

Abstract—Data imbalance is one of the problems that we face

when applying machine learning to real-world problems,

especially in image classification. With all the improvements in

machine learning, especially deep learning, research in this area

is drawing more attention from academics and even industry. To

address this imbalanced data problem, we adopt a hybrid

(algorithm and data) approach that consists of data

manipulation and weighted loss function in this paper. We

propose Ripple-SMOTE as a novel oversampling method to

generate synthetic data for preprocessing. A deep neural

network and the weighted loss function is applied so it will not

treat all classes equally. We also use a pre-trained model and

fine tune it to improve the classification accuracy. In this paper,

we report the evaluation results using imbalanced data sets

based on MNIST, CUReT texture set, and Malware data set,

and show that our approach significantly improves the

performance in imbalanced data cases and outperforms the

conventional approaches, especially in handling minority

classes.

Index Terms—Deep neural network, imbalanced data,

oversampling.

I. INTRODUCTION

The Performance of machine learning, specifically deep

learning, heavily depends on the quality of data. Most deep

CNNs are trained by properly designed balanced data [1].

However, imbalanced distribution for each class is such a

common thing that we face it very often if we are to tackle real

world problems, for example, fraudulent credit card

transactions, medical diagnosis, software defects, etc.

Class imbalance occurs when the instances of one class are

far less in number than the instances of another class [2]. The

main issue regarding imbalanced learning is the likelihood of

the imbalanced data to compromise the performance of

standard learning algorithm [3].

There are three reasons that cause the compromises [4].

The first reason is that the lack of data in the minority class

makes it difficult to detect regularities within the minority

class. Thus, the learned decision boundaries are less likely to

approximate the true decision boundaries. Secondly, there are

many classification algorithms that utilize a general bias for

better generalization and to avoid overfitting during training.

Last is the noise exerts a greater impact on minority class

rather than majority, because the data limitation in the

Manuscript received March 5, 2018; revised May 7, 2018. This work was

supported in part JSPS Grants-in-Aid for scientific Research (KAKENHI)

grant number JP17K00138.

The authors are with Graduate School of Computer and Information

Sciences, Hosei University, Tokyo, Japan (e-mail:

rheza.harliman.5q@stu.hosei.ac.jp).

minority class makes it difficult for a classifier to distinguish

noise. This is more problematic especially in extreme cases

where the number of noisy samples is greater than the actual

minority samples. If it happens, overfitting will likely happen

again.

To solve these problems, research is ongoing with variety

of techniques. Approaches to solve this imbalanced data are

broadly divided into two categories [5]: Algorithm- and

Data-approaches. Most of the algorithm level methods

typically create a new or improved current algorithm to fit the

biased data distribution. One of them uses the cost-sensitive

learning [6] or a loss function [7]. By amplifying

misclassification of the minority class and suppressing the

majority, it improves the training performance. Data

approaches include oversampling, undersampling,

resampling, and data manipulation. Some of the famous

oversampling methods are SMOTE [8], Borderline-SMOTE

[9], safe-level SMOTE [10] and ADASYN [11].

Oversampling is used to generate synthetic samples to

improve the number of samples in minority class. There’s also

combination of oversampling and undersampling method like

SMOTE-ENN [12] and SMOTE-TOMEK [13].

The rest of paper is organized as follows; in Section II, we

discuss related works. Section III introduces our approach to

address the imbalance problem using a hybrid approach. In

Section IV we explain about the evaluation and its result, then

conclude it in Section V.

II. RELATED WORKS

A. Synthetic Minority Oversampling Technique (SMOTE)

SMOTE (Synthetic Minority Oversampling Technique) [8]

is used to balance the minor data set by increasing its samples.

It creates synthetic samples with considering the nearest

neighbor value. SMOTE consists of several steps:

a) For samples in minority classes, use Euclidean Distance
to calculate the distance between each sample and apply
k-nearest neighbor from those samples.

b) Take n-samples randomly from k-nearest neighbor
results. Yan [5] proposes another way in counting how
many samples are to be created using the equation below:

max

min

round(imbalancedratio) 1

imbalancedratio

n

S

S

c) From the set of samples yn taken from k-nearest neighbor,
construct a new synthetic sample based on interpolation
formula

 nixyrandxx nnew ,...2,1,)1,0(

Data- and Algorithm-Hybrid Approach for Imbalanced

Data Problems in Deep Neural Network

Rheza Harliman and Kaoru Uchida

International Journal of Machine Learning and Computing, Vol. 8, No. 3, June 2018

208doi: 10.18178/ijmlc.2018.8.3.689

By applying the oversampling, it is expected that the

classifier can build a larger decision region that contains

nearby minority class points.

