
  

 

Abstract—Data imbalance is one of the problems that we face 

when applying machine learning to real-world problems, 

especially in image classification. With all the improvements in 

machine learning, especially deep learning, research in this area 

is drawing more attention from academics and even industry. To 

address this imbalanced data problem, we adopt a hybrid 

(algorithm and data) approach that consists of data 

manipulation and weighted loss function in this paper. We 

propose Ripple-SMOTE as a novel oversampling method to 

generate synthetic data for preprocessing. A deep neural 

network and the weighted loss function is applied so it will not 

treat all classes equally. We also use a pre-trained model and 

fine tune it to improve the classification accuracy. In this paper, 

we report the evaluation results using imbalanced data sets 

based on MNIST, CUReT texture set, and Malware data set, 

and show that our approach significantly improves the 

performance in imbalanced data cases and outperforms the 

conventional approaches, especially in handling minority 

classes. 

 
Index Terms—Deep neural network, imbalanced data, 

oversampling.  

 

I. INTRODUCTION 

The Performance of machine learning, specifically deep 

learning, heavily depends on the quality of data. Most deep 

CNNs are trained by properly designed balanced data [1]. 

However, imbalanced distribution for each class is such a 

common thing that we face it very often if we are to tackle real 

world problems, for example, fraudulent credit card 

transactions, medical diagnosis, software defects, etc.  

Class imbalance occurs when the instances of one class are 

far less in number than the instances of another class [2]. The 

main issue regarding imbalanced learning is the likelihood of 

the imbalanced data to compromise the performance of 

standard learning algorithm [3]. 

There are three reasons that cause the compromises [4]. 

The first reason is that the lack of data in the minority class 

makes it difficult to detect regularities within the minority 

class. Thus, the learned decision boundaries are less likely to 

approximate the true decision boundaries. Secondly, there are 

many classification algorithms that utilize a general bias for 

better generalization and to avoid overfitting during training. 

Last is the noise exerts a greater impact on minority class 

rather than majority, because the data limitation in the 
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minority class makes it difficult for a classifier to distinguish 

noise. This is more problematic especially in extreme cases 

where the number of noisy samples is greater than the actual 

minority samples. If it happens, overfitting will likely happen 

again. 

To solve these problems, research is ongoing with variety 

of techniques. Approaches to solve this imbalanced data are 

broadly divided into two categories [5]: Algorithm- and 

Data-approaches. Most of the algorithm level methods 

typically create a new or improved current algorithm to fit the 

biased data distribution. One of them uses the cost-sensitive 

learning [6] or a loss function [7]. By amplifying 

misclassification of the minority class and suppressing the 

majority, it improves the training performance. Data 

approaches include oversampling, undersampling, 

resampling, and data manipulation. Some of the famous 

oversampling methods are SMOTE [8], Borderline-SMOTE 

[9], safe-level SMOTE [10] and ADASYN [11]. 

Oversampling is used to generate synthetic samples to 

improve the number of samples in minority class. There’s also 

combination of oversampling and undersampling method like 

SMOTE-ENN [12] and SMOTE-TOMEK [13]. 

The rest of paper is organized as follows; in Section II, we 

discuss related works. Section III introduces our approach to 

address the imbalance problem using a hybrid approach. In 

Section IV we explain about the evaluation and its result, then 

conclude it in Section V. 

 

II. RELATED WORKS 

A. Synthetic Minority Oversampling Technique (SMOTE) 

SMOTE (Synthetic Minority Oversampling Technique) [8] 

is used to balance the minor data set by increasing its samples. 

It creates synthetic samples with considering the nearest 

neighbor value. SMOTE consists of several steps: 

a) For samples in minority classes, use Euclidean Distance 
to calculate the distance between each sample and apply 
k-nearest neighbor from those samples. 

b) Take n-samples randomly from k-nearest neighbor 
results. Yan [5] proposes another way in counting how 
many samples are to be created using the equation below: 
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c) From the set of samples yn taken from k-nearest neighbor, 
construct a new synthetic sample based on interpolation 
formula 
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By applying the oversampling, it is expected that the 

classifier can build a larger decision region that contains 

nearby minority class points. 

