

Abstract—In this article, we propose building general-

purpose function approximators on top of Haar scattering
networks. We advocate that this architecture enables a better
comprehension of feature extraction, in addition to its
implementation simplicity and low computational costs. We
show its approximation and feature extraction capabilities in a
wide range of different problems, which can be applied on
several phenomena in signal processing, system identification,
econometrics, and other potential fields.

Index Terms—Scattering transforms, feature extraction,

geometric learning, machine learning.

I. INTRODUCTION
The field of artificial neural networks has exploded

during the 1980s due to its universal approximation
capabilities, as can be seen in [1], but the lack of
understanding of the underlying statistical and geometric
features extracted from the analyzed signal have
significantly discouraged its use among scientists and
researchers, as can be seen in [2], [3]. Since then, most of its
usage has been relegated to applications where such an
understanding can be neglected, such as computer vision,
non-linear state-space estimators and other tasks related to
control where the exact algorithmic approaches are
unknown or too difficult to implement, according to [3].

More recently, aiming to enlighten these black-boxes,
several approaches have been under heavy development,
such as variables contributions in the feed-forward structure
[4], visualization using saliency maps [5], generation of
skeletal structures [6], fuzzy rule based evaluation of all
permutations [3] and extraction of functional relations using
sensitivity analysis of input data [7].

In a parallel way, other researchers have been
successfully developing new kinds of feed-forward neural
architectures that behave much more like a transparent box,
where the extracted features can be directly evaluated and
understood. Convolutional neural networks are a great
example of such achievements, as can be seen in [8]-[10].
Despite its several layers, they can be employed on different
types of tasks, including text classification, natural language
processing, computer vision and so on, with a good
understanding of what is happening behind the curtains.

Manuscript received February 27, 2018; revised April 19, 2018. This

work was supported in part by the FIPE (Institute of Economic Research
Foundation) by means of a post-doctoral scholarship.

Fernando Fernandes Neto is with the University of São Paulo, São Paulo,
Brazil (e-mail: fernando_fernandes_neto@usp.br).

Basically, according to [8], this kind of networks alternate
linear operators, whose coefficients can be optimized with
training samples and provide the extraction of features in the
data set, with pointwise non-linearities, which usually
imposes an invariant transform, allowing dimension
reduction in the problem.

Hence, taking into account these recent developments,
which are supported over the concept of feed-forward
scattering networks, the idea of this paper is to propose a
more transparent and general-purpose
approximators/classifiers using Haar scattering networks.

On the other hand, for the sake of simplicity, we do not
intend to prove if this concept can be applied everywhere,
nor verify in which conditions it holds. Keeping that in mind,
it seems important to define what a Haar scattering network
is and what our approach is to start developing such a tool.
Afterwards, we show that the features extracted by our Haar
scattering network provide understandable information from
the original signal in a set of different problems. Also, it can
be easily used by simple linear classifiers or simple
regression structures, enabling us to build simple and
powerful general-purpose approximators.

In the last section, we discuss the main results, some
possible generalizations of the results for
multivariable/multiparameter analysis and some directions
for future research.

Consequently, this paper is divided into the following
sections: Introduction, a brief review of wavelets,
description of Haar scattering networks, computational
examples, discussion of the results and conclusions.

II. A BRIEF REVIEW OF WAVELETS
Before introducing the concept of a Haar scattering

network, it is worth explaining what wavelet transforms and
Haar transforms are.

Readers should first notice that the main idea of these
transforms is to decompose a signal into several different
scale components. That said, a wavelet transform is a
transform, like Fourier, where its basis is composed by a
family of orthonormal functions ߰, allowing one to capture
both frequency and location (in time and space), differently
from the classical Fourier analysis.

