
  

 

Abstract—Backpropagation (BP) has been widely used as a 

de-facto standard algorithm to compute weights for deep neural 

networks (DNNs). The BP method is based on a stochastic 

gradient descent method using the derivatives of an objective 

function. As another approach, an alternating optimization 

method using linear and nonlinear semi-nonnegative matrix 

factorizations (semi-NMFs) has been proposed recently for 

computing weight matrices of fully-connected DNNs without 

bias vectors and regularization. In this paper, we proposed an 

improvement of the nonlinear semi-NMF based method by 

considering bias vectors and regularization. Experimental 

results indicate that the proposed method shows higher 

recognition performance than the nonlinear semi-NMF based 

method and competitive advantages to the conventional BP 

method. 

 
Index Terms—Deep neural networks, nonlinear 

semi-nonnegative matrix factorization, regularization term. 

 

I. INTRODUCTION 

Due to their efficiency, deep neural networks (DNNs) have 

attracted considerable attention in various fields, such as 

image and speech recognition. There are various types of 

neural networks, such as fully-connected networks, which are 

the simplest type of neural networks, and convolutional and 

recurrent networks, which are commonly used in image and 

speech recognition tasks, respectively. This paper focuses on 

a nonlinear semi-NMF based alternating optimization 

method [1] to compute the weight matrices of 

fully-connected DNNs. 

In DNNs, activation functions are used to obtain nonlinear 

properties. Generally, activation functions are nonlinear 

functions, such as the sigmoid and tanh functions. Recently, 

the rectified linear function (ReLU) has been used [2]. 

To compute the weight matrices of DNNs, a 

backpropagation (BP) method [3] has been widely used as a 

de-facto standard algorithm to improve recognition 

performance when training multilayer neural networks. 

However, the BP method frequently requires a long time to 

converge, and it may fall into a local minimum. The 

initialization of weights has been considered previously to 

improve convergence [4]. In addition, the selection of 

appropriate learning rates [5] and restriction weights as 

dropout [6] have also been employed to minimize the 

expected error. 

As another approach for computing weight matrices, an 
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alternating optimization method using linear and nonlinear 

semi-nonnegative matrix factorizations (semi-NMFs) has 

been proposed recently [1]. An NMF-based stacked 

autoencoder has been also proposed as pre-training data for 

DNNs [1]. The nonlinear semi-NMF based method can also 

use the mini-batch technique as well as the BP method. 

Moreover, a parallel implementation of the nonlinear 

semi-NMF based method has been proposed and it achieves 

higher computational performance than the conventional BP 

method using the greater mini-batch size [7]. 

In this paper, we propose an improvement of the nonlinear 

semi-NMF based method by considering bias vectors and 

regularization. Generally, bias vectors improve the 

recognition performance of DNNs. In the BP method, 

regularization techniques have been employed to avoid 

overfitting. For example, weight decay has been widely used 

as a simple and de-facto standard technique to avoid 

overfitting. Weight decay prevents weights from growing 

unnecessarily large. The proposed method considering bias 

vectors and regularization is expected to show higher 

recognition and to avoid overfitting. We also evaluate 

performance by two toy models and two well-known 

benchmark problems. 

The remainder of this paper is organized as follows. In 

Section II, we briefly review computing weight matrices in 

DNNs. In Section III, we introduce the existing nonlinear 

semi-NMF based method [1]. In Section IV, we propose an 

improvement of the nonlinear semi-NMF based method by 

considering bias vectors and regularization. Experimental 

results are discussed in Section V, and conclusions are 

presented in Section VI.  

We use the following notations in this paper. Let 
nm

ijaA  }{ , nm
ijbB  }{ , then 0A denotes  that  all 

entries are non-negative: 0ijA . Then, 

2/1)2/1( )(,)( ijijijijij aAbaBA    

are Hadamard (element-wise) product and root, respectively. 

The function ),max( BA denotes an element-wise function, 

i.e., ),max()),(max( ijijij baBA  . I denotes the identity 

matrix. 
†A denotes a pseudo-inverse matrix of A . 

F
  

denotes the Frobenius norm. Note that we also use MATLAB 

notations. 

 

II. COMPUTATION OF DEEP NEURAL NETWORKS 

Here, we consider a feedforward neural network (Fig. 1). 
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Let the 0 -th and d -th layers be the input and output layers, 

respectively. Let 0n , 1n , , dn  be the number of units for 

the 0 -th, 1 -th,  , d -th layers, respectively. Let 

mn
XZ


 0

0  and mndY


  be the input and correct 

data, respectively. Using weight matrices 1
 ii nn

iW  and 

bias vectors in
i b , di ,,2,1  , the output matrices of 

each layer can be expressed as 
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where )( f  is an element-wise activation function and 

m T]1,,1,1[ 1 . Here, the activation function )( f  is set 

as the ReLU, i.e., 0),max()(  OCCf . 

