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Abstract—Deep analyses of electrocardiogram (ECG) signals 

can reveal hidden information that can be potentially useful for 

the accurate diagnosis of heart diseases. Time series data of 

ECGs are usually high dimensional and complex in their 

components. One of the key successes for this kind of learning is 

to learn from the representative data. In this research, we 

present Deep Autoencoder Networks (DANs) for efficient 

casting of time series representatives. To determine the 

appropriate DAN structure, we use genetic algorithms (GAs). 

ECG representatives are then clustered. The clustering results 

obtained from our proposed method are compared with those 

obtained using other time series representation techniques. This 

comparison is based on the grouping accuracy involving the 

correct data label and cluster purity. The experimental results 

show that we can cast for appropriate ECG representatives that 

yield better performance with regard to time series clustering 

with 30% improvement in grouping accuracy and 23% increase 

in the purity metric. 

 
Index Terms—Time series representation, deep autoencoder 

networks, genetic algorithm.  

 

I. INTRODUCTION 

In the present era of digital devices, data in a time series 

format can used in many applications in our daily lives, for 

example, stock prices, weather information, health 

measurements (e.g., blood pressure), and signals from 

electrocardiograms (ECGs) and electroencephalographs 

(EEGs) [1]. The main feature of a time series is its sequencing 

format from the data source that is continuously stored in a 

chronological manner over a period of time [1]-[3]. ECG 

signals are derived from the detection of electrical currents 

coming from the heart. The latent information in ECGs can be 

used to aid in the diagnosis of associated diseases or issuing 

an alarm before an oncoming disease. Therefore, if we can 

recognize abnormal ECGs early and accurately, it will be very 

useful in the medical field.  

ECGs usually have large time series, high dimensions, and 

complex components. It is, therefore, a challenging area to 

implement machine learning. In order to deal with high 

dimensionality, researchers typically look for data 
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representatives. It is, however, difficult to find a good time 

series representation [3] because of the ordered characteristic 

inherent in such series. Many researchers have investigated 

time series representations. Representation methods such as 

Piecewise Aggregate Approximation [4], Adaptive Piecewise 

Constant Approximation [5], Symbolic Aggregate 

Approximation [6], Discrete Fourier Transform [7], and 

Wavelet Transform or Discrete Wavelet Transform [8], [9], 

have been proposed that can yield effective time series 

representations.  

Recently, other techniques that are potentially effective in 

finding time series representations have been formulated. One 

such technique is Deep Autoencoder Networks (DANs), 

which apply deep learning using multiple connected network 

layers to transform and transmit signals between the layers 

[10], [11]. The aim of an autoencoder (AE) network is to 

model high-level data representation by automatically finding 

and integrating features to another level [10]-[12]. Restricted 

Boltzmann Machines (RBMs) are an example, which have 

been used in conjunction with an efficient technique called 

“AEs” for data representation. Such deep architecture is 

widely used in computer vision, speech recognition, natural 

language processing, bioinformatics, audio recognition, 

social networking filtering, and other time series applications 

[13], [18]-[21].  

There are many proposals involving deep learning 

architecture, such as Deep Neural Networks, Deep Belief 

Networks [14], RBMs [15], Deep Boltzmann Machines [16], 

and DANs [17]. Here, DANs have outstanding features such 

as their capability of learning to represent high dimensional 

data. However, the design of these network models are limited 

by the fact that an inappropriate layout of the network may 

yield suboptimal results. Therefore, some researchers employ 

genetic algorithms (GAs) to find the best network structure 

[22]-[25].  

In this paper, we propose a method for representing the 

time series data for higher efficiency in ECG clustering using 

DANs. This kind of network is based on RBMs and it is called 

an AE. In this research, we determine an appropriate network 

for DANs by using GAs to find the best network structure. 

The ECGs under consideration are then clustered using by the 

Permutation Distribution Clustering (PDC) algorithm.  

 

II. BACKGROUND 

A. AEs 

An AE is a feedforward neural network that is trained to 

transform the input data into another compressive format. 

General AE architecture comprises a hidden layer h that is 
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fully connected [20], [26], [27] in such a way that it can 

effectively encode the input data for unsupervised learning. 

Usually, AE is widely used in data representation, especially 

for reducing the dimensions of data [26], [28]. The AE 

network consists of two sections: an encoder function h = ƒ(x) 

and a decoder function r = ɡ(h) that recovers the data from the 

code, that is, input reconstruction. The general AE 

architecture, which involves mapping from an input x to an 

output r (code h), can be shown as that in Fig. 1 [26]. 
 

 
Fig. 1. The general autoencoder architecture. 

B. Deep Learning 

Deep learning, or deep structured learning or hierarchical 

learning, is a machine learning technique that attempts to 

model high-level abstractions in the data based on learning 

the representations of data. The concepts include processing 

among multiple layers such that each layer is derived from the 

previous layer [10], [26], [29]. 