Tomek link [12] is an undersampling method that only

removes samples belonging to majority class. Given two

samples from different classes, Ei and Ej, a pair is called

tomek links if there’s no sample El, such distance (Ei , Ei) <

distance(Ei, Ej). When a Tomek link is performed between

two samples, either one of these samples is noise or both are

samples lying on a borderline.

Tomek link in SMOTE-Tomek is used for cleaning the

samples after applying the oversampling, since interpolating

minority class samples expand the minority class clusters and

those samples might have gone too deeply into majority class

space. Fig. 1 shows the procedure of SMOTE-Tomek.

Fig 1. Balancing Data set (a) original data set; (b) oversampled data set; (c)

Tomek links identification; (d) borderline and nose examples removal.

B. Loss Function

Softmax loss [8] consists of softmax regression and entropy

loss that is widely used in multi-class classification. Suppose

we have a K-class training set consisting of n samples: {x
(i)

, y
(i)

}

where x is a sample vector and y is the label. If aj(j = 1, 2, …,

K) is the output unit from the fully connected layer, then the

probability function that x
(i)

 is j can be formulated as:

K

l

i

l

i

ji

j

a

a
P

0

)(

)(

)(

)exp(

)exp(

And to minimize the entropy loss function, we can use

formula like below.

}log))(({
1

1 0

)(

0

n

i

K

j

i

jPjiy
n

J

The approach of weighted softmax loss, that is supposed to

solve this limitation can be formulated as below,

max

max

1 0

)(

0

1

}log))(({
1

S

SS
w

Pjiyw
n

J

k

n

i

K

j

i

j

where β is the parameter that scales the weighted loss (w).

This means that majority classes will gain more weights

compared to minority classes.

III. PROPOSED METHOD

The hybrid approach we propose here is a combinational

approach to solve the imbalanced data problem of data

manipulation and algorithm. For data manipulation, we

employ synthetic oversampling using our novel

implementation in SMOTE and we use weighted loss function

as the algorithm approach.

A. Ripple-SMOTE

One of our basic ideas to solve the imbalance problem is to

reduce the sample imbalanced ratio between majority class

data and minority class data.

Reducing the ratio’s differences between samples can be

done by manipulating the data by oversampling of minority

class samples and/or downsampling of majority class samples.

In this paper we propose a novel approach to improve

SMOTE (Ripple-SMOTE) in order to achieve better data

proportion and better prediction.

Not like the existing oversampling methods, our method

strengthens the borderline of minority samples and improve

the features by creating synthetic samples by taking i-farthest

data from centroids and downsampling n-nearest data from

the majority set. Fig. 2 is the simulation of the classes samples

with centroids. The x with green color in the center of the data

is the centroid. The line drawn is the border that is taken from

the farthest sample. Arrows pointed to samples shown some

of the farthest samples around the centroid.

Fig. 2. Centroid data and farthest data simulation.

Suppose the whole training set is D, and J for majority

samples, M for minority samples,

},...,,,{},,...,,,{ 321321 lk mmmmMjjjjJ

where k and l are number of majority and minority samples

respectively. Following are the detail steps for

Ripple-SMOTE.

One of the most important points in this method is use of

the centroid of the data for each class. Suppose c

nM is the

sample from minority class c, center
c
 is the centroid of class c,

and Nc is number of samples in class c, we can calculate the

centroid at that class with following formula,

International Journal of Machine Learning and Computing, Vol. 8, No. 3, June 2018

209

1center

m
cN

c

n
c n

m

c

M

N

Next, we should find the borderline by finding the distance

from each of samples in minority to the centroid. Taking the

insight from the approach of borderline-SMOTE [7], we

calculate all the distance from the majority sample with the

distance from the farthest sample of the minority class.

