
 
Abstract—In this article, we propose building general-

purpose function approximators on top of Haar scattering 
networks. We advocate that this architecture enables a better 
comprehension of feature extraction, in addition to its 
implementation simplicity and low computational costs. We 
show its approximation and feature extraction capabilities in a 
wide range of different problems, which can be applied on 
several phenomena in signal processing, system identification, 
econometrics, and other potential fields. 

 
Index Terms—Scattering transforms, feature extraction, 

geometric learning, machine learning.  
 

I.   INTRODUCTION 
The field of artificial neural networks has exploded 

during the 1980s due to its universal approximation 
capabilities, as can be seen in [1], but the lack of 
understanding of the underlying statistical and geometric 
features extracted from the analyzed signal have 
significantly discouraged its use among scientists and 
researchers, as can be seen in [2], [3]. Since then, most of its 
usage has been relegated to applications where such an 
understanding can be neglected, such as computer vision, 
non-linear state-space estimators and other tasks related to 
control where the exact algorithmic approaches are 
unknown or too difficult to implement, according to [3]. 

More recently, aiming to enlighten these black-boxes, 
several approaches have been under heavy development, 
such as variables contributions in the feed-forward structure 
[4], visualization using saliency maps [5], generation of 
skeletal structures [6], fuzzy rule based evaluation of all 
permutations [3] and extraction of functional relations using 
sensitivity analysis of input data [7]. 

In a parallel way, other researchers have been 
successfully developing new kinds of feed-forward neural 
architectures that behave much more like a transparent box, 
where the extracted features can be directly evaluated and 
understood. Convolutional neural networks are a great 
example of such achievements, as can be seen in [8]-[10]. 
Despite its several layers, they can be employed on different 
types of tasks, including text classification, natural language 
processing, computer vision and so on, with a good 
understanding of what is happening behind the curtains. 
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Basically, according to [8], this kind of networks alternate 
linear operators, whose coefficients can be optimized with 
training samples and provide the extraction of features in the 
data set, with pointwise non-linearities, which usually 
imposes an invariant transform, allowing dimension 
reduction in the problem. 

Hence, taking into account these recent developments, 
which are supported over the concept of feed-forward 
scattering networks, the idea of this paper is to propose a 
more transparent and general-purpose 
approximators/classifiers using Haar scattering networks. 

On the other hand, for the sake of simplicity, we do not 
intend to prove if this concept can be applied everywhere, 
nor verify in which conditions it holds. Keeping that in mind, 
it seems important to define what a Haar scattering network 
is and what our approach is to start developing such a tool. 
Afterwards, we show that the features extracted by our Haar 
scattering network provide understandable information from 
the original signal in a set of different problems. Also, it can 
be easily used by simple linear classifiers or simple 
regression structures, enabling us to build simple and 
powerful general-purpose approximators. 

In the last section, we discuss the main results, some 
possible generalizations of the results for 
multivariable/multiparameter analysis and some directions 
for future research. 

Consequently, this paper is divided into the following 
sections: Introduction, a brief review of wavelets, 
description of Haar scattering networks, computational 
examples, discussion of the results and conclusions. 

 

II.   A BRIEF REVIEW OF WAVELETS 
Before introducing the concept of a Haar scattering 

network, it is worth explaining what wavelet transforms and 
Haar transforms are. 

Readers should first notice that the main idea of these 
transforms is to decompose a signal into several different 
scale components. That said, a wavelet transform is a 
transform, like Fourier, where its basis is composed by a 
family of orthonormal functions ߰, allowing one to capture 
both frequency and location (in time and space), differently 
from the classical Fourier analysis. 

In general terms, a wavelet transform, as can be seen in 
[11], is defined by: 

 ߯ఠ(݇, ݊) = 2ቀଶቁ න ݐΨ(2(ݐ)ݔ − ஶݐ݀(݇
ିஶ  (1)

 ߯ఠ(݇, ݊) = 2ቀଶቁ න ݐψ(2(ݐ)ݔ − ஶݐ݀(݇
ିஶ  (2)

where they obey the following properties: 
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 ߰(,)(ݐ) = 2ቀଶቁ߰(2ݐ − ݇) (3)
 

 න ߰(,)(ݐ)݀ݐஶ
ିஶ = 0 (4)