In general terms, a wavelet transform, as can be seen in
[11], is defined by:

 ߯ఠ(݇, ݊) = 2ቀଶቁ න ݐΨ(2(ݐ)ݔ − ஶݐ݀(݇
ିஶ (1)

 ߯ఠ(݇, ݊) = 2ቀଶቁ න ݐψ(2(ݐ)ݔ − ஶݐ݀(݇
ିஶ (2)

where they obey the following properties:

Fernando Fernandes Neto

Building Function Approximators on top of Haar
Scattering Networks

International Journal of Machine Learning and Computing, Vol. 8, No. 3, June 2018

262doi: 10.18178/ijmlc.2018.8.3.697

 ߰(,)(ݐ) = 2ቀଶቁ߰(2ݐ − ݇) (3)

 න ߰(,)(ݐ)݀ݐஶ
ିஶ = 0 (4)

න ߰(భ, భ)(ݐ) ∙ ߰(మ, మ)(ݐ) ݀ݐஶ

ିஶ = భ,మߜభ,మߜ
(5)

 න ߰ଶ(,)(ݐ)݀ݐஶ
ିஶ = 1 (6)

Equations (1) and (2) define how the transform

coefficients can be calculated, allowing us to reconstruct the
original signal as:

(ݐ)ݔ = ߯ఠ(݇, ݊) ∙ ߰(,)(ݐ)ஶ
,ୀ ஶ (7)

Equations (3) to (6) define the admissibility conditions for
a specific function to be considered a valid basis within the
wavelet framework, as can be seen in [11] and ߜ(,) defines
a delta Kronecker function. A special case of these functions
is the Haar wavelet.

A Haar wavelet is defined by a function ߰, as in (8).

(ݐ)߰ = ۔ۖەۖ
ۓ 1, if 0 < ≥ ݐ 12−1, if 12 < ≥ ݐ 10, otherwise (8)

Also, its scaling function is defined in (9), as:

 Ψ(ݐ) = ൜1, if 0 ≤ ݐ ≤ 10, otherwise (9)

From (1), (2), (8) and (9), it is possible to derive a pair of
equations for calculating the coefficients of the Haar
wavelet transform:

 ߯ఠ(݇, ݊) = 2ି ଵଶ(߯ఠ(2݇, ݊ + 1) + ߯ఠ(2݇ + 1, ݊ + 1)) (10)

 ߯ఠ(݇, ݊) = 2ିଵଶ(߯ఠ(2݇, ݊ + 1)− ߯ఠ(2݇ + 1, ݊ + 1)) (11)

The coefficients obtained in (10) provides the local
averages of the functions in a specified scale, while the
coefficients obtained in (11) provides the details of function
in different scales. Mathematically speaking, we are
extracting geometric features that are covariant to the
translations in the signal, as can be seen in [10].

III. DESCRIPTION OF HAAR SCATTERING NETWORKS
A Haar scattering network, following [8] and [9], is

characterized by the iterative calculation of a permutation
invariant operator defined by (12).

,ߙ) (ߚ → ߙ) + ,ߚ ߙ| − (12) (|ߚ

One should notice that the sum of ߙ + is proportional to ߚ

the average between both numbers and ߙ − ߚ , under
specific conditions, can be regarded as a Haar transform
coefficient, as can be seen in (10) and (11).

Having said that, a Haar scattering network was originally
defined in [8] and [9] by a sequence of layers, which
operates over an input positive d-dimensional signal ݔ ∈ (ℝௗ)ା.

Keeping that in mind, the network layers are defined as a
two-dimensional array ܵݔ(݊, with dimensions 2ି݀(ݍ ⋅ 2 ,
where n is a node number and q denotes a feature index.

Following this definition, ܵ is a permutation invariant
operator that acts over a set of nodes calculated in the
previous layer following (13) and (14).

 ܵାଵ(݊, (ݍ2 → ܵ(ܽ, (ݍ2 + ܵ(ܾ, (ݍ2 (13)

ܵାଵ(݊, ݍ2 + 1) → |ܵ(ܽ, ,ܵ(ܾ −(ݍ2 (14) |(ݍ2

These equations generalize the original permutation
invariant operator defined in (12) for pairs of nodes indexed
by rules ܽ and ܾ, which work as maps of pairs that can be
optimized according to the features to be extracted. In
addition, still according to [8] and [9], it is also important to
define the following identity:

 ܵ(݊, 0) → (15) (݊)ݔ

Consequently, the idea of the Haar scattering network is
to iteratively extract wavelets coefficients of the signal and
apply a pointwise absolute value operator over them (this
point is going to be explained later in the present paper).
Nonetheless, if we take a look at (12), it is possible to verify
and recover the maximum and the minimum of the values
by means of the relationships in (16) and (17), respectively.