Suppose the distance between the farthest sample from

majority sample is t
maj

, and
min

nt is the distance from centroid

to farthest sample, then we can identify which majority

samples that may be misclassified into the minority and vice

versa. We take n-samples of majority samples that has

smallest t
maj

 and remove it from minority class and store the

farthest minority sample into a FARTHEST set.

c

c

l

l

c

NFARTHEST

mmmmFARTHEST

0

},',...,',','{ 321

The imbalance rate is important in the next step. We are

giving each class an imbalance rate with following formula,

max()
imbalancedrate

j

c

m

c

N

N

We are assuming that making synthetic samples only from

borderline of the data is not enough. There is still room for

improvement especially when we try to get nearer to the

centroid from borderline. Based on our finding this area is far

enough from centroid so it has more unique features and in the

other hand, it is also far enough from borderline to get it

misclassified as another class.

Our method generates synthetic sample based on SMOTE.

SMOTE needs pair of samples to create the synthetic sample.

At the first ripple, we take the farthest sample from the

centroid as the first sample, and then find its nearest neighbor

that is closer to centroid as the second sample. Second ripple

is starts from the set of second sample as the farthest sample

from the centroid and find again its nearest neighbor that is

closer to centroid as the pair and repeat the same procedure

for the third ripple and on. For each FARTHEST sample, we

search for the nearest neighbor with Imbalanced Rate as the

limit number. The nearest set from borderline is becoming the

first ripple. Number of ripple can be varying, suppose R is the

set of the ripple, the sample’s distance from each ripple to

centroid should satisfy,

 ' centeri i c im m m

For each item in the ripple set, we create the synthetic

sample. SMOTE is used to produce synthetic samples of the

data set.

 rilii NimmrandmS ,...2,1,')1,0(

We repeat this procedure for each ripple available. All the

variables in this method are vector. With this approach we can

see that the new synthetic data is created starting from

borderline point and getting near to the centroid for each

ripple available.

B. Neural Network with Weighted Loss Function

In this paper, we also propose a weighted softmax layer at

the end of the deep neural network architecture. Network

architecture that we used in this research fully connected

layers with weighted loss layer at the end. We implement two

types of network for this research, the first model is as shown

in Fig. 4, with 1 convolutional layer for MNIST. For texture

and malware test, we are using VGG16 model that already

pre-trained using ImageNet for transfer learning purpose. We

are using the pre-trained model to give more knowledge to

small set like texture and malware. We borrow the idea from

Yue [10] to put the weighted loss function at the end of our

network. We decide the weights for softmax loss using

imbalanced rate with the same formula that already defined in

the previous section.

IV. EVALUATION AND DISCUSSION

We conducted performance evaluations using MNIST

handwritten digit data set, CUReT (Columbia-Utrecht)

texture data set. Since both of them are not imbalanced, we

pick up several classes and reduce the number of samples in

those classes significantly, to make them artificially

imbalanced. We also conducted a test on imbalance set like

Malware data set to evaluate the performance.

A. MNIST Data Set

In this test, we randomly reduce the number of samples in 1,

3, 5, and 7 to 200. We did not do any modification to the rest

of the class. Classes with digits 0, 2, 4, 6, 8, and 9 are majority

class and others with 200 samples are minority class. By this

augmentation, we got the imbalance rate around 30 for each of

the minority class. We leave the test set as it is, with MNIST

original 10000 test samples in total. Fig. 3 shows the

examples of synthetic samples generated using our method.

TABLE I: RESULT TABLE FOR MNIST DATA SET AFTER 15TH
 EPOCH

Algorithm Loss Error Rate Improvement

Hybrid Ripple-SMOTE 0.6448 3.95% 70.45%

Ripple-SMOTE 0.1597 4.54% 66.04%

SMOTE-ENN 0.1723 4.24% 68.28%

SMOTE-TOMEK 0.1601 4.19% 68.66%

SMOTE 0.3456 9.07% 32.16%

Borderline-SMOTE 0.1909 4.77% 64.32%

Original Imbalanced 0.4984 13.37% -

Fig. 3. SMOTE synthetic sample for class 5.

Table I is the classification results for MNIST data set. The

results shown in Table I reveals that our hybrid method can

improve the performance of imbalanced classification by 70

percent from the original imbalanced set. If we compare it to

common oversampling methods like SMOTE and

borderline-SMOTE, we improved the performance by 50

percent and 4.83 percent respectively compared to cases only

using Ripple-SMOTE. By using our hybrid method reduced

the error rate 6.84 percent for SMOTE-ENN and 5.73 percent

for SMOTE-TOMEK.