 
න ߰(భ, భ)(ݐ) ∙ ߰(మ, మ)(ݐ) ݀ݐஶ

ିஶ =  భ,మߜభ,మߜ 
(5)

 න ߰ଶ(,)(ݐ)݀ݐஶ
ିஶ = 1 (6)

 
Equations (1) and (2) define how the transform 

coefficients can be calculated, allowing us to reconstruct the 
original signal as: 

(ݐ)ݔ  =   ߯ఠ(݇, ݊) ∙ ߰(,)(ݐ)ஶ
,ୀ ஶ  (7)

 

Equations (3) to (6) define the admissibility conditions for 
a specific function to be considered a valid basis within the 
wavelet framework, as can be seen in [11] and ߜ(,) defines 
a delta Kronecker function. A special case of these functions 
is the Haar wavelet. 

A Haar wavelet is defined by a function ߰, as in (8). 
 

(ݐ)߰  = ۔ۖەۖ 
ۓ 1, if 0 < ≥ ݐ  12−1, if 12 < ≥ ݐ 10, otherwise    (8)

 

Also, its scaling function is defined in (9), as: 
 

 Ψ(ݐ) =  ൜1, if 0 ≤ ݐ ≤ 10, otherwise     (9)
 

From (1), (2), (8) and (9), it is possible to derive a pair of 
equations for calculating the coefficients of the Haar 
wavelet transform: 

 ߯ఠ(݇, ݊) = 2ି ଵଶ(߯ఠ(2݇, ݊ + 1)  + ߯ఠ(2݇ +  1, ݊ + 1) ) (10)

 ߯ఠ(݇, ݊) = 2ିଵଶ(߯ఠ(2݇, ݊ + 1)− ߯ఠ(2݇ +  1, ݊ + 1) ) (11)

 

The coefficients obtained in (10) provides the local 
averages of the functions in a specified scale, while the 
coefficients obtained in (11) provides the details of function 
in different scales. Mathematically speaking, we are 
extracting geometric features that are covariant to the 
translations in the signal, as can be seen in [10]. 

 

III.  DESCRIPTION OF HAAR SCATTERING NETWORKS 
A Haar scattering network, following [8] and [9], is 

characterized by the iterative calculation of a permutation 
invariant operator defined by (12). 

,ߙ)  (ߚ → ߙ) + ,ߚ ߙ| − (12) (|ߚ

One should notice that the sum of ߙ +  is proportional to ߚ

the average between both numbers and ߙ − ߚ , under 
specific conditions, can be regarded as a Haar transform 
coefficient, as can be seen in (10) and (11). 

Having said that, a Haar scattering network was originally 
defined in [8] and [9] by a sequence of layers, which 
operates over an input positive d-dimensional signal ݔ ∈ (ℝௗ)ା. 

Keeping that in mind, the network layers are defined as a 
two-dimensional array ܵݔ(݊, with dimensions 2ି݀(ݍ ⋅ 2 , 
where n is a node number and q denotes a feature index. 

Following this definition, ܵ  is a permutation invariant 
operator that acts over a set of nodes calculated in the 
previous layer following (13) and (14). 

 ܵାଵ(݊, (ݍ2 → ܵ(ܽ, (ݍ2 + ܵ(ܾ, (ݍ2 (13)

 
ܵାଵ(݊, ݍ2 + 1) → |ܵ(ܽ, ,ܵ(ܾ −(ݍ2 (14) |(ݍ2

These equations generalize the original permutation 
invariant operator defined in (12) for pairs of nodes indexed 
by rules ܽ and ܾ, which work as maps of pairs that can be 
optimized according to the features to be extracted. In 
addition, still according to [8] and [9], it is also important to 
define the following identity: 

 

 ܵ(݊, 0) → (15) (݊)ݔ
 

Consequently, the idea of the Haar scattering network is 
to iteratively extract wavelets coefficients of the signal and 
apply a pointwise absolute value operator over them (this 
point is going to be explained later in the present paper). 
Nonetheless, if we take a look at (12), it is possible to verify 
and recover the maximum and the minimum of the values 
by means of the relationships in (16) and (17), respectively. 

,ߙ)ݔܽ݉  (ߚ → 12 ߙ) + ߚ + ߙ| − (16) (|ߚ

,ߙ)݊݅݉  (ߚ → 1 ߙ)2 + ߚ − ߙ| − (17) (|ߚ

Hence, it is possible to reconstruct the whole previous 
layer values just by these linear combinations, if ߙ and ߚ are 
real positive values. 

