor (F). 

Parameter setting is a debatable subject that is crucial in 

propagating better values for discovering proper solution 

steps. For the control parameters CR and F, there is no so 

called distinctive rules to set their values but the setting 

affects the functionality of DE [8]. For example, a large 

value of F increases the exploration ability but decreases the 

exploitation ability and vice versa. In contrast, an increase 

in CR deteriorates the quality of optimal solutions while a 

decrease causes the algorithm to be stagnant. The 

importance F and CR in affecting the convergence velocity 

and robustness of the search process is tested by preserving 

a fixed population size and scale factor to prevent premature 

convergence and stagnation [9]. 

A variant DE algorithm modified slightly at mutation, 

crossover, and selection is applied to analyze the 

relationship between control parameters for DE algorithms 

and the evolution of population variance from theoretical 

and empirical viewpoint [10]. The poor behavior of DE for 

multimodal problems is also addressed by observation on 

the crossover types on the evolution steps behavior [10]. 

The work in [11] had summarized self-adaptive ensemble 

in assessing multiple optimization and redesign when it is 

assigned to real world problems or other evolutionary 

algorithms. It is interesting to note that population size (NP) 

and constraint handling methods plays a pivotal role in 

determining superiority of feasible solutions and the speed 

of convergence rate in which it occurs across dynamic 

dimensionality and ranges. However, an increase in NP 

takes more objective evaluations to generate the same effect 

[12]. Adaptive population tuning scheme for DE had been 

proposed to dynamically adjust the population size based on 

the solution-searching status, the desired population 

distribution for children generation strategies and parameter 

adaptation mechanisms [13]. However, the adaptive 

population tuning scheme involves more user-defined 

variables. 

The nature of optimization problems such as noise and 

high dimensionality also affects parameter setting [8]. 

Higher dimensionality in an optimization problem requires 

higher values of NP. Dealing with noisy optimization 

problems, a constant F for the whole evolution is not 

sufficient to search for good solutions [14]. Using low 

values of CR when the objective function is multi-modal 

and non-separable can cause the search to take longer than a 

simple random search [15]. However in reality, users hardly 

know in advance the nature of the problems that they deal 

with. 

Exploration of parameter adaptation schemes has been 

emphasized in overcoming deficiencies in mutation 

strategies, such as premature convergence, stagnation, and 

computational resource wastage [16]. It is shown in [2] that 

dynamic setting of control parameters as well as mutation 

strategy are required in different stages of evolution to 

ensure adequate performance. 

One of the procedures introduced in tackling dynamic 

parameter adaptation for optimizing solution steps in DE is 

via inducing self-adaptive strategy on structural components. 

This feature is generated in terms of changeover for 

structure, flow, or genetic component. Among the selected 

few approaches that execute self-adaptive methodology are 

summarized by [5], [17]-[19] and the work shows that 

selection of appropriate strategies can be adaptively adjusted 

to solve constraint and multi-objective optimization 

problems. Trade-off involving self-adaptive measures lies in 

the limited number of fitness solutions that could be 

deployed, along with higher computation cost in terms of 

longer time consumption. 

Another example of self-adaptive DE based on structural 

components can be found in [20]. The self-adaptive strategy 

are applied on F and CR but the setting of NP still depends 

on users. Besides that, another two parameters, τ1 and τ2 are 

introduced in [20] in the self-adaptive DE which require 

users to pre-determine the appropriate values. Additional 

two parameters τ1 and τ2 into existing number of parameters 

of DE increases the complexity of parameter tuning process. 

The work in [21] extends the adaptation scheme to adjust 

NP in DE. Based on the adaptation scheme, two DE models 

known as differential evolution in absolute encoding (DE-

Abs) and DE-Rel are produced. For both DE-Abs and DE-

Rel, users still need to determine the appropriate values of 

F and CR. 

Ensemble-based DE could be reviewed as another 

dynamic attempt to accommodate the mutation and 

crossovers strategies in a more compact environment, whilst 

maintaining a steady convergence rate. Ensemble learning 

paradigm is seen applicable to rectify complex data series 

for data categories with wider degree of unpredictability and 

irregularity. Stated in [11], [16], [22]-[24], ensemble 

methods is beneficial in encouraging better convergence rate 

for larger population. Ensemble-based approach enables DE 

to determine its own parameter control therefore adjusting it 

to accommodate the most potential solution, usually within a 

predicted range. Mallipeddi and Suganthan also had stressed 

out the impact of population size, dimensionality, and 

mutation strategies in terms of leveraging the convergence 

rate and computational [24].  