Tomek link [12] is an undersampling method that only 

removes samples belonging to majority class. Given two 

samples from different classes, Ei and Ej, a pair is called 

tomek links if there’s no sample El, such distance (Ei , Ei) < 

distance(Ei, Ej). When a Tomek link is performed between 

two samples, either one of these samples is noise or both are 

samples lying on a borderline.  

Tomek link in SMOTE-Tomek is used for cleaning the 

samples after applying the oversampling, since interpolating 

minority class samples expand the minority class clusters and 

those samples might have gone too deeply into majority class 

space. Fig. 1 shows the procedure of SMOTE-Tomek. 
 

 
Fig 1. Balancing Data set (a) original data set; (b) oversampled data set; (c) 

Tomek links identification; (d) borderline and nose examples removal. 

B. Loss Function 

Softmax loss [8] consists of softmax regression and entropy 

loss that is widely used in multi-class classification. Suppose 

we have a K-class training set consisting of n samples: {x
(i)

, y
(i)

} 

where x is a sample vector and y is the label. If aj(j = 1, 2, …, 

K) is the output unit from the fully connected layer, then the 

probability function that x
(i)

 is j can be formulated as: 
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And to minimize the entropy loss function, we can use 

formula like below. 
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The approach of weighted softmax loss, that is supposed to 

solve this limitation can be formulated as below,  
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where β is the parameter that scales the weighted loss (w). 

This means that majority classes will gain more weights 

compared to minority classes.  

 

III. PROPOSED METHOD 

The hybrid approach we propose here is a combinational 

approach to solve the imbalanced data problem of data 

manipulation and algorithm. For data manipulation, we 

employ synthetic oversampling using our novel 

implementation in SMOTE and we use weighted loss function 

as the algorithm approach. 

A. Ripple-SMOTE 

One of our basic ideas to solve the imbalance problem is to 

reduce the sample imbalanced ratio between majority class 

data and minority class data. 

Reducing the ratio’s differences between samples can be 

done by manipulating the data by oversampling of minority 

class samples and/or downsampling of majority class samples. 

In this paper we propose a novel approach to improve 

SMOTE (Ripple-SMOTE) in order to achieve better data 

proportion and better prediction. 

Not like the existing oversampling methods, our method 

strengthens the borderline of minority samples and improve 

the features by creating synthetic samples by taking i-farthest 

data from centroids and downsampling n-nearest data from 

the majority set. Fig. 2 is the simulation of the classes samples 

with centroids. The x with green color in the center of the data 

is the centroid. The line drawn is the border that is taken from 

the farthest sample. Arrows pointed to samples shown some 

of the farthest samples around the centroid. 

 

 
Fig. 2. Centroid data and farthest data simulation. 

 

Suppose the whole training set is D, and J for majority 

samples, M for minority samples, 

},...,,,{},,...,,,{ 321321 lk mmmmMjjjjJ   

where k and l are number of majority and minority samples 

respectively. Following are the detail steps for 

Ripple-SMOTE. 

One of the most important points in this method is use of 

the centroid of the data for each class. Suppose c

nM  is the 

sample from minority class c, center
c
 is the centroid of class c, 

and Nc is number of samples in class c, we can calculate the 

centroid at that class with following formula, 
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Next, we should find the borderline by finding the distance 

from each of samples in minority to the centroid. Taking the 

insight from the approach of borderline-SMOTE [7], we 

calculate all the distance from the majority sample with the 

distance from the farthest sample of the minority class. 

Suppose the distance between the farthest sample from 

majority sample is t
maj

, and 
min

nt  is the distance from centroid 

to farthest sample, then we can identify which majority 

samples that may be misclassified into the minority and vice 

versa. We take n-samples of majority samples that has 

smallest t
maj

 and remove it from minority class and store the 

farthest minority sample into a FARTHEST set. 
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The imbalance rate is important in the next step. We are 

giving each class an imbalance rate with following formula, 

max( )
imbalancedrate

j

c

m

c

N

N
  

We are assuming that making synthetic samples only from 

borderline of the data is not enough. There is still room for 

improvement especially when we try to get nearer to the 

centroid from borderline. Based on our finding this area is far 

enough from centroid so it has more unique features and in the 

other hand, it is also far enough from borderline to get it 

misclassified as another class.  

Our method generates synthetic sample based on SMOTE. 

SMOTE needs pair of samples to create the synthetic sample. 