The similarities between our work and the original ideas 
within [8]-[10] cease here. Instead of thinking how to 
recover the original signal (which, by definition is strictly 
positive) by applying the properties discussed in (16) and 
(17), our key insight is to work with the non-linear 
properties of the pointwise absolute value operator together 
with possible signal reconstruction by means of ordinary 
least squares and the contractive/scaling properties of 
wavelets. As [8]-[10] have already demonstrated the 
powerful capabilities of this architecture as a feature 
extractor for classification purposes in a wide different set of 
problems (such as computer vision and others), in the 
present paper we only focus on its eventual capabilities as a 
function approximator. 

To avoid any further and unnecessary complexity, 
suppose the signal (ݐ)ݔ has a length equal to an arbitrary 
number that is a power of two (this assumption simplifies 
the treatment with the dyadic operation). Also, suppose we 
want to map this function for each specific ݐ, but this time, 
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allowing ݔ ∈ ℝௗ, in other words, (ݐ)ݔ can exhibit negative 
real values. Thus, we are not able to reconstruct the signal 
using (16) and (17). Our approach is based on the projection 
of the geometric features extracted in an arbitrary layer ܵ(݊,  .(ݍ

Moreover, the pairing rules ܽ  and ܾ  are optimized in 
such way that we obtain a scale parameter ߪ  and a shift 
parameter ߬ acting over a signal of length ܰ, where ܽ = n 
and ܾ  = 2ିାଵ ⋅ ܰ ⋅ ߪ + ߬ + ݊  , which minimizes the 
distance between the reconstructed signal and a sub-
sampling of the original signal. 

The main idea of these pairing rules is that, instead of 
applying the traditional Haar filtering scheme in the 
subsequent signal observations (i.e. (ݐ)ݔ and ݐ)ݔ − 1)), we 
treat the 1D signal as an entity that can be represented as 
kind of temporal graph – that must be identified – where 
each node represents a system state being connected due to 
their respective multiscale geometric features, such as 
spectral or frequency properties, which provide relevant 
information, motivated by the discussions carried out in 
[12]-[14]. 

Another possible interpretation is the generalization of the 
traditional filtering operations, in contrast to those carried 
out in the traditional wavelet framework, in order to obtain 
the fundamental frequency that contains relevant 
information that enables us to understand invariants, 
symmetries and possible diffeomorphisms, as discussed in 
[12]. 

Following this scheme, our key insight was to calculate 
an ordinary least squares estimate of the coefficients ߚ , 
with ݊ ∈ [0, 2], that minimizes the distance between (ݐ)ݔ 
and ݔො(ݐ), where this last variable is the approximation of (ݐ)ݔ using the geometric features extracted in ܵ(݊,  It is .(ݍ
also important to notice that other classification/regression 
schemes can be applied, in substitution to the OLS. 

 That said, let ݔො(ݐ) be written as a function of coefficients ߚ, and geometric features extracted in an arbitrary layer ܵ: 

 

ොݔ ቀ(݊ − 1), 2 + 1ቁ
=  ଶೕߚ

ୀ⋅ ቀ(݊ − 1) ⋅ 2 + 1ቁ⋅ ܵ (݊, ݇) 

(18)

In (18), it is possible to realize that the factor ((݊ − 1) ⋅2 + 1) acts as a scaling factor that maps each level to the 
original function domain and ߚ normalizes the feature and 
recovers the sign of each feature in terms of the original 
structure mapping. This approach was inspired by the 
reconstruction of the signal in terms of the discrete wavelet 
transform coefficients, which is given by (19) and (20). 

ݕ  =  (19)ݔܪ

where ݔ  is the input signal, ݕ  are the coefficients of the 
Haar wavelet transform and ܪ  is a linear operator that 
applies a Haar wavelet transform over ݔ. Then: 

ݔ  =  (20)ݕିଵܪ 

In order to understand the scaling factor defined in (18), 
one must realize that the cascade of operations implicit in 

the recursive equations (13) and (14) can be defined using a 
cascade of Haar operators ܪ, as in (21). 