 Based on the research that have been conducted so far, 
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we know that setting of F, CR and NP influences the 

generation of solution space, which eventually affects the 

convergence and robustness of DE in problem solving. A 

proper balance of parameter tuning between CR and F is 

required in the exploration and exploitation phases. During 

the evolution, parameter tuning can be performed as a 

counter strategy for error that might arose from the 

exploration of search space. Exploitation step can also 

administered in order to solve problems and obtaining 

solutions that would thrive longer. To address the problem, 

various DE’s parameter selection methods are indeed 

suggested and the related work has been summarized in [2], 

[3]. Even though some ranges for the control parameters and 

their pre-conditions are suggested by the researchers, there 

is no clear and consistent justification for the setting. An 

adequate NP is needed to balance the trade-off between 

convergence and computation cost [13]. A large NP can 

extend the exploration space and increases the possibilities 

of finding good solutions. However, the evolution suffers 

from an undesirable and high computational cost. In contrast, 

an insufficient NP may cause premature convergence and 

local saturations. 

The summarizations in [2], [3] also show that there is  no 

adaptation strategy involving all control parameters and 

mutation strategy simultaneously. Besides that, the area is 

lack of research focusing on the adaptation scheme for either 

NP or mutation strategy, M. 

Intervention from users to tune the control parameters 

during the evolution is required to balance the exploration 

and exploitation phases but the process requires a swift time 

consumption. However, selection of appropriate parameter 

values occasionally necessitate for a priori experience and 

problem dependent on user. Trade-off usually ensues 

between exploration and exploitation where selection of 

relevant control parameter and strategies remain ambiguous 

and arduous. Since both self-adaptive strategy and ensemble 

have shown promising result to set control parameters and 

mutation strategy, we would like to investigate their 

potential if they are integrated as a unifying scheme to 

adjust the control parameters as well as mutation strategy. In 

our research, we integrate the adaptation scheme from DE-

Rel [21] to determine NP and ensemble from ESPDE [2] to 

determine CR, F and M in our DE model. 

 

III. METHODOLOGY 

We called our DE model as Self Adaptive Ensemble- 

based Differential Evolution or SAEDE owing to the use of 

self-adaptive and ensemble mechanisms to set the relevant 

parameters for each generation. Self-adaptation refers to 

evolution of solution encoded into chromosomes. On the 

other hand, an ensemble refers to a method constructing the 

final solution from a set of solutions based on consensus. In 

our model, self-adaptation is used to determine the value of 

NP while ensemble is used to determine the values of F, CR 

and M at each generation. The concept of using both self- 

adaptation and ensemble comes from two DE models 

known as DE-Rel [21] and ESPDE [2]. For DE-Rel, it can 

adaptively determine NP for each generation but the 

values of CR and F are held constant in the evolution. On 

the other hand, ESPDE uses ensemble to determine the 

combination of CR, F and M in different stages of evolution 

but NP is held constant. 

Similar to DE-Rel, the chromosome in SAEDE is 

represented by a parameter vector, zi,g = xi,g, yi,g as shown 

in Fig. 1, with i = 1, 2, ..., NPg. Here, NPg refers to 

population size at generation-g and it varies across 

generations. xi,g consists of a D-dimensional vector 

which represents the solution-i for an optimization problem 

at generation-g, i.e., xi,g = {x
1
 ,· · · , x

D
}. The variable yi, g 

refers to the population size’s growth rate associated with 

individual-i at generation-g. 

 
Fig. 1. Chromosome representations for SAEDE. 

 

The initial j-th decision variable of the i-th solution at 

generation, g = 0 is generated within the search space 

constrained by the prescribed minimum and maximum 

decision variable’s bounds xmin = {𝑥𝑚𝑖𝑛
1 ,…, 𝑥𝑚𝑖𝑛

𝐷 } and xmax 

= {𝑥𝑚𝑎𝑥
1 ,…, 𝑥𝑚𝑎𝑥

𝐷 } as shown in Equation 3. The initial NPg 

at generation g = 0 is generated within the range of the 

prescribed minimum and maximum bounds of [10D, 100D]. 