,ߙ)ݔܽ݉ (ߚ → 12 ߙ) + ߚ + ߙ| − (16) (|ߚ

,ߙ)݊݅݉ (ߚ → 1 ߙ)2 + ߚ − ߙ| − (17) (|ߚ

Hence, it is possible to reconstruct the whole previous
layer values just by these linear combinations, if ߙ and ߚ are
real positive values.

The similarities between our work and the original ideas
within [8]-[10] cease here. Instead of thinking how to
recover the original signal (which, by definition is strictly
positive) by applying the properties discussed in (16) and
(17), our key insight is to work with the non-linear
properties of the pointwise absolute value operator together
with possible signal reconstruction by means of ordinary
least squares and the contractive/scaling properties of
wavelets. As [8]-[10] have already demonstrated the
powerful capabilities of this architecture as a feature
extractor for classification purposes in a wide different set of
problems (such as computer vision and others), in the
present paper we only focus on its eventual capabilities as a
function approximator.

To avoid any further and unnecessary complexity,
suppose the signal (ݐ)ݔ has a length equal to an arbitrary
number that is a power of two (this assumption simplifies
the treatment with the dyadic operation). Also, suppose we
want to map this function for each specific ݐ, but this time,

International Journal of Machine Learning and Computing, Vol. 8, No. 3, June 2018

263

allowing ݔ ∈ ℝௗ, in other words, (ݐ)ݔ can exhibit negative
real values. Thus, we are not able to reconstruct the signal
using (16) and (17). Our approach is based on the projection
of the geometric features extracted in an arbitrary layer ܵ(݊, .(ݍ

Moreover, the pairing rules ܽ and ܾ are optimized in
such way that we obtain a scale parameter ߪ and a shift
parameter ߬ acting over a signal of length ܰ, where ܽ = n
and ܾ = 2ିାଵ ⋅ ܰ ⋅ ߪ + ߬ + ݊ , which minimizes the
distance between the reconstructed signal and a sub-
sampling of the original signal.

The main idea of these pairing rules is that, instead of
applying the traditional Haar filtering scheme in the
subsequent signal observations (i.e. (ݐ)ݔ and ݐ)ݔ − 1)), we
treat the 1D signal as an entity that can be represented as
kind of temporal graph – that must be identified – where
each node represents a system state being connected due to
their respective multiscale geometric features, such as
spectral or frequency properties, which provide relevant
information, motivated by the discussions carried out in
[12]-[14].

Another possible interpretation is the generalization of the
traditional filtering operations, in contrast to those carried
out in the traditional wavelet framework, in order to obtain
the fundamental frequency that contains relevant
information that enables us to understand invariants,
symmetries and possible diffeomorphisms, as discussed in
[12].

Following this scheme, our key insight was to calculate
an ordinary least squares estimate of the coefficients ߚ ,
with ݊ ∈ [0, 2], that minimizes the distance between (ݐ)ݔ
and ݔො(ݐ), where this last variable is the approximation of (ݐ)ݔ using the geometric features extracted in ܵ(݊, It is .(ݍ
also important to notice that other classification/regression
schemes can be applied, in substitution to the OLS.

 That said, let ݔො(ݐ) be written as a function of coefficients ߚ, and geometric features extracted in an arbitrary layer ܵ:

ොݔ ቀ(݊ − 1), 2 + 1ቁ
= ଶೕߚ

ୀ⋅ ቀ(݊ − 1) ⋅ 2 + 1ቁ⋅ ܵ (݊, ݇)

(18)

In (18), it is possible to realize that the factor ((݊ − 1) ⋅2 + 1) acts as a scaling factor that maps each level to the
original function domain and ߚ normalizes the feature and
recovers the sign of each feature in terms of the original
structure mapping. This approach was inspired by the
reconstruction of the signal in terms of the discrete wavelet
transform coefficients, which is given by (19) and (20).