At the first ripple, we take the farthest sample from the 

centroid as the first sample, and then find its nearest neighbor 

that is closer to centroid as the second sample. Second ripple 

is starts from the set of second sample as the farthest sample 

from the centroid and find again its nearest neighbor that is 

closer to centroid as the pair and repeat the same procedure 

for the third ripple and on. For each FARTHEST sample, we 

search for the nearest neighbor with Imbalanced Rate as the 

limit number. The nearest set from borderline is becoming the 

first ripple. Number of ripple can be varying, suppose R is the 

set of the ripple, the sample’s distance from each ripple to 

centroid should satisfy, 
 

   ' centeri i c im m m    

 

For each item in the ripple set, we create the synthetic 

sample. SMOTE is used to produce synthetic samples of the 

data set.  

  rilii NimmrandmS ,...2,1,')1,0(   

 

We repeat this procedure for each ripple available. All the 

variables in this method are vector. With this approach we can 

see that the new synthetic data is created starting from 

borderline point and getting near to the centroid for each 

ripple available. 

B. Neural Network with Weighted Loss Function 

In this paper, we also propose a weighted softmax layer at 

the end of the deep neural network architecture. Network 

architecture that we used in this research fully connected 

layers with weighted loss layer at the end. We implement two 

types of network for this research, the first model is as shown 

in Fig. 4, with 1 convolutional layer for MNIST. For texture 

and malware test, we are using VGG16 model that already 

pre-trained using ImageNet for transfer learning purpose.  We 

are using the pre-trained model to give more knowledge to 

small set like texture and malware. We borrow the idea from 

Yue [10] to put the weighted loss function at the end of our 

network. We decide the weights for softmax loss using 

imbalanced rate with the same formula that already defined in 

the previous section. 

 

IV. EVALUATION AND DISCUSSION 

We conducted performance evaluations using MNIST 

handwritten digit data set, CUReT (Columbia-Utrecht) 

texture data set. Since both of them are not imbalanced, we 

pick up several classes and reduce the number of samples in 

those classes significantly, to make them artificially 

imbalanced. We also conducted a test on imbalance set like 

Malware data set to evaluate the performance. 

A. MNIST Data Set 

In this test, we randomly reduce the number of samples in 1, 

3, 5, and 7 to 200. We did not do any modification to the rest 

of the class. Classes with digits 0, 2, 4, 6, 8, and 9 are majority 

class and others with 200 samples are minority class. By this 

augmentation, we got the imbalance rate around 30 for each of 

the minority class. We leave the test set as it is, with MNIST 

original 10000 test samples in total. Fig. 3 shows the 

examples of synthetic samples generated using our method. 
 

TABLE I: RESULT TABLE FOR MNIST DATA SET AFTER 15TH
 EPOCH 

Algorithm Loss Error Rate Improvement 

Hybrid Ripple-SMOTE 0.6448 3.95% 70.45% 

Ripple-SMOTE 0.1597 4.54% 66.04% 

SMOTE-ENN 0.1723 4.24% 68.28% 

SMOTE-TOMEK 0.1601 4.19% 68.66% 

SMOTE 0.3456 9.07% 32.16% 

Borderline-SMOTE 0.1909 4.77% 64.32% 

Original Imbalanced 0.4984 13.37% - 

 

 
Fig. 3. SMOTE synthetic sample for class 5. 

 

Table I is the classification results for MNIST data set. The 

results shown in Table I reveals that our hybrid method can 

improve the performance of imbalanced classification by 70 

percent from the original imbalanced set. If we compare it to 

common oversampling methods like SMOTE and 

borderline-SMOTE, we improved the performance by 50 

percent and 4.83 percent respectively compared to cases only 

using Ripple-SMOTE. By using our hybrid method reduced 

the error rate 6.84 percent for SMOTE-ENN and 5.73 percent 

for SMOTE-TOMEK. 

Data shown in Table II reveals that our proposed method 

can reach 6.4 percent classification error rate on minority 
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classes, which is better than 8.77 percent by SMOTE-ENN 

and 14.19 percent by SMOTE-TOMEK. Ripple-SMOTE’s 

performance has good performance on minority classes 

because it is not just created synthetic samples on the border 

of minority class (like borderline-SMOTE) but also makes 

more samples nearer to centroid. By using this approach, we 

believe that we created synthetic samples that has unique 

features, because it nears the border of the class, but also 

better assurance that the sample is still in the class by 

generating samples based on the “ripple” movement that 

keeps getting nearer to the centroid of the corresponding 

class. 