After initialization, the population of yi,g of generation-g 

determines the population size of next generation, NPg+1. 

The population size’s growth rate for generation-g + 1, yg+1 

is determined by taking the average of the population yi, g as 

shown in Equation 1. Then, yg+1 is used to calculate the 

value of NPg+1 for SAEDE based on Equation 1. If the NPg+1 

is larger than NPg, a number of solutions are randomly 

generated within their respective bounds to fulfill population 

size N Pg+1. However, if NPg+1 is smaller than NPg, a number 

of least fit solutions are deleted to meet population size 

NPg+1.  

𝑦𝑔+1 =  𝑖𝑛𝑡  
𝑦1,𝑔+𝑦2,𝑔+⋯+𝑦𝑁𝑃 𝐺 ,𝑔

𝑦𝑔
+ 0.5                (1) 

 

𝑁𝑃𝑔+1 =  𝑖𝑛𝑡  𝑦𝑔+1 ∗ 𝑁𝑃𝑔 + 𝑁𝑃𝑔 + 0.5       (2) 

 

𝐱𝑖,0 = 𝑥𝑚𝑖𝑛
𝑗

+ 𝑟𝑎𝑛𝑑 0,1 ∗      𝑗 = 1,2,⋯ , 𝐷    (3) 

          𝑥𝑚𝑎𝑥
𝑗

− 𝑥𝑚𝑖𝑛
𝑗

       
 

Similar to original DE, the population of individuals in 

SAEDE evolves over generations through mutation, 

crossover and selection. However, SAEDE does not use 

constant CR, F and M as commonly practiced in original 

DE. Instead, SAEDE dynamically changes the control 

parameters and mutation strategy as demonstrated in ESPDE. 

The term of control parameters refers to CR and F only. 

For EPSDE, CR is taken in the range 0.1-0.9 in steps of 0.1 
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while F is taken in the range 0.4-0.9 in steps of 0.1 as 

suggested in [2]. Since there are 9 and 5 options for the setting 

of CR and F respectively, the total combinations of CR and F 

are 45 (9 × 5). For crossover schemes, EPSDE has 3 mutation 

strategies as suggested in [2]. The same mutation strategies are 

included in SAEDE, i.e., {DE/rand/1/bin, DE/best/2/bin, 

DE/current-to-rand/1/bin}.The options of crossover schemes 

are shown in Table I. Therefore, EPSDE contains 135 (45 x 3) 

configurations of mutation strategy and control parameters in 

the pool. Setting of the mutation strategy and control 

parameters across the generations are chosen from the pool of 

135 configurations.  
 

TABLE I: SETTINGS OF CONTROL PARAMETERS AND MUTATION 

STRATEGIES FOR DIFFERENT DES 

Settings SAEDE EPSDE DE-Rel 

NP [10D, 100D] 10D [10D, 100D] 

CR [0.1:0.1:0.9] [0.1:0.1:0.9] 0.5 

F [0.4:0.1:0.9] [0.4:0.1:0.9] 0.5 

strategy {DE/rand/1/bin, 

DE/best/2/bin, 

DE/current-to-

rand/1/bin} 

{DE/rand/1/bin, 

DE/best/2/bin, 

DE/current-to-

rand/1/bin} 

DE/rand/1/bin 

 

Initially, each target vector zi, g in the initial population is 

randomly assigned with a configuration of mutation strategy 

and control parameters. This means the mutation and 

crossover operations experienced by the target vectors depend 

on the assigned configurations. The CR, F and mutation 

strategy associated with the i-solution at generation-g are 

denoted as CRi,g, Fi,g and Mi, g respectively. At generation-g, 

the individuals in current population, Pz are known as target 

vector and they are correspond to xi,g, yi,g. Corresponding to 

each target vector xi, g, a mutant vector, vi, g = {v
1
, · · · , v

D
 } is 

produced through the differential mutation operation. The 

same differential mutation operation is also extended to the 

last gene in each chromosome corresponding to yi,g to produce 

a mutant scalar, ẏi,g . The differential mutation operation adds a 

scaled, randomly sampled, vector difference to a third vector 

as shown in Equation 4 to Equation 6. At this stage, the 

population is called intermediary population, Pż = żi,g = {vi,g , 

ẏi,g}. 