Data shown in Table II reveals that our proposed method

can reach 6.4 percent classification error rate on minority

International Journal of Machine Learning and Computing, Vol. 8, No. 3, June 2018

210

classes, which is better than 8.77 percent by SMOTE-ENN

and 14.19 percent by SMOTE-TOMEK. Ripple-SMOTE’s

performance has good performance on minority classes

because it is not just created synthetic samples on the border

of minority class (like borderline-SMOTE) but also makes

more samples nearer to centroid. By using this approach, we

believe that we created synthetic samples that has unique

features, because it nears the border of the class, but also

better assurance that the sample is still in the class by

generating samples based on the “ripple” movement that

keeps getting nearer to the centroid of the corresponding

class.

TABLE II: MINORITY CLASSIFICATION ERROR RATE TABLE

Class
Validation

Samples
Ripple-SMOTE

SMOTE-

ENN

SMOTE-TOM

EK

1 1135 1.41% 2.12% 2.03%

3 1010 19.92% 17.63% 19.83%

5 892 26.08% 27.05% 26.88%

7 1028 17.364% 20.18% 19.83%

B. Texture Data Set

We then conducted a performance evaluation using a

texture data set, to see if our approach is applicable to floor

texture image classification and identification problem [14]

[15]. Texture data from CUReT (grey) [16] set consists of 61

classes with 92 samples for each class including test set. We

take 20% of the set to be used as the test set. Figure 4 shows

the example of texture data set for training samples.

To create the imbalanced problem in this data set, we

removed some samples from some classes, and made the

imbalanced vary between 1.01 until 2 imbalanced rates for

each class. Fig. 4 shows an example of synthetic samples

generated for texture data set.

(a) (b) (c)

Fig 4. Synthetic sample generated for texture sample. (a) is the real

image from data set class 2; (b) is scaled image for training purpose; (c) is

synthetic image created.

TABLE III: RESULT TABLE FOR TEXTURE DATA SET

Algorithm Loss
Error

Rate

Loss

(Best)

Error

Rate

Hybrid

Ripple-SMOTE

0.3932 (42) 8.54% 0.3285 5.97%

Ripple-SMOTE 0.7912 (22) 18.19% 0.5948 15.98%

SMOTE-ENN 0.6829 (28) 16.36% 0.4639 11.78%

SMOTE-Tomek 0.3390 (30) 6.73% 0.3390 6.73%

Original Imbalanced 0.4879 (28) 12.67% 0.5138 10.75%

We evaluate texture a little bit differently from the MNIST

case. With small number of samples available, we decided to

use transfer learning from pre-trained imagenet model of

VGG16. We also used early-stopping in our model. Table III

shows the classification performance result. The numbers in

brackets show the number of iteration when the training

stopped. We set the tolerance of early-stopping to 5. We did

not evaluate SMOTE, and borderline-SMOTE because we

wanted to focus more on the combination of oversampling

and undersampling algorithm’s performance.

Rippled-SMOTE improved by 72.6 percent by using the

hybrid approach. By using our hybrid method, its best

performance improved the imbalance texture classification by

44.5 percent. It also surpassed SMOTE-TOMEK best

performance by 11.3 percent. Compared to normal weight

loss, our proposed approach in hybrid Ripple-SMOTE starts

the learning slowly. In texture case, it reached its peak after

36
th

 epoch compared to other methods that reached the peak

performance around 20
th

 epoch. Through this experiment, we

could verify that our approach can also be applied to floor

image classification and identification problem.

C. Malware Data Set

We conducted a test on Ripple-SMOTE using malware

imbalanced set created by Nataraj [17]. This experiment uses

the same model with transfer learning as the texture test. Fig.

5 is the structure of a malware image of Dontovo. Nataraj [17]

made the data set by converting malware binary to an 8-bit

vector then to a grayscale image. Fig. 6 is the binary to

grayscale image conversion scheme.

Fig. 5. Various sections of Trojan: Dontovo.A.

Fig. 6. Malware binary to image conversion scheme.

The malware data set is an imbalanced data set consisting

of 9339 images of malware binary that are classified into 25

classes. The biggest class consists of 2949 samples

(Allaple.A) and the smallest class consists of 80 samples

(Skintrin.N). This makes the imbalanced rate of those two

classes to 36.86. This set originally doesn’t have test set, so

we randomly chose 30% of the training set as the test set.