ݕ = (19)ݔܪ

where ݔ is the input signal, ݕ are the coefficients of the
Haar wavelet transform and ܪ is a linear operator that
applies a Haar wavelet transform over ݔ. Then:

ݔ = (20)ݕିଵܪ

In order to understand the scaling factor defined in (18),
one must realize that the cascade of operations implicit in

the recursive equations (13) and (14) can be defined using a
cascade of Haar operators ܪ, as in (21).

 ܵାଵ(݊, (ݍ2 → หܪ ܵ(݊, ห(ݍ (21)

Everytime ܪ acts over ܵ(݊, the number of rows in ,(ݍ
the new matrix is half of the previous layer, following the
definition of the Haar wavelet transform (see [11]). So, if
the features used are being extracted at the layer ܵ, our idea
is to remap these features to the original domain set by
interpreting that each line of the layer is a local feature
related to each neighborhood. That said, the factor ((݊ −1) ⋅ 2 + 1) is a renormalization and translation factor that
remaps each wavelet to a specific value in the domain set of
the signal, given that ݐ ∈ [1, 2ௗ].

Therefore, (18) is basically derived as an adaptation of
(20), taking into account that we apply a pointwise absolute
value operator over the Haar wavelet coefficients,
preventing us from directly reconstructing the original signal
by inverting the Haar matrix (ܪ) . Now, we are able to
reconstruct and interpolate the signal following the same
implied geometric features.

Nonetheless, on top of (18), we can extend this idea to
map a parameter that affects the data generation process of
the sampled signal in a way that the signal is actually given
by ݐ)ݔ, ߠ ,) or to identify the domain set (time) using the
sampled data. This is where the non-linear characteristic of
the pointwise absolute value operator plays an essential role.

The first point is to calculate the average of the
coefficients at each realization of the system given the
parameter ߠ. The second step is to map each average feature
to the average point of the sampled data, which is ݔ(ேଶ , ,(ߠ
since we are averaging all the features at different
frequencies. After that, using a suitable transfer function, we
can calculate an ordinary least squares estimate in (22), as
we previously did in (18).

ොݔ ൬2ܰ , ൰ߠ = ߚ ⋅ ߠ ⋅ ݂(ܵ(݅, ݇))ଶೕ
ୀ (22)

In (22), f is an arbitrary transfer function and ߠ ,ߠ]∋ ߠ + ݅߬] is an arbitrary parameter, which varies
according to a step of size ߬.

It is also important to notice that the pointwise absolute
value operator turns the wavelet transform coefficients
invariant, which is a desirable feature while calculating the
average of the features in for each ߠ. To better understand
this statement, it is important to remember that, by definition
(3), ߰,(ݐ − ݀) = ߰,ାௗ(ݐ). In other words, wavelets are
covariant to the translations. Introducing non-linearities in
the wavelet coefficients allows us to build invariant
representations, as seen in [10] and [12], aiming to avoid the
curse of dimensionality. We shall explain it below, by
following the explanations described in [12].

While extracting the features that may describe the whole
signal aiming to obtain a function ݂(ܾ)෫ that approximates
the true ݂(ܾ), where ܾ is the feature set and ݂ a function that
maps these features to the temporal evolution or a specific
class (such as a specific family of signals), a cascade of
operations must be carried out to extract relevant spectral

International Journal of Machine Learning and Computing, Vol. 8, No. 3, June 2018

264

information. To circumvent this issue, it is desirable to
define a contractive operator Φ(ܾ), which reduces the range
of variations in ܾ, while still separating the different values
of ݂, in such way that Φ(ܾ) ≠ Φ(ܾᇱ) if ݂(ܾ) ≠ ݂(ܾᇱ). Our
ultimate goal is to obtain a low dimensional vector Φ(ܾ),
where ݂(Φ(ܾ)) = ݂(ܾ) . In this sense, it is said that Φ
separates ݂ . It is also worth noticing that (18) is its
respective special linear case.

When the pointwise absolute value operator is introduced,
the identity ߰,(ݐ − ݀) = ߰,ାௗ(ݐ) no longer holds,
enabling us to find ߪ and ߬ in a way that it allows one to
identify the directions in which ݂(ܾ) does not vary, i.e. what
are the translations in the time series (in the 1D case) that
the features do not vary, pointing out to the possible
symmetries in time, in each layer ܵ, as can be seen in Fig. 1,
for a sinusoidal wave. When we remove the pointwise
absolute value operator, we obtain Fig. 2, for the same ߪ and ߬ (which were not optimized).