The associated Fi,g is used in the differential mutation 

operation to control the rate at which zi,g evolves. Three 

mutation strategies used in SAEDE are shown in Equation 4 to 

Equation 6. Each vector in the current population, Pz is then 

combined with a mutant vector based on the setting of CRi, g 

to produce trial vector ui, g = {u
1
, · · · , u

D
} based on Equation 7 

and trial scalar ÿi g  based on Equation 7. As a result, a trial 

population Pz̈ = z̈i,g = {ui,g , ÿi g}is produced. During mutation 

and crossover operations, if any decision variables value of 

newly generated trial vectors exceeds their corresponding 

upper or lower bounds, then they are re-initialized randomly 

and uniformly within the pre- specified range until they fall 

within the bounds.  

DE best 2   25 : 𝒛 𝑖 ,𝑔 = 𝒛𝑏𝑒𝑠𝑡 ,𝑔 + 𝐹  𝒛
𝑟1
𝑖 ,𝑔

− 𝒛
𝑟2
𝑖 ,𝑔
     (4) 

+𝐹  𝒛𝑟3
𝑖 ,𝑔 − 𝒛𝑟4

𝑖 ,𝑔  

DE rand 1   25 : 𝒛 𝑖 ,𝑔 = 𝒛𝑟1
𝑖 ,𝑔 + 𝐹  𝒛𝑟2

𝑖 ,𝑔 − 𝒛𝑟3
𝑖 ,𝑔     (5) 

𝐷𝐸 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑟𝑎𝑛𝑑 1   26 : 𝒛 𝑖 ,𝑔 = 𝒛𝑟1
𝑖 ,𝑔 +       (6) 

+𝐾  𝒛
𝑟1
𝑖 ,𝑔

− 𝒛
𝑟2
𝑖 ,𝑔
 + 𝐹  𝒛

𝑟3
𝑖 ,𝑔

− 𝒛
𝑟4
𝑖 ,𝑔
  

𝑢𝑖,𝑔
𝑗

=

 
 
 

 
 𝑣𝑖 ,𝑔

𝑗
, if(𝑟𝑎𝑛𝑑𝑗 [0,1] ≤ 𝐶𝑅𝑖,𝑔)

or  𝑗 = 𝑗𝑟𝑎𝑛𝑑     
                    𝑗 = 1,2,⋯ , 𝐷

𝑥𝑖 ,𝑔
𝑗

,  otherwise

          (7) 

𝑦 𝑖 ,𝑔 =  

𝑦 𝑖,𝑔 , if(𝑟𝑎𝑛𝑑𝑗 [0,1] ≤ 𝐶𝑅𝑖,𝑔   𝑗 = 𝐷 + 1
                    

𝑦𝑖 ,𝑔 , otherwise

           (8) 

 

During selection, the objective function of all trial 

vectors ui, g are evaluated. In a minimization problem, if the 

objective function of a trial vector, f (ui,g) ≤ f (xi,g), it 

replaces the target vector in the next generation; otherwise, 

the target vector retains its place in the population as 

shown in Equation 9 to Equation 10 . At the same time, 

the configurations associated in the production of trial 

vectors are evaluated. If the generated trial vector 

produce better objective function that its target vector, 

then the associated configuration of mutation strategy and 

control parameters will be retained in the next generation 

and store in a successful archive, A. Otherwise, if the 

target vector has better objective function than its trial 

vector, the associated configuration of mutation strategy 

and control parameters will be randomly re-initialized 

with a new configuration or randomly chosen from the 

available configurations from the successful archive. The 

genetic operations of mutation, crossover and selection 

are repeated generation after generation until stopping 

criterion is satisfied. 

Therefore, SAEDE combines the autonomous procedures 

of setting control parameters, mutations strategies from 

EPSDE and population size from DE-Rel. This means that the 

values of F, CR, NP and M will be automatically adjusted 

across the generation with minimum intervention from users. 