 

 ܵାଵ(݊, (ݍ2 → หܪ ܵ(݊, ห(ݍ  (21)
 

Everytime ܪ  acts over ܵ(݊,  the number of rows in ,(ݍ
the new matrix is half of the previous layer, following the 
definition of the Haar wavelet transform (see [11]). So, if 
the features used are being extracted at the layer ܵ, our idea 
is to remap these features to the original domain set by 
interpreting that each line of the layer is a local feature 
related to each neighborhood. That said, the factor ((݊ −1) ⋅ 2 + 1) is a renormalization and translation factor that 
remaps each wavelet to a specific value in the domain set of 
the signal, given that ݐ ∈  [1, 2ௗ]. 

Therefore, (18) is basically derived as an adaptation of 
(20), taking into account that we apply a pointwise absolute 
value operator over the Haar wavelet coefficients, 
preventing us from directly reconstructing the original signal 
by inverting the Haar matrix (ܪ) . Now, we are able to 
reconstruct and interpolate the signal following the same 
implied geometric features. 

Nonetheless, on top of (18), we can extend this idea to 
map a parameter that affects the data generation process of 
the sampled signal in a way that the signal is actually given 
by ݐ)ݔ, ߠ ,) or to identify the domain set (time) using the 
sampled data. This is where the non-linear characteristic of 
the pointwise absolute value operator plays an essential role. 

The first point is to calculate the average of the 
coefficients at each realization of the system given the 
parameter ߠ. The second step is to map each average feature 
to the average point of the sampled data, which is ݔ(ேଶ ,  ,(ߠ
since we are averaging all the features at different 
frequencies. After that, using a suitable transfer function, we 
can calculate an ordinary least squares estimate in (22), as 
we previously did in (18).  

ොݔ  ൬2ܰ , ൰ߠ =  ߚ ⋅ ߠ ⋅ ݂(ܵ(݅, ݇))ଶೕ
ୀ  (22)

 

In (22), f is an arbitrary transfer function and ߠ ,ߠ]∋ ߠ + ݅߬]  is an arbitrary parameter, which varies 
according to a step of size ߬. 

It is also important to notice that the pointwise absolute 
value operator turns the wavelet transform coefficients 
invariant, which is a desirable feature while calculating the 
average of the features in for each ߠ. To better understand 
this statement, it is important to remember that, by definition 
(3), ߰,(ݐ − ݀) =  ߰,ାௗ(ݐ). In other words, wavelets are 
covariant to the translations. Introducing non-linearities in 
the wavelet coefficients allows us to build invariant 
representations, as seen in [10] and [12], aiming to avoid the 
curse of dimensionality. We shall explain it below, by 
following the explanations described in [12]. 

While extracting the features that may describe the whole 
signal aiming to obtain a function ݂(ܾ)෫  that approximates 
the true ݂(ܾ), where ܾ is the feature set and ݂ a function that 
maps these features to the temporal evolution or a specific 
class (such as a specific family of signals), a cascade of 
operations must be carried out to extract relevant spectral 
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information. To circumvent this issue, it is desirable to 
define a contractive operator Φ(ܾ), which reduces the range 
of variations in ܾ, while still separating the different values 
of ݂, in such way that Φ(ܾ) ≠ Φ(ܾᇱ) if ݂(ܾ) ≠ ݂(ܾᇱ). Our 
ultimate goal is to obtain a low dimensional vector Φ(ܾ), 
where ݂(Φ(ܾ)) = ݂(ܾ) . In this sense, it is said that Φ 
separates ݂ . It is also worth noticing that (18) is its 
respective special linear case. 

When the pointwise absolute value operator is introduced, 
the identity ߰,(ݐ − ݀) =  ߰,ାௗ(ݐ)  no longer holds, 
enabling us to find ߪ and ߬ in a way that it allows one to 
identify the directions in which ݂(ܾ) does not vary, i.e. what 
are the translations in the time series (in the 1D case) that 
the features do not vary, pointing out to the possible 
symmetries in time, in each layer ܵ, as can be seen in Fig. 1, 
for a sinusoidal wave. When we remove the pointwise 
absolute value operator, we obtain Fig. 2, for the same ߪ and ߬ (which were not optimized). 

The features in Fig. 1 retain significant symmetry and 
other information about the signal (e.g. symmetries around 
300, 2300, 4300, 6300, and 8300, where the maxima and 
minima occurs and changes of sign as nearby point 1300, for 
example), while the features in Fig. 2 only reproduce the 
average cyclical components present in the original signal. 