The features in Fig. 1 retain significant symmetry and
other information about the signal (e.g. symmetries around
300, 2300, 4300, 6300, and 8300, where the maxima and
minima occurs and changes of sign as nearby point 1300, for
example), while the features in Fig. 2 only reproduce the
average cyclical components present in the original signal.

Fig. 1. The extracted features of a sinusoidal signal using a three-layer Haar

scattering network containing each feature q.

Fig. 2. The extracted features of a sinusoidal signal using a three-layer Haar

scattering network, without the pointwise absolute value operator,
containing each feature q.

In addition, given the fact that the layers are calculated
with a cascade of operations, it is desirable that ฮܪ ܵ(݊, ݔ(ݍ − ܪ ܵ(݊, ฮ′ݔ(ݍ ≥ ฮ ܵାଵݔ − ܵାଵݔ′ฮ ,
otherwise, as soon as we calculate each layer, the values
may diverge to ±∞. The pointwise absolute value ensures
that this divergent behavior will not happen, as seen in [12]
and [8].

Consequently, we can extract the important

spectral/frequency information that can be used to perform
the desired tasks.

Thus, having presented our approach, we test it under a
set of different problems and see how our network performs.

IV. COMPUTATIONAL EXAMPLES
In the present section, we show that Haar scattering

networks can be used to decompose several different
functions into its geometric features and reconstruct them.
To accomplish that, four different computational exercises
were made: decomposition and reconstruction of sinusoidal
signals; decomposition and reconstruction of exponential
signals; decomposition and reconstruction of a non-linear
model and identification of an autoregressive parameter.

With these simple exercises, we hope to show a new
direction toward the construction of bijective functions that
can be used to detect frequencies, identify stochastic
parameters on linear and non-linear systems, make
predictions and possibly other applications beyond the
original ones, which are basically aimed at computer vision
and classification problems.

Keeping that in mind, we expect to demonstrate its
potential applications as a general-purpose non-linear
regression tool built on top of very simple computational
operations that can be even calculated using spreadsheet
software.

The computational exercises consist of simulating the
processes, extract the features using a four-layer Haar
scattering network and regress the extracted features against
systems states, parameters or time scales (using Eqs. 18 or
22).

All computations can be provided upon request to the
author.

Decomposition and reconstruction of sinusoidal signal:
Aiming to demonstrate the capabilities of this tool to
decompose and reconstruct signals, our first example
demonstrates what the output of a four-layer Haar scattering
network acting over (ݐ)ݔ = sin ((ߚ ⋅ ߨ2 ⋅ (3600/(ݐ is,
where ݐ ∈ [1; 1024] , in order to facilitate the dyadic
cascade of operations (as we have 210 samples). We have
extracted the average geometric features for ߚ ∈ [−6; 6] in
Fig. 3, following (13) and (14).

Fig. 3. The extracted features of a sinusoidal signal, according to the β

parameter, using a four-layer Haar scattering network, where each color
represents a feature q.

While reconstructing the signal, we have obtained an ܴଶ

value of 99% using only 4 layers. Hence, we are able to

International Journal of Machine Learning and Computing, Vol. 8, No. 3, June 2018

265

reconstruct the function within any ߚ ∈ [−6; 6].
A. Decomposition and Reconstruction of an Exponential
Signal
 In this second exercise, we have repeated the same

simulation scheme, but using an exponential function of the
form (ݐ)ݔ = exp (ߚ ⋅ ௧ଷ).

Following the same scheme, we also have obtained an ܴଶ

value of 99% using only 4 layers.

B. Decomposition and Reconstruction of a non-Linear
Noisy Signal
 Both previous exercises relied on simple and

deterministic signals. Now, we are going to evaluate a non-
linear difference equation inspired in a simple population
model in which a saturation behavior is introduced,
presented in (23).