𝐱𝑖,𝑔+1 =  
𝐮𝑖,𝑔 , if 𝑓 𝐮𝑖,𝑔 < 𝑓 𝐱𝑖,𝑔 

𝐱𝑖,𝑔 , otherwise
                       (9) 

𝑦𝑖 ,𝑔+1 =  
𝑦 𝑖 ,𝑔 , 𝑖𝑓 𝑓(𝐮𝑖,𝑔) < 𝑓(𝐱𝑖,𝑔)

𝑦𝑖 ,𝑔 , otherwise
         (10) 

The pseudocode of our proposed model, SAEDE is 

summarized in Algorithm 1. 

 

Algorithm 1: Pseudocode for SAEDE 

Step 1: Initialisation 

    Step 1.1 Set g = 0. Randomly initialize population size, NPg. 

    Step 1.2 Randomly initialize a population of NPg individuals, 

Pz = {zi,g,. . .,zNg,g }. 

    Step 1.3 Initialise a pool of configurations of control 

parameters and mutation strategies. 

 

Step 2: Randomly assign each population individual with a 

configuration of control parameters and mutation 

strategies.  

 

Step 3: Evolution 

while stopping criterion is not met do 

    Step 3.1 Mutation Step 

    for i = 1 to Ng do 

Generate a mutated vector vi,g = {𝑣𝑖,𝑔
1 , 𝑣𝑖,𝑔

2 , … , 𝑣𝑖,𝑔
𝐷 } and mutated 

scalar 𝑦 i,g corresponding to target vector zi,g by using the 
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configuration of control parameters and mutation strategy 

associated with the target vector 

end for 

 

    Step 3.2: Crossover 

    for i = 1 to Ng do 

        j rand=[rand[0, 1] · D] 

        for j = 1 to D do 

        Generate a trial vector ui,g = {𝑢𝑖,𝑔
1 , 𝑢𝑖,𝑔

2 , … , 𝑢𝑖,𝑔
𝐷  } for each 

target vector xi,g associated with zi,g based on Equation 9. 

    end for 

 

    for j = D+1 do 

    Generate a trial scalar 𝑦 i, g for each target scalar yi, g 

associated with zi,g based on Equation 10. 

end for  

end for 

 

    Step 3.3: Selection 

        for i = 1 to Ng do 

        if f (ui,g) ≤ f (xi,g) then 

            xi,g+1 = ui,g , yi,g+1 = 𝑦 i,g 
            f (xi,g+1) ≤ f (ui,g ) 

        Copy the configuration of control parameters and mutation 

strategy associated with the trial vector to the successful 

archive, A. 

 
        if f(ui,g) ≤ f(xbest,g) then  
            xbest,g = ui,g, ybest,g = 𝑦 i,g  
            f(xbest,g ) ≤ f(ui,g ) 
        end if 
    else 
        xi,g+1 = xi,g 

        yi,g+1 = yi,g 
    end if  
    end for 
 
    Step 3.4: Update configurations 
      for i = 1 to Ng do 
        if f(ui,g) > f(xi,g) then 
        Randomly select a new configuration of control parameters 
and mutation strategy from the pool or from the successful 
archive. 
        end if 
    end for 
 
    Step 3.5: Population size adaptation 
    for i = 1 to Ng do 
        Calculate yg+1 based on Equation 1  

        Calculate NPg+1 based on Equation 2 

    end for  

    end while 

 

IV. EXPERIMENTAL SETUP 

We would like to stress that the comparison of different 

DE models are performed under similar conditions. More 

heuristic strategies may give different results. Therefore, the 

similar experimental setups used by DE-Rel in [21] and 

EPSDE in [2] are considered in the implementation of DEs 

in our experiments. This is to minimize the nuisance factors 

affecting the results and enable the same analyses to be 

carried out for them. For ease of understanding, the settings 

of the mutation strategies and control parameters for the DE 

models are summarized in Table I. For DE-Rel, the 

DE/rand/1/bin strategy is chosen for the crossover process 

because it is the first and also the most widely used scheme 

[21], [27].  