 

 
Fig. 1. The extracted features of a sinusoidal signal using a three-layer Haar 

scattering network containing each feature q. 

 
Fig. 2. The extracted features of a sinusoidal signal using a three-layer Haar 

scattering network, without the pointwise absolute value operator, 
containing each feature q. 

In addition, given the fact that the layers are calculated 
with a cascade of operations, it is desirable that ฮܪ ܵ(݊, ݔ(ݍ − ܪ ܵ(݊, ฮ′ݔ(ݍ ≥ ฮ ܵାଵݔ − ܵାଵݔ′ฮ , 
otherwise, as soon as we calculate each layer, the values 
may diverge to ±∞. The pointwise absolute value ensures 
that this divergent behavior will not happen, as seen in [12] 
and [8]. 

Consequently, we can extract the important 

spectral/frequency information that can be used to perform 
the desired tasks. 

Thus, having presented our approach, we test it under a 
set of different problems and see how our network performs. 

 

IV.   COMPUTATIONAL EXAMPLES 
In the present section, we show that Haar scattering 

networks can be used to decompose several different 
functions into its geometric features and reconstruct them. 
To accomplish that, four different computational exercises 
were made: decomposition and reconstruction of sinusoidal 
signals; decomposition and reconstruction of exponential 
signals; decomposition and reconstruction of a non-linear 
model and identification of an autoregressive parameter. 

With these simple exercises, we hope to show a new 
direction toward the construction of bijective functions that 
can be used to detect frequencies, identify stochastic 
parameters on linear and non-linear systems, make 
predictions and possibly other applications beyond the 
original ones, which are basically aimed at computer vision 
and classification problems. 

Keeping that in mind, we expect to demonstrate its 
potential applications as a general-purpose non-linear 
regression tool built on top of very simple computational 
operations that can be even calculated using spreadsheet 
software. 

The computational exercises consist of simulating the 
processes, extract the features using a four-layer Haar 
scattering network and regress the extracted features against 
systems states, parameters or time scales (using Eqs. 18 or 
22). 

All computations can be provided upon request to the 
author. 

Decomposition and reconstruction of sinusoidal signal: 
Aiming to demonstrate the capabilities of this tool to 
decompose and reconstruct signals, our first example 
demonstrates what the output of a four-layer Haar scattering 
network acting over (ݐ)ݔ = sin ((ߚ ⋅ ߨ2 ⋅ (3600/(ݐ  is, 
where ݐ ∈  [1; 1024] , in order to facilitate the dyadic 
cascade of operations (as we have 210 samples). We have 
extracted the average geometric features for ߚ ∈  [−6; 6] in 
Fig. 3, following (13) and (14). 
 

 
Fig. 3. The extracted features of a sinusoidal signal, according to the β 

parameter, using a four-layer Haar scattering network, where each color 
represents a feature q. 

 
While reconstructing the signal, we have obtained an ܴଶ 

value of 99% using only 4 layers. Hence, we are able to 
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reconstruct the function within any ߚ ∈  [−6; 6]. 
A. Decomposition and Reconstruction of an Exponential 
Signal 
 In this second exercise, we have repeated the same 

simulation scheme, but using an exponential function of the 
form (ݐ)ݔ = exp (ߚ ⋅ ௧ଷ). 

Following the same scheme, we also have obtained an ܴଶ 

value of 99% using only 4 layers. 

B. Decomposition and Reconstruction of a non-Linear 
Noisy Signal 
 Both previous exercises relied on simple and 

deterministic signals. Now, we are going to evaluate a non-
linear difference equation inspired in a simple population 
model in which a saturation behavior is introduced, 
presented in (23). 

(ݐ)ݔ  = ݐ)ݔ − 1) + ܥߚ ⋅ ݐ)ݔ − 1)⋅ ܥ] − ݐ)ݔ − 1)] + (ݐ)߳  (23)

In (23), ߚ denotes the population growth factor, C denotes 
the carry capacity of the system, ߳(ݐ) denotes a perturbation 
in the system, which may be caused by deaths/births related 
to exogenous factors, such as diseases, birth policies or any 
other kind of phenomena, and (ݐ)ݔ denotes the population 
level itself. 

That said, we tested how the Haar network performs in 
the approximation of the simulated signal (for forecasting 
purposes), and how it performs by calculating the systems 
state at any arbitrary instant. 