(ݐ)ݔ = ݐ)ݔ − 1) + ܥߚ ⋅ ݐ)ݔ − 1)⋅ ܥ] − ݐ)ݔ − 1)] + (ݐ)߳ (23)

In (23), ߚ denotes the population growth factor, C denotes
the carry capacity of the system, ߳(ݐ) denotes a perturbation
in the system, which may be caused by deaths/births related
to exogenous factors, such as diseases, birth policies or any
other kind of phenomena, and (ݐ)ݔ denotes the population
level itself.

That said, we tested how the Haar network performs in
the approximation of the simulated signal (for forecasting
purposes), and how it performs by calculating the systems
state at any arbitrary instant.

In the case of the system estimation of the simulated
signal as a time series procedure, we have obtained an ܴଶ

value of 96.11%, which can be seen in Fig. 4, for ߚ = 0.005.

Fig. 4. An approximation of the simulated non-linear signal. The red dots

represent the estimated values, while the black line represents the real
values.

In the case of approximating the system’s state at any
arbitrary instant, at a given ߚ parameter, the obtained ܴଶ

value was 91.5%.

C. Identification of the Autoregressive Parameter

Now, suppose we have an autoregressive model as in (24).

(ݐ)ݔ = ߶ ⋅ ݐ)ݔ − 1) + (24) (ݐ)߳

Also, suppose that we have two ways to estimate the
parameter ߶ . One way is to introduce a unit step in the
system, which represents a constant energy input, allowing

us to verify how the system goes toward a new equilibrium
point.

Another way is to introduce a pulse function in the system,
which is a way to verify how the energy is dissipated in the
system. Usually these techniques are applied to extract the
deterministic part of the system evolution from the Gaussian
disturbances ߳(ݐ) by means of convolution analysis or
autocorrelation function analysis.

Following the same scheme of the previous example, our
idea is to extract the geometric/mathematical features of the
process when it receives an input and, following (22), map
the system evolution to a specific parameter.

By applying these steps, we obtain a R2 value of 96.63%,
which can be verified in Fig. 5, while trying to map the
system simulation to each parameter ߶.

Fig. 5. The inference of parameter φ. The red dots are the estimated

parameter values and the black line represents the real values.

V. DISCUSSION OF THE RESULTS
Given all the different simulations, it is possible to see

that this kind of network can enhance the comprehension of
several phenomena, in terms of classification and
approximation problems, extending its original purpose,
which was the feature extraction of images and graphs, to
classification problems. For example, for sinusoidal signals,
the features seem to represent the details for each mapped
parameter. The same for the exponential signals, and so on.
Hence, the extracted features actually have an
understandable mathematical interpretation.

When the ܴଶ value is calculated for each one of these
examples, using only four computational layers plus a linear
regression structure, all the examples have R2 values greater
than 90%.

It is also possible to verify that this architecture has a very
low computational cost since it is built over simple algebraic
operators, such as subtractions, additions and absolute value
operators. Thus, these computations can be made in any
kind of mathematical software available to the final user and
can be implemented very easily.

In addition, the most important aspect of this kind of
network architecture is that it enables one to build very
simple regression structures on top of the extracted features.
For all the problems investigated in this study, only linear
operations were carried out.

Finally, it is important to notice that the signal extraction
and feature mapping can be extended to multiple parameters
(and variables) by means of building multivariate quasi-
bijective functions, where each set of parameters (variables)

0 200 400 600 800 1000

0

10

0

20

0

30

0

40

0

50

0

60

0

Time

P
o
p

u
la

tio
n
 V

a
lu

e
s

International Journal of Machine Learning and Computing, Vol. 8, No. 3, June 2018

266

is mapped into a unique real number, which then can be
regressed against the extracted features.

VI. CONCLUSIONS
In this paper, the possibility of building a general-purpose

approximator on top of Haar scattering networks has been
discussed. Moreover, it has been pointed out that there are
huge possibilities, such as the identification of stochastic
parameters in linear and non-linear systems, forecasting and
classification problems, and other applications beyond the
original ones, which are basically aimed at computer vision
and classification problems in their respective
implementations, as can be seen in [13] and [14].