The evolutions for all three models of DEs run 100,000 

generations (G = 100,000) and are repeated by using k-th 

seed numbers, k = 1, 2, ... , K. The same 30 seed numbers 

are used to evaluate different DEs, K = 30. The evolutionary 

processes are terminated if the best-fitness, fbest < 1 × 10
−20

, 

otherwise the processes continue until they reach G. 

In the investigation of parameter setting, the 

performances of different models of DEs are compared. 

Twenty benchmark functions in [21] are adopted to evaluate 

the DEs. A summary about the 20 benchmark function are 

shown in Table II. All functions are minimization of 

problems with their best minimum solution denoted as fmin. 

The number of variables, D involved varies from 2 to 10 and 

the ranges of variable search is represented by S. However, 

the work [28] has shown that the final results obtained by 

DEs might have a certain residual of error rather than zero 

due to the precision problem of software. This problem 

happens to function F9 in our experiments. When the actual 

optimal values are substituted into function F9, the value of 

fmin is 8.88×10
−16

 but not identical zero. This problem be 

taken into consideration into the discussion of results later. 

 

V. RESULT AND ANALYSIS 

To investigate the performances of different DEs, several 

measurements are used in the investigation such as the 

average of best-fitness, fbest, success rate (SR), hypothesis 

test and analysis of bias-variance. Details of some of the 

measurements are explained in the section later. 

When the fbest < 1  10
−20

, the evolution for this run is 

called a successful run. SR computes the number of 

successful runs against the number of independent runs. 

Therefore SR actually measure the success probability of 

DEs. The performances of DEs based on SR and fbest are 

shown in Table III. Based on the results, SAEDE achieved 

the highest but not full SR in 1 case and full SR in 16 cases. 

Therefore, SAEDE is associated the best SR in 17/20 cases 

in total. On the other hand, both ESPDE and DE-Rel have 

achieved full SR in the same 15 cases respectively. 

All of the DE models has no successful runs at all in 3 

functions, i.e., F9, F13 and F17. However, the unsuccessful 

runs in F9 may be caused by the software’s precision 

problem which has been demonstrated in [28]. The value of 

fmin for F9 is not able to achieve zero but approximately 

8.88×10−16 even though the actual optimal values are 

substituted into the function. The difference between the fbest 

obtained by all models and the actual fmin is very small, i.e., 

1.12 × 10−16. For the 2 cases in which all DEs do not 

achieve full SR, analysis bias-variance are carried out. Bias-

variance analysis is performed to evaluate how accurate and 

how consistent the prediction of the algorithms as compared 

to the actual global optimal solution. Since we do know the 

actual global optimal solution for the benchmark functions, 

such analysis can be carried out. However, the analysis of 

bias-variance is carried out to evaluate how accurate and 

how consistent of the unsuccessful runs’ solutions from the 

actual global points for DEs which do not achieve full SR. 

For the explanation on bias-variance, assumes that a single 

estimator after learning produces estimates p(x), so the 

squared error between the estimates p(x) and target function 

(t|x). 
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 𝑝 𝐱 −  𝑡 𝐱  2                                                (11) 

The squared error depends on the types of estimators, the 

setting of estimator’s control parameters and the training 

data to train estimator. The expected error produced by the 

model can be written as: 
 

𝐸{𝑝 𝐱 −  𝑡|𝐱 }2                                (12) 
 

Using some algebraic manipulation [29], equation (12) 

can be rewritten as: 

𝐸 𝑝 𝐱 −  𝑡 𝐱  2 =   𝐸 𝑝 𝐱  −  𝑡 𝐱  2             (13) 
+𝐸{𝑝(𝐱) − 𝐸[𝑝(𝐱)]}2 

The first term refers to the squared bias, and the second 

term refers to the variance. Bias measures the difference 

between the average estimate over all possible samples and 

the true function. On the other hand, the variance measures 

the difference between an estimate obtained for a sample 

and the average estimate obtained over all possible samples. 

The estimates from samples could be different due to 

training data and the setting of estimator model. Table IV 

shows the analysis of bias-variance on the best obtained 

solution for the DE models, where bias is denoted as β and 

variance are denoted as ς. 