 
TABLE II: MINORITY CLASSIFICATION ERROR RATE TABLE 

Class 
Validation 

Samples 
Ripple-SMOTE 

SMOTE-

ENN 

SMOTE-TOM

EK 

1 1135 1.41% 2.12% 2.03% 

3 1010 19.92% 17.63% 19.83% 

5 892 26.08% 27.05% 26.88% 

7 1028 17.364% 20.18% 19.83% 

 

B. Texture Data Set 

We then conducted a performance evaluation using a 

texture data set, to see if our approach is applicable to floor 

texture image classification and identification problem [14] 

[15].  Texture data from CUReT (grey) [16] set consists of 61 

classes with 92 samples for each class including test set. We 

take 20% of the set to be used as the test set. Figure 4 shows 

the example of texture data set for training samples. 

To create the imbalanced problem in this data set, we 

removed some samples from some classes, and made the 

imbalanced vary between 1.01 until 2 imbalanced rates for 

each class. Fig. 4 shows an example of synthetic samples 

generated for texture data set. 
 

 

 

 

 

 

 
(a) (b) (c) 

Fig 4. Synthetic sample generated for texture sample. (a) is the real 

image from data set class 2; (b) is scaled image for training purpose; (c) is 

synthetic image created. 

 

TABLE III: RESULT TABLE FOR TEXTURE DATA SET 

Algorithm Loss 
Error 

Rate 

Loss 

(Best) 

Error 

Rate 

Hybrid 

Ripple-SMOTE 

0.3932 (42) 8.54% 0.3285 5.97% 

Ripple-SMOTE 0.7912 (22) 18.19% 0.5948 15.98% 

SMOTE-ENN 0.6829 (28) 16.36% 0.4639 11.78% 

SMOTE-Tomek 0.3390 (30) 6.73% 0.3390 6.73% 

Original Imbalanced 0.4879 (28) 12.67% 0.5138 10.75% 

 

We evaluate texture a little bit differently from the MNIST 

case. With small number of samples available, we decided to 

use transfer learning from pre-trained imagenet model of 

VGG16. We also used early-stopping in our model. Table III 

shows the classification performance result. The numbers in 

brackets show the number of iteration when the training 

stopped. We set the tolerance of early-stopping to 5. We did 

not evaluate SMOTE, and borderline-SMOTE because we 

wanted to focus more on the combination of oversampling 

and undersampling algorithm’s performance. 

Rippled-SMOTE improved by 72.6 percent by using the 

hybrid approach. By using our hybrid method, its best 

performance improved the imbalance texture classification by 

44.5 percent. It also surpassed SMOTE-TOMEK best 

performance by 11.3 percent. Compared to normal weight 

loss, our proposed approach in hybrid Ripple-SMOTE starts 

the learning slowly. In texture case, it reached its peak after 

36
th

 epoch compared to other methods that reached the peak 

performance around 20
th

 epoch. Through this experiment, we 

could verify that our approach can also be applied to floor 

image classification and identification problem. 

C. Malware Data Set 

We conducted a test on Ripple-SMOTE using malware 

imbalanced set created by Nataraj [17]. This experiment uses 

the same model with transfer learning as the texture test. Fig. 

5 is the structure of a malware image of Dontovo. Nataraj [17] 

made the data set by converting malware binary to an 8-bit 

vector then to a grayscale image. Fig. 6 is the binary to 

grayscale image conversion scheme. 
 

 
Fig. 5. Various sections of Trojan: Dontovo.A. 

 

 
Fig. 6. Malware binary to image conversion scheme. 

The malware data set is an imbalanced data set consisting 

of 9339 images of malware binary that are classified into 25 

classes. The biggest class consists of 2949 samples 

(Allaple.A) and the smallest class consists of 80 samples 

(Skintrin.N). This makes the imbalanced rate of those two 

classes to 36.86. This set originally doesn’t have test set, so 

we randomly chose 30% of the training set as the test set. 
 