TABLE IV: RESULT TABLE FOR MALWARE RATA SET

Algorithm Loss Error Rate

Ripple-SMOTE 0.524 15.56%

SMOTE-ENN 2.083 56.71%

SMOTE-TOMEK 0.612 18.63%

SMOTE 0.4334 13.17%

Original Imbalanced 0.5126 16.74%

As we can see from the results shown in Table IV, our

approach outperforms the original imbalanced case,

International Journal of Machine Learning and Computing, Vol. 8, No. 3, June 2018

211

Ripple-SMOTE and SMOTE. Now we analyze the confusion

matrix closely, since the average classification accuracy

(error rate) can be overly influenced by the performance on

majority set because of its large number of samples. We

measured the minority performance using TPR (True Positive

Rate). TP and FN stand for True Positive and False Negative

respectively. Table V shows minority sets with less than 200

samples and differences in classification result between

Ripple-SMOTE, SMOTE-Tomek and original imbalanced.

FNTP

TP
TPR

Table V shows the minority set performance results (TPR)

of original, SMOTE, and Ripple-SMOTE cases.

TABLE V: TRUE POSITIVE RATE RESULT TABLE FOR MALWARE DATA SET

Class Original SMOTE Ripple-SMOTE

Adialer.C 0 0 0.94871795

Agent.FYI 1 0.25 1

Aleuron.gen!J 0 0 0.10909091

C2LOP.P 0 0.075 0

Dialplatform.B 0.9772 0.0172 0.98360656

Dontovo.A 1 1 0.85964912

Lolyda.AA1 0.9696 0.9636 0.95454545

Lolyda.AA2 0.66 0.5813 0.46551724

Lolyda.AA3 1 1 0.46153846

Lolyda.AT 0 0 0.05769231

Malex.gen!J 0 0 0.05128205

Rbot!gen 0 0 0.06666667

Skintrim.N 0 0 0.39215686

Swizzor.gen!E 0 0 0.02702703

Swizzor.gen!I 0 0.1 0

From Table V, we can see that the original set has the

average accuracy of 29.51% for minority sets, SMOTE

20.98% and Ripple-SMOTE 33.56%. Ripple-SMOTE

improved the performance in recognizing minority by 13.72%

compared to original set and 59.96% compared to original

SMOTE. Our Ripple-SMOTE is not working well with

Lolyda classes because of our undersampling might

accidentally remove important features from other Lolyda

class. Lolyda.AA1 got better result because we augment the

sample in Lolyda.AA1 before other Lolyda family. Colored

cell in Table V shows that our Ripple-SMOTE performs

better at 9 classes and proves that our Ripple-SMOTE

performs better in handling synthetic minority set.

V. CONCLUSION AND FUTURE WORK

This paper proposes Ripple-SMOTE as a novel

oversampling. We also propose a hybrid method to improve

imbalanced set performance by tuning weights for each class.

In Ripple-SMOTE (non-hybrid), oversampling starts from

borders and the ripple moves toward the centroid, then

synthetic samples are generated based on the nearest neighbor

sample from the ripples. We strengthen the border by also

undersampling the nearest majority data within minority

samples.

We have conducted three sets of performance evaluation,

MNIST digit image classification, texture image

classification, and malware standard dataset, and have shown

that our approach significantly improves the performance in

imbalanced data cases and outperforms the conventional

approaches, especially in handling minority classes.

We notice that linear interpolation method like SMOTE

will make noisy images at some extent if the nearest neighbor

is not near enough. For example, Fig. 7 is one of the noisy

images created using our Ripple-SMOTE.

Fig. 7. Noisy synthetic sample generated by Ripple-SMOTE.

For the time being, we are working on improving the

synthetic sample quality by applying GAN [18] to make the

synthetic samples more realistic and minimize the noise

generated by Ripple-SMOTE.

Currently, this research just evaluates images set. As the

future works, we are going to improve several points, such as,

1) Improve the undersampling performance

2) Noise cleansing method to improve image quality

3) Improve the robustness for small set

4) Evaluate the robustness on other data set

REFERENCES

[1] A. Krizhevsky and G. Hinton, “Learning multiple layers of features

from tiny images,” 2009.

[2] E. Kriminger, J. C. Principe, and C. lakshminaryan, “Nearest neighbor

distribution for imbalanced classification,” in Proc. International

Joint Conference on Neural Networks, 2012.

[3] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE

Transactions on Knowledge Data Engineering, vol. 21, no. 9, pp.

1263-1284, 2009.