 

 
Fig. 1. Illustration of a feedforward neural network. 

 

The objective function of DNNs with d-1 hidden units of 

size in , 1,,2,1  di   is expressed as 

),,,,,,,(),(

),,,,,,,,,(

2121
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ddd
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WWWhZYD
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,        (2) 

where ),( D is a divergence function, 

),,,,,,,( 2121 ddWWWh bbb   is a regularization term and 

TT
1

T
111 ))(( 1b1b1b ddddd XWfWfWZ    . 

DNN computation attempts to find weight matrices and 

bias vectors that minimize objective function (2). 

 

III. NONLINEAR SEMI-NMF BASED METHOD 

In this section, we introduce the existing nonlinear 

semi-NMF based method [1]. Note that this method does not 

consider bias vectors or regularization. In this case, (1) is 

rewritten as 
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Here, we consider solving the following minimization 

problem 

),,,,,(min 21
,,, 21

YXWWWE d
WWW d




,                   (3) 

where the objective function simplifies objective function 

(2) using the square error of the DNNs and is defined as 

2

F21
2

1
),,,,,( dd ZYYXWWWE  ,                  (4) 

 
Algorithm 1 Semi-NMF with bias vector and regularization term. 
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00  1VV  and parameter 
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9: end for 

 
 

))(( 11  XWfWfWZ ddd  . 

Here, the activation function )( f  is set as the ReLU. 

The BP method attempts to find weight matrices 

dWWW ,,, 21   simultaneously to solve minimization 

problem (3). The basic concept of the nonlinear semi-NMF 

based algorithm for minimization problem (3) is an 

alternating optimization that approximately optimizes each 

weight matrix iW  for 1,,1,  ddi , one by one. 

Here, let )0()0(
2

)0(
1 ,,, dWWW   be the initial guesses of 

dWWW ,,, 21  , respectively. A stacked autoencoder using 

NMF has been proposed [1]. In each iteration k , we also 

define the objective functions 
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for the i -th weight matrix iW . Then, we approximately 

solve the minimization problems 

),,,(minarg )()1( YXWEW i
k

i
W

k
i

i

  

for 1,,1,  ddi . 

In the k -th iteration, matrices 
mnk

i
iZ


)(  are defined 

as 
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In the following, we derive the optimization step of the 
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nonlinear semi-NMF based method. 

 
Algorithm 2 Nonlinear semi-NMF with bias vector and regularization term. 

 

Input: Initialize guess ],[
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VU
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~
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First, for the output layer, we expect 

,1 dd ZWY  

to minimize objective function (4). Then, to compute dW , 

we compute the following minimization problem 

2

F1
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Here, we note that 0)(
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k
dZ  because 

)( 211   ddd ZWfZ  and 0),max()(  OCCf . Therefore, 

we can obtain )1( k
dW  and 

)1(
1
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k

dZ  by approximately solving 

the following semi-NMF [8] 
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using the initial guesses )(k
dW , )(

1
k

dZ  . 

For 2,,2,1  ddi , from )( 1 iii ZWfZ , we expect 

)( 1 iii ZWfZ
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to minimize objective function (3). Then, we approximately 

solve the minimization problem 

  2

F
1

)1(

)0(,

)1(
1

)1(
)(ˆminargˆ,

1














ii
k

i
ZW

k
i

k
i ZWfZZW

ii

,      (6) 

for iW , with 2,,2,1  ddi . These minimization 

problems are nonnegative constraint minimization problems, 

as in (5). However, (6) has a nonlinear activation function, 

and is called as nonlinear semi-NMF [1]. 

Finally, we compute 1W . For 1W , the minimization 

problem becomes a nonlinear least square (nonlinear LSQ), 

i.e., 

2

F
1

)1(
1

)1(
1 )(ˆminarg

1

XWfZW k

W

k  
,                     (7) 

because XZ 0 . 

In practice, the nonlinear semi-NMF based method can 

also use the mini-batch technique as well as the BP method.  

 
Algorithm 3 The proposed method. 

 
Input: Input and correct data X , Y , mini-batch size s  and parameter 

W
~ , Z  

Output: Weight matrices and bias vectors  iii WW b,
~
 , di ,,2,1  . 