TABLE IV: RESULT TABLE FOR MALWARE RATA SET 

Algorithm Loss Error Rate 

Ripple-SMOTE 0.524 15.56% 

SMOTE-ENN 2.083 56.71% 

SMOTE-TOMEK 0.612 18.63% 

SMOTE 0.4334 13.17% 

Original Imbalanced 0.5126 16.74% 

 

As we can see from the results shown in Table IV, our 

approach outperforms the original imbalanced case, 

International Journal of Machine Learning and Computing, Vol. 8, No. 3, June 2018

211



  

Ripple-SMOTE and SMOTE. Now we analyze the confusion 

matrix closely, since the average classification accuracy 

(error rate) can be overly influenced by the performance on 

majority set because of its large number of samples. We 

measured the minority performance using TPR (True Positive 

Rate). TP and FN stand for True Positive and False Negative 

respectively. Table V shows minority sets with less than 200 

samples and differences in classification result between 

Ripple-SMOTE, SMOTE-Tomek and original imbalanced. 

FNTP

TP
TPR


  

Table V shows the minority set performance results (TPR) 

of original, SMOTE, and Ripple-SMOTE cases. 
 

TABLE V: TRUE POSITIVE RATE RESULT TABLE FOR MALWARE DATA SET 

Class Original SMOTE Ripple-SMOTE 

Adialer.C 0 0 0.94871795 

Agent.FYI 1 0.25 1 

Aleuron.gen!J 0 0 0.10909091 

C2LOP.P 0 0.075 0 

Dialplatform.B 0.9772 0.0172 0.98360656 

Dontovo.A 1 1 0.85964912 

Lolyda.AA1 0.9696 0.9636 0.95454545 

Lolyda.AA2 0.66 0.5813 0.46551724 

Lolyda.AA3 1 1 0.46153846 

Lolyda.AT 0 0 0.05769231 

Malex.gen!J 0 0 0.05128205 

Rbot!gen 0 0 0.06666667 

Skintrim.N 0 0 0.39215686 

Swizzor.gen!E 0 0 0.02702703 

Swizzor.gen!I 0 0.1 0 

 

From Table V, we can see that the original set has the 

average accuracy of 29.51% for minority sets, SMOTE 

20.98% and Ripple-SMOTE 33.56%. Ripple-SMOTE 

improved the performance in recognizing minority by 13.72% 

compared to original set and 59.96% compared to original 

SMOTE. Our Ripple-SMOTE is not working well with 

Lolyda classes because of our undersampling might 

accidentally remove important features from other Lolyda 

class. Lolyda.AA1 got better result because we augment the 

sample in Lolyda.AA1 before other Lolyda family. Colored 

cell in Table V shows that our Ripple-SMOTE performs 

better at 9 classes and proves that our Ripple-SMOTE 

performs better in handling synthetic minority set. 

 

V. CONCLUSION AND FUTURE WORK 

This paper proposes Ripple-SMOTE as a novel 

oversampling. We also propose a hybrid method to improve 

imbalanced set performance by tuning weights for each class.  

In Ripple-SMOTE (non-hybrid), oversampling starts from 

borders and the ripple moves toward the centroid, then 

synthetic samples are generated based on the nearest neighbor 

sample from the ripples. We strengthen the border by also 

undersampling the nearest majority data within minority 

samples. 

We have conducted three sets of performance evaluation, 

MNIST digit image classification, texture image 

classification, and malware standard dataset, and have shown 

that our approach significantly improves the performance in 

imbalanced data cases and outperforms the conventional 

approaches, especially in handling minority classes. 

We notice that linear interpolation method like SMOTE 

will make noisy images at some extent if the nearest neighbor 

is not near enough. For example, Fig. 7 is one of the noisy 

images created using our Ripple-SMOTE. 

 
Fig. 7. Noisy synthetic sample generated by Ripple-SMOTE. 

 

For the time being, we are working on improving the 

synthetic sample quality by applying GAN [18] to make the 

synthetic samples more realistic and minimize the noise 

generated by Ripple-SMOTE. 

Currently, this research just evaluates images set. As the 

future works, we are going to improve several points, such as, 

1) Improve the undersampling performance 

2) Noise cleansing method to improve image quality 

3) Improve the robustness for small set 

4) Evaluate the robustness on other data set 
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