[4] G. M. Weiss, “Mining with rarity: A unifying framework,” ACM

SIGKDD Explorations Newsletter, vol. 6, no. 1, pp. 7-11, 2004.

[5] Q. Yan, F. Meng, and Q. Sun, An oversampling method based on

shapelet extraction for imbalanced time series classification.

[6] S. H. Khan, M. Hayat, M. Bennamoun, F. A. Sohel, and R. Togneri,

“Cost-Sensitive learning of deep feature representations from

imbalanced data,” IEEE Transactions on neural Networks and

Learning Systems, 2017.

[7] S. Yue, “Imbalanced malware images classification: a CNN based

approach,” arXiv preprint, 2017.

[8] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,

“SMOTE: Synthetic Minority Over-sampling Technique,” Journal of

Artificial Intelligence research, 16:321-357, 2002.

[9] H. Han, W. Y. Wang, and B. H. Mao, “Borderline-SMOTE: A new

over-sampling method in imbalanced data sets learning,” Advances in

Intelligent Computing, pp. 878-887, 2005.

[10] C. Bunkhumpornpst, K. Sinapiromsaran, and C. Lurnisap, “Safe-level

SMOTE: Safe-level-synthetic minority oversampling technique for

handling class imbalanced problem,” in Proc. AKDDM, 2009.

[11] T. Maciejewski and J. Stefanowski, “Local neighborhood extension of

SMOTE for mining data,” in Proc. CIDM., Apr. 2011.

[12] G. Batista, R. C. Prati, and M. C. Monard, “A study of the behavior of

several methods for balancing machine learning training data,” ACM

Sigkdd Explorations Newsletter, vol. 6, no. 1, pp. 20-29, 2004.

[13] G. Batista, B. Bazzan, M. Monard, “Balancing training data for

automated annotation of keywords: A case study,” WOB, pp. 10-18,

2003.

[14] S. Fujita, T. Fujita, and K. Uchida, “Floor fingerprint verification using

a gravity-aware smartphone,” in Proc. the 5th IIAE International

Conference on Intelligent Systems and Image Processing, 2017, pp.

311-318.

[15] K. Uchida and S. Fujita, “Indoor location estimation based on robust

floor fingerprint identification,” in Proc. 2017 International

Conference on Indoor Positioning and Indoor Navigation, Sapporo,

Japan, 2017.

International Journal of Machine Learning and Computing, Vol. 8, No. 3, June 2018

212

[16] K. Dana, S. Nayar, B. Ginneken, and J. Koenderink, “Reflectance and

texture of real- world surfaces,” in Proc. Int'l Conf. Computer Vision

and Pattern Recognition, 1997, pp. 151–157.

[17] L. Nataraj, S. karthikeyan, G. Jacob, and B. S. Manjunath, “Malware

Images: Visualization and automatic classification,” in Proc.

International Symposium on Visualization for Cyber Security, 2011.
[1] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, and Y. Bengio, “General adversarial network,”
arXiv, 2014 .

Rheza Harliman was born in Jakarta, Indonesia, in

1991. He received his bachelor’s degree in computer

science from Multimedia Nusantara University,

Indonesia, in 2013. He worked as an android

programmer until 2015 before he moved to Japan. In

April 2016 he started to pursue master’s degree in

Hosei University is going to graduate in March 2018.

His research interests include image processing,

machine learning, and pattern recognition.

Kaoru Uchida was born in Tokyo, Japan, in 1961. He

received his B.E. degree in mathematical engineering

and information physics from the University of Tokyo,

Japan, in 1984, his M.S. degree in computer science

from Stanford University, U.S.A., in 1991, and his

Ph.D. degree in Information Sciences from Tohoku

University, Japan, in 2003.

He was formerly with NEC Corporation, where he

was engaged in research in image processing, pattern

recognition and biometric personal identification, and also in design and

development of mobile terminals, smart devices and services whereupon.

Since April 2014, he has been a professor at the Graduate School of

Computer and Information Sciences, Hosei University, in Tokyo, Japan. His

current research interests include pattern recognition, biometric personal

identification, machine learning, deep learning, and their real-world

applications.

Prof. Uchida received the International Standard Development Award

from Information Technology Standards Commission of Japan, Information

Processing Society of Japan, in 2008, for his contribution as the editor in the

development of ISO/IEC19795-3.

International Journal of Machine Learning and Computing, Vol. 8, No. 3, June 2018

213