 
TABLE II: DETAILS ON THE BENCHMARK FUNCTIONS 

Denotation Test Function D S fmin X* U/M 

F1 De Jong’s function 1 (Sphere Model) 10 [-100, -90]n 0 (0, 0, …, 0) U 

F2 De Jong’s function 2 (Rosenbrock’s Saddle) 2 [-2.048, 2.048]n 0 (1, 1) U 

F3 Camel back – three hump problem 2 [-5.0, -4.5]n 0 (0, 0) M 

F4 Becker and Lago’s problem 2 [-10, -9]n 0 (±5, 5) M 

F5 Schwefel’s problem 2.22 10 [-10, -9]n 0 (0, 0, …, 0) U 

F6 Rastragin’s function 10 [-5.120, -4.608]n 0 (0, 0, …, 0) M 

F7 Modified Rosenbrock’s problem 2 [-5.0, -4.5]n 0 (1, 1), (0.3412, 0.1164) M 

F8 Briewangk’s problem 10 [-600, -540]n 0 (0, 0, …, 0) M 

F9 Ackley’s path function 10 [-32.0, -28.8]n 0 (0, 0, …, 0) M 

F10 Bohachevsky’s problem 2 2 [-50, -48]n 0 (0, 0) M 

F11 Rotate hyper-ellipsoid function 10 [-65.5360, -58.9824]n 0 (0, 0, …, 0) U 

F12 Sum of different power problem 10 [-1.0, -0.9]n 0 (0, 0, …, 0) U 

F13 Miele and Cantrell’s problem 4 [-1.0, -0.9]n 0 (0, 1, 1, 1) M 

F14 Schaffer’s problem 1 2 [-100, -90]n 0 (0, 0) M 

F15 Moved axis parallel hyper-ellipsoid function 10 [-5.120, -4.608]n 0 (5*N, 5*N, …, 5*N) U 

F16 Helical valley problem 3 [-10, -9]n 0 (1, 0, 0) U 

F17 Salomon’s problem 10 [-100, -90]n 0 (0, 0, …, 0) M 

F18 Powell’s quadratic problem 4 [-10, -9]n 0 (0, 0, 0, 0) U 

F19 Bohachevsky’s problem 1 2 [-50, -45]n 0 (0, 0) M 

F20 Wood’s function 4 [-10, -9]n 0 (1, 1, 1, 1) U 

 
TABLE III: SR AND FBEST FOR DIFFERENT DE MODELS

Function 
SAEDE ESPDE DE-Rel 

SR f 
best SR f 

best SR f 
best 

F1 1 8.2E-21 1 7.8E-21 1 7.9E-21 

F2 1 5.5E-21 1 4.5E-21 1 6.7E-21 

F3 1 4.5E-21 1 3.8E-21 1 3.5E-21 

F4 1 4.3E-21 1 4.3E-21 1 4.3E-21 

F5 1 9.2E-21 1 8.7E-21 1 8.7E-21 

F6 1 0.00 1 0.00 1 0.00 

F7 0.8 1.7E-03 0.5 3.7E-03 0.7 2.2E-03 

F8 1 0.00 1 0.00 1 0.00 

F9 0 8.9E-16 0 8.9E-16 0 8.9E-16 

F10 1 0.00 1 0.00 1 0.00 

F11 1 8.4E-21 1 7.4E-21 1 7.9E-21 

F12 1 6.7E-21 1 6.8E-21 1 6.4E-21 

F13 0 1.0E-08 0 1.0E-08 0 1.0E-08 

F14 1 0.00 0.9 6.5E-04 0.9 9.7E-04 

F15 1 7.8E-21 1 8.3E-21 1 7.9E-21 

F16 1 6.0E-21 1 5.9E-21 1 4.9E-21 

F17 0 1.0E-01 0 1.0E-01 0 1.0E-01 

F18 1 5.7E-21 1 5.7E-21 1 6.2E-21 

F19 1 0.00 1 0.00 1 0.00 

F20 1 6.7E-21 1 6.3E-21 1 6.5E-21 

 

For function F7, the values of β for all DEs are the same. 