In the case of the system estimation of the simulated 
signal as a time series procedure, we have obtained an ܴଶ 

value of 96.11%, which can be seen in Fig. 4, for ߚ = 0.005. 

 
Fig. 4. An approximation of the simulated non-linear signal. The red dots 

represent the estimated values, while the black line represents the real 
values. 

In the case of approximating the system’s state at any 
arbitrary instant, at a given ߚ  parameter, the obtained ܴଶ 

value was 91.5%. 

C. Identification of the Autoregressive Parameter 

Now, suppose we have an autoregressive model as in (24). 
 

(ݐ)ݔ  = ߶ ⋅ ݐ)ݔ − 1) + (24) (ݐ)߳

Also, suppose that we have two ways to estimate the 
parameter ߶ . One way is to introduce a unit step in the 
system, which represents a constant energy input, allowing 

us to verify how the system goes toward a new equilibrium 
point. 

Another way is to introduce a pulse function in the system, 
which is a way to verify how the energy is dissipated in the 
system. Usually these techniques are applied to extract the 
deterministic part of the system evolution from the Gaussian 
disturbances ߳(ݐ)  by means of convolution analysis or 
autocorrelation function analysis. 

Following the same scheme of the previous example, our 
idea is to extract the geometric/mathematical features of the 
process when it receives an input and, following (22), map 
the system evolution to a specific parameter. 

By applying these steps, we obtain a R2 value of 96.63%, 
which can be verified in Fig. 5, while trying to map the 
system simulation to each parameter ߶. 

 

 
Fig. 5. The inference of parameter φ. The red dots are the estimated 

parameter values and the black line represents the real values. 
 

V.   DISCUSSION OF THE RESULTS 
Given all the different simulations, it is possible to see 

that this kind of network can enhance the comprehension of 
several phenomena, in terms of classification and 
approximation problems, extending its original purpose, 
which was the feature extraction of images and graphs, to 
classification problems. For example, for sinusoidal signals, 
the features seem to represent the details for each mapped 
parameter. The same for the exponential signals, and so on. 
Hence, the extracted features actually have an 
understandable mathematical interpretation. 

When the ܴଶ  value is calculated for each one of these 
examples, using only four computational layers plus a linear 
regression structure, all the examples have R2 values greater 
than 90%. 

It is also possible to verify that this architecture has a very 
low computational cost since it is built over simple algebraic 
operators, such as subtractions, additions and absolute value 
operators. Thus, these computations can be made in any 
kind of mathematical software available to the final user and 
can be implemented very easily. 

In addition, the most important aspect of this kind of 
network architecture is that it enables one to build very 
simple regression structures on top of the extracted features. 
For all the problems investigated in this study, only linear 
operations were carried out. 

Finally, it is important to notice that the signal extraction 
and feature mapping can be extended to multiple parameters 
(and variables) by means of building multivariate quasi-
bijective functions, where each set of parameters (variables) 
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is mapped into a unique real number, which then can be 
regressed against the extracted features. 

 

VI. CONCLUSIONS  
In this paper, the possibility of building a general-purpose 

approximator on top of Haar scattering networks has been 
discussed. Moreover, it has been pointed out that there are 
huge possibilities, such as the identification of stochastic 
parameters in linear and non-linear systems, forecasting and 
classification problems, and other applications beyond the 
original ones, which are basically aimed at computer vision 
and classification problems in their respective 
implementations, as can be seen in [13] and [14]. 

Exploring the fact that wavelets allow us to capture 
relevant multiscale information, but being covariant to 
translations, when non-linearities are introduced in the 
wavelet coefficients calculations, we are able to build 
invariant representations, where we can build deep networks 
to retrieve an extensive amount of features with desirable 
properties in a stable way, allowing simpler regression 
structures, but still, being able to capture the non-linear 
features in the dataset, which were shown in the 
computational examples. In other words, it is possible to 
obtain more human-understandable machine learning 
structures. 

Given these interesting results, we think there is a huge 
list of tasks to be done, as a perspective for future work. 
First, it would be interesting to compare the performance of 
the architecture presented here with most traditional tools. 
Also, it would be very interesting to check on which 
conditions this kind of network performs better or worse. 
Finally, it is very interesting to check other potential 
applications that were not considered here, such as time 
series classification problems, forecasting problems and so 
on. 
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