1: Set initial guess 
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2: Compute a low-rank approximation 
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and get 
)1,(~ k

dW , )1,(
1

~ 

k
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8: for 2,,2,1  ddi  do 

9: Solve approximately (14) with the initial guesses 
),(~ k

iW , 

),(
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~ k
iZ   and get 

)1,(~ k
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)1,(
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k
iZ  

10:       end for 

11:        Solve approximately (15) with an initial 
),(

1

~ k
W  and get 

)1,(
1

~ k
W  

12:    end for 

13:    Update )/,()0,1( ~~ smk
i

k
i WW   for di ,,2,1   

14: end for 

 
 

Let 
)(

J
k
 be the index set in the mini-batch such that 

sk )(J , 0mod sm  for 1/,,1,0  sm , where 

0JJ )()(

21
 

kk . Here, we consider a case where the index set 

of the mini-batch depends on iteration k  (i.e., the epoch). 

Let 

)J(:,),J(:, )()()()( kkkk YYXX   , 

be submatrices of the input and correct data of X, Y 

corresponding to each mini-batch. In this case, minimization 

problems (5)–(7) are rewritten as 
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IV. PROPOSED METHOD 

In this section, we propose an improvement of the 

nonlinear semi-NMF based method by considering bias 

vectors and regularization. Here, matrices iW
~

 and iZ
~

 are 

defined as 
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Here, we solve the following minimization problem as 

with (3) 
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In the BP method, regularization techniques, such as 

weight decay, are employed to avoid overfitting. Weight 

decay prevents weights from growing unnecessarily large. In 

practice, the weight decay adds the Frobenius norm of the 

weight matrices as a regularization term to the objective 

function. In this paper, we use the Frobenius norm and other 

type of norm can also be used in the same way as the 

Frobenius norm. 

Therefore, the objective function with bias vectors and 

regularization terms can be written as 
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where  is a regularization parameter and set to 
52 1010     generally. 

We solve (8) as with the nonlinear semi-NMF based 

method. Let 
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for the i -th weight matrix iW
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. We then approximately solve 

the minimization problems 
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In the following, we derive the optimization step of the 

proposed method as with the nonlinear semi-NMF based 

method.  

First, for the output layer, we expect 

1

~~
 dd ZWY  

to minimize objective function (9). Then, to compute dW
~

, 

we compute the following minimization problem 
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where 
W
~ and Z  are regularization parameters. In this case, 

the Frobenius norm of 1dZ  is added to the objective 

function because we have 
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with a positive number 0r . Therefore, we can obtain 
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dZ  by approximately solving the 

optimization problem 
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Optimization problem (10) is a semi-NMF with bias vector 

and regularization term. We introduce an algorithm to solve 

(10) in Algorithm 1, which is an extension of semi-NMF [8]. 
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(11) 

Optimization problem (11) is a nonlinear semi-NMF with 

bias vector and regularization term. We introduce an 

algorithm to solve (11) in Algorithm 2, which is an extension 

of nonlinear semi-NMF [1]. 

Finally, we compute 
1

~
W . For 

1

~
W , the minimization 

problem becomes a nonlinear LSQ problem, i.e., 
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because XZ 0 . 

In practice, the proposed method can also use the 

mini-batch technique as well as the BP method. In this case, 

minimization problems (10)–(12) are given as 
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The proposed method is summarized in Algorithm 3. 

 

V. PERFORMANCE EVALUATIONS 

In this section, we evaluate the performance of the 

International Journal of Machine Learning and Computing, Vol. 8, No. 3, June 2018

194



  

proposed method (Algorithm 3) for fully-connected DNNs. 

The proposed and the nonlinear semi-NMF based methods 

were implemented in MATLAB and the BP method was 

implemented in TensorFlow. 

We consider two toy models where the input space is one 

or two-dimensional. One model is the approximation of the 

sin function, and the other model is the two-dimensional 

classification. With these toy models, we visualize the 

recognition performance of the proposed method. We also 

evaluate performance with fully-connected DNNs for 

MNIST [9] and CIFAR10 [10]. 

There are several techniques that improve the performance 

of the BP method, such as affine/elastic distortions and 

denoising autoencoders. These techniques are also expected 

to improve the performance of the proposed method. 

Therefore, in this section, we provide a comparison with a 

simple BP method. For this BP method, we used the ADAM 

optimizer to optimize parameters [11]. The ADAM 

parameters 21,  and   were set to the default parameters 

of TensorFlow. 

A. Performance for Toy Models 

Here, we visually evaluate recognition performance with 

the two toy models. For the model 1, we considered the 

approximation of the sin function, 

20),2sin(  xxy  .                       (16) 

We generated 100 training data points 1001X  from 

the sin function (16) at regular intervals and the correct data 

Y , 

  )2sin( XY , 

where 
1001  is the noises of uniformly random 

numbers in the interval )3.0,3.0( . 

For the model 2, we considered the two-dimensional 

classification. we generated 300 training data points ),( 21 xx

labeled A or B. For simplicity, we only consider the square 

region ]1,1[1 x  and ]1,1[2 x . Then, the true regions of 

A and B are the same size. 