However, DE-Rel has the lowest variance followed by 

SAEDE and ESPDE. This means all DEs have the same 

level of accuracy but differs in terms of consistency for 

function F7. DE-Rel is the most consistent followed by 

SAEDE and ESPDE in function F7. For function F14, 

SAEDE has no unsuccessful runs but ESPDE and DE-Rel 

each has 15 and 9 unsuccessful runs respectively. Both 

ESPDE and DE-Rel has ς = 0 which means they consistently 

produce the same value of fbest for a number of repetitions. 

However, their associated fbest varies from the actual global 

optimal point by 9.72E-03 ( 9.44𝐸 − 05) in average as 

compared to SAEDE achieving fbest < 10E-20. This means 

SAEDE produces much better fbest than ESPDE and DE-Rel 

for function F14. 

For the 15 cases in which all DE models achieved full SR, 

hypothesis tests are conducted to compare whether our 

proposed SAEDE is significantly better than ESPDE and 

DE- Rel or not. A pairwise t-test is carried out at the 

significance level of 0.05 to evaluate the significance 

differences for fbest between the SAEDE–ESPDE and 

SAEDE–DE-Rel. Therefore, the hypothesis is to evaluate 

the null hypothesis that fbest of SAEDE is significantly larger 

than the other two models, against the alternative hypothesis 

that fbest of SAEDE is not larger than the other two models. 

The results of hypothesis tests for the 15 cases are shown in 

Table V. The hypothesis tests show that ESPDE and DE-Rel 

each has one case associated with significantly better fbest 

than SAEDE respectively. For functions F6, F8, F10, and 

F19, their p-values are “NaN” and it means there is no 

variance between the samples of fbest for the paired DEs. In 
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other words, the samples for the paired DEs are exactly the 

same in 4 functions. Out of 20 cases, the performances of 

our proposed SAEDE are as compatible as EPSDE and DE-

Rel in 15 cases whereby all of them achieve fbest < 1 × 10
−20

. 

 
TABLE IV: BIAS-VARIANCE FOR DIFFERENT DES

Function SAEDE ESPDE DE-Rel 

β ς β ς β ς 

F7 5.50E-05 3.01E-36 5.50E-05 6.52E-36 5.50E-05 2.01E-36 

F14 - - 9.44E-05 0.00 9.44E-05 0.00 

 
TABLE V: PAIRWISE T-TEST FOR SAEDE–ESPDE AND SAEDE– DE-REL 

FOR THE SELECTED 15 CASES

Function SAEDE-EPSDE SAEDE-DE-Rel 

p-value Reject H0 p-value Reject H0 

F1 0.19 0 0.24 0 

F2 0.10 0 0.95 0 
F3 0.20 0 0.14 0 

F4 0.52 0 0.92 0 

F5 0.06 0 0.02 1 
F6 NaN - NaN - 

F8 NaN - NaN - 

F10 NaN - NaN - 

F11 0.01 1 0.10 0 

F12 0.54 0 0.33 0 

F15 0.88 0 0.59 0 
F16 0.43 0 0.06 0 

F18 0.46 0 0.73 0 

F19 NaN - NaN - 
F20 0.27 0 0.32 0 

 

Overall, our proposed SAEDE has better SR than ESPDE 

and DE-Rel. As for the measurement based on 𝑓 𝑏𝑒𝑠𝑡,  the 

three DE models are quite compatible and it is supported 

by the hypothesis tests. The main advantage of SAEDE as 

compared to ESPDE and DE-Rel is it does not require 

explicit setting of NP, CR, F and M. 

 

VI. CONCLUSION AND FUTURE WORK 

In our work we have combined the self-adaptive scheme 

from DE-Rel and the ensemble scheme from EPSDE to 

develop SAEDE. The performances of these models are 

compared. The results show that SAEDE is slightly better in 

SR than the other two DE models and their fbest are 

compatible. The main advantage of SAEDE over the other 

DEs is it able to determine the appropriate population size, 

control parameters and mutation strategy to solve different 

benchmark functions with minimum intervention from a user. 

SAEDE uses different configurations of control and 

mutation strategy in different stages of evolution to ensure 

adequate performances. In consideration of the possible 

future work, we would like to explore other possible self-

adaptive schemes in DE and investigates their effects in 

performances specifically in problem complexity. Besides 

that, we could include other mutation strategies into the 

development of SAEDE. 
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