Exploring the fact that wavelets allow us to capture
relevant multiscale information, but being covariant to
translations, when non-linearities are introduced in the
wavelet coefficients calculations, we are able to build
invariant representations, where we can build deep networks
to retrieve an extensive amount of features with desirable
properties in a stable way, allowing simpler regression
structures, but still, being able to capture the non-linear
features in the dataset, which were shown in the
computational examples. In other words, it is possible to
obtain more human-understandable machine learning
structures.

Given these interesting results, we think there is a huge
list of tasks to be done, as a perspective for future work.
First, it would be interesting to compare the performance of
the architecture presented here with most traditional tools.
Also, it would be very interesting to check on which
conditions this kind of network performs better or worse.
Finally, it is very interesting to check other potential
applications that were not considered here, such as time
series classification problems, forecasting problems and so
on.

ACKNOWLEDGMENTS
We would like to thank Pedro Delano Cavalcanti for able

research assistance. We would also like to thank Prof.
Claudio Garcia at the Polytechnic School of Engineering
(University of São Paulo) and Prof. Rodrigo de Losso da
Silveira Bueno at the School of Economics, Business and

Accounting (University of São Paulo) for their suggestions,
comments, and discussions.

REFERENCES
[1] K. Hornik, “Approximation capabilities of multilayer feedforward

networks,” Neural Networks, vol. 4, pp. 251-257, 1991.
[2] J. M. Benitez, J. L. Castro, and I. Requena, “Are artificial neural

networks black boxes?” IEEE Transactions on Neural Networks, vol.
8, no. 5, pp. 1156-1164, 1997.

[3] E. Kolman and M. Margaliot, “Knowledge extraction from neural
networks using the all-permutation fuzzy rule base,” IEEE
Transactions on Neural Networks, vol. 18, pp. 925-931, 2007.

[4] M. Paliwal and U. A. Kumar, “Assessing the contribution of variables
in feed forward neural network,” Applied Soft Computing, vol. 11, pp.
3690-3696, 2011.

[5] N. J. S. Morch, U. Kjems, L. K. Hansen et al., “Visualization of
neural networks using saliency maps,” in Proc. the IEEE
International Conference on Neural Networks, Perth, Australia, 27th
Nov.-1st Dec. 1995.

[6] C. M. Bishop, Neural Networks for Pattern Recognition, 1st ed.
Clarendon Press: Oxford, United Kingdom, 1995.

[7] M. Heinert, “Artificial Neural Networks how to open the black
boxes?” in Proc. First Workshop on Application of Artificial
Intelligence in Engineering Geodesy, Vienna, Austria, December
2008.

[8] X. Cheng, X. Chen, and S. Mallat, “Deep Haar scattering networks,”
Information and Inference: A Journal of the IMA, vol. 5, pp. 105-133,
2016.

[9] X. Chen, X. Cheng, and S. Mallat, “Unsupervised deep haar
scattering on graphs,” arXiv, 2014.

[10] J. Bruna and S. Mallat, “Deep haar scattering networks,” IEEE
Transactions on Pattern Analysis And Machine Intelligence, vol. 35,
no. 8, pp. 1872-1886, August 2013.

[11] S. Mallat, A Wavelet tour of signal Processing, 2nd ed., Academic
Press: London, United Kingdom, 1999.

[12] S. Mallat, “Understanding deep convolutional networks,”
Philosophical Transactions A, vol. 374, 2016.

[13] M. M. Brownstein, J. Bruna, Y. Lecun, A. Szlam, and P.
Vandergheynst, “Geometric deep learning: going beyond euclidean
data,” IEEE Signal Processing Magazine, vol. 34, issue 4, July 2017.

[14] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, pp.436-444, 2015.

Fernando Fernandes Neto was born in Taboão da
Serra, Brazil in 1986. He completed his Ph.D. degree
in systems engineering in 2016 at Polytechnic School
of Engineering – University of São Paulo, Brazil. He
earned his MSc degree in industrial engineering at
São Paulo Institute of Technology (IPT) in 2014,
MBA in financial engineering at University of São
Paulo in 2013 and received his BSc in business
administration in 2010.

He is currently a post-doctoral fellow at the University of São Paulo,
researching spectral methods and machine learning methods applied to
systems identification, econometrics, and forecasting.

International Journal of Machine Learning and Computing, Vol. 8, No. 3, June 2018

267