We show the DNN parameters for the experiments of the 

two toy models in Table 1 and the results in Fig. 2 and Fig. 3. 

Fig. 3(a) shows the ground truth. Fig. 2(a)(c) and 3(b)(d) 

show that recognition performance of DNN using the 

proposed method is much higher than that using the nonlinear 

semi-NMF based method. It exhibits that bias vectors are 

necessary to elicit the recognition performance of DNN. In 

Fig. 2(b) and 3(c), overfitting occurs and in Fig. 2(c) and 3(d), 

regularization prevents it. 

 

 
(a)Nonlinear semi-NMF based method 

 
(b)Proposed method 
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Fig. 1. Approximation of the sin function. 
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 (d)Proposed method 
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Fig. 2. Two-dimensional classification. 

 
TABLE  I:  DNN  PARAMETERS FOR THE TOY MODEL  

 model 1 model 2 

hidden units [500] [100-500] 

mini-batch size 50 150 

epochs 10 20 

 

 
Fig. 3. Approximation of the sin function by DNN using the BP and 

proposed method. 

 

 
Fig. 4. Test data MSE of the BP (1000 epochs) and proposed (10 epochs) 

methods. 

 

B. Comparison with the BP method 

Here, we compare the BP and the proposed methods 

through the model 1 (16). For the BP method, we used the 

normalized initialization [12] for the initial guesses. The 

mini-batch size was 10. For the ADAM optimizer, the initial 

learning rates for fine tuning were set to 310 . 

Fig. 4 shows the approximation of the sin function by 

DNN using the BP (10, 100 and 1000 epochs) and the 

proposed (10 epochs) methods. The parameters of the 

proposed method are same as Fig. 2(c). From Fig. 4, we 

observe that the BP method requires a greater number of 

epochs than the proposed method to achieve same 

recognition performance. 

We generated 1000 test data points from (16) at regular 

intervals. Fig. 5 presents the test data MSE of the BP and the 

proposed methods. As can be seen, the MSE of the BP 

method increases with increasing mini-batch sizes. In 

contrast, the MSE of the proposed method decreases with 

increasing mini-batch size. 

C. Performance for MNIST and CIFAR10 

Here, we evaluate the performance of the proposed method 

using the stacked autoencoder [1] for fully-connected DNNs 

for MNIST [9] and CIFAR10 [10]. The hidden units of DNNs 

was set to [1000–500] for MNIST and [1500–1000–500] for 

CIFAR10, respectively. 

For the proposed and the nonlinear semi-NMF based 

methods, the number of iterations of the autoencoder, the 

LSQs and the threshold of the low-rank approximation of the 

input data X  were set to )100.4,10,5( 2  for MNIST and 

)100.5,25,20( 3  for CIFAR10, respectively. For the 

proposed method, the regularization parameters ),( ~ ZW
  

were set to )10,10( 53   for MNIST and )10,10( 75   for 

CIFAR10, respectively. The mini-batch size was 5000 and 

the autoencoder was computed using 5000 random samples. 

In the BP method, for the ADAM optimizer, the initial 

learning rates for the stacked autoencoder and for the fine 

tuning were set to )10,10( 33   for MNIST and

)10,100.5( 34   for CIFAR10, respectively. We used the 

normalized initialization for the stacked autoencoder’s initial 

guesses. The mini-batch size was set to 100 and the 

autoencoder was computed using only 5000 random samples. 

 

 
(a)MNIST 

 
(b)CIFAR10 

Fig. 6. Convergence history of the proposed and nonlinear semi-NMF based 

methods. 
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Fig. 6 shows the convergence history of the proposed, 

nonlinear semi-NMF based and the BP methods for MNIST 

and CIFAR10. As can be seen, the proposed method obtains 

an error rate similar to that of conventional DNNs with the 

BP method. Note that the error rate of the nonlinear 

semi-NMF based method increases with increasing the 

number of epochs, which represents overfitting. In contrast, 

the proposed method prevents overfitting by regularization. 

The error rate of the proposed method converged faster than 

that of the BP method. 

 

VI. CONCLUSION 

In this paper, we have proposed the improvement of the 

nonlinear semi-NMF based method by considering bias 

vectors and regularization. We derived to the following 

conclusions from the experimental results. 

 The proposed method elicits higher recognition 

performance in DNNs than the nonlinear semi-NMF 

method. 

 The proposed method prevents overfitting because of 

the weight decay as the regularization. 

 The proposed method requires the less number of 

epochs than the BP method. 

 The proposed method requires the larger mini-batch 

size than the BP method. 

In the future, we will consider other activation functions 

and regularization techniques. In addition, we plan to extend 

our algorithm to convolutional neural networks. 
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