C. RBMs 

RBMs comprise a network of symmetrically coupled 

stochastic binary units with no hidden-to-hidden and no 

visible-to-visible connections [15], [16], [30], [31]. The 

RBMs are energy-based probability models that have a 

probability distribution defined from an energy function as 

follows [19]: 

Z
P e

h)-Energy(x,

h)(x,                                  (1) 

where x is a set of input units, and h corresponds to the hidden 

units introduced to increase the expressive power of the 

model. The partition function is defined for the normalization 

factor Z as follows [19]: 
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D. DANs 

DANs are a powerful technique for data representation, 

especially for converting high dimensional data into low 

dimensional code. DANs work by training a multilayer neural 

network and fine-tuning the weights in the AE networks. This 

technique is an effective choice for assigning the beginning 

weights to adapt multilayer “encoder” networks to transform 

data into a low dimensional code, and a similar “decoder” 

network to recover the data from this code [17]. The DANs 

workflow has three main steps: Pretraining, Unrolling, and 

Fine-Tuning, as shown in Fig. 2. 

The pretraining step is the weight initialization procedure 

for each layer of the AE network, where the processing is 

done by a RBM [17]. A connected setting (v, h) of the visible 

and hidden units has an energy [32] given by 
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where vi and hi are the binary states of the pixel (target) i and 
feature j, respectively; bi and bj are the biases of i and j, 

respectively; and wij is the weight between i and j. 

 

 
Fig. 2. The three main steps of Deep Autoencoder Networks. 

 

The unrolling step involves the procedure for creating 

DANs. After pretraining multiple layers of the feature 

detectors, the model is unfolded to the encoder and decoder 

networks that have the same weights, as shown in Fig. 2. 

The fine-tuning step involves global weight fine-tuning for 

optimal reconstructions using backpropagation through the 

whole AE. This is followed by replacing the stochastic 

activities by deterministic, real-valued probabilities [17]. The 

change in a weight depends on the learning rate (𝜀). 

E. GAs 

GAs are search algorithms designed from the biological 

evolution in a natural genetic system based on Charles 

Darwin’s theory of evolution [24], [33]. GAs are widely 

known as stochastic sampling methods that can be used to 

determine optimum solutions in terms of special objective 

functions, such as multimodal, discontinuous, 

non-differentiable, etc. These algorithms initialize a 

population of potential solutions and implement their search 

for better solutions based on the “survival of the fittest” 

strategy [24]. The process of GAs consists of six fundamental 

steps [34], namely, (1) chromosome representation; (2) 

fitness evaluation; (3) genetic operators comprising selection, 

crossover, and mutation; (4) creation of the initial population; 

(5) termination criteria; and (6) replacement. 

F. PDC 

PDC is an agglomerative hierarchical approach to cluster 

time series data [35], [36]. A dissimilarity in time series is 

formalized as the squared Hellinger distance between the 

permutation distributions of the embedded time series. This 

distance is robust to outliers. This approach involves two 

main concepts regarding clustering time series [35], which 

can be explained as follows.  

The first concept is identifying a time series representative 

using permutation distribution patterns. Given a time series 

)}({ 0ixX T
i , the time series is embedded into m-dimensions 

with a time delay t, ranging from 0 to T. The permutation 
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distribution of X' is obtained by counting the frequency of 

distinct observed ordinal patterns for the sub-sequence x' X’ 

with a total of T’=T-(m-1)t. Let  (x) be the permutation such 

that the sub-sequence x  ℝm
; then, the permutation 

distribution of X’ can defined as follows: 

 
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T
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p





                             (4) 

The second concept is the dissimilarity measurement of the 

time series using the squared Hellinger distance between the 

permutation distributions of the embedded time series. Let P 

= (p1, p2,…, pn) and Q = (q1, q2, . . . , qn) be two 

permutation distributions; then, the squared Hellinger 

distance is 
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III. MATERIALS AND METHODS 

A. Dataset Description 

In this study, we used ECG signals taken from [37], [38]. 

These datasets consist of RR intervals that were recorded by 

one electrode during one heartbeat obtained from the Holter 

ECG tapes sampled at 128 Hz. The data were analyzed by 

domain experts as either normal or abnormal. Each ECG 

signal is a long sequence that contains 96 ventricular events of 

equal length. Chosen at random [39], from 200 data records, 

133 records were identified as normal and 67 were identified 

as abnormal. Previews of normal and abnormal ECG time 

series are shown in Fig. 3. In Fig. 3(a), series S2, S5, S6, S9, 

and S10 are normal cases. The other five series (S1, S3, S7, 

S8 and S15) shown in Fig. 3(b) are examples of abnormal 

cases.  

B. The Proposed Work 

 
(a) Examples of ECGs identified as normal 

 

 
(b) Examples of ECGs identified as abnormal 

Fig. 3. Example of ECGs data. 
 

The objective of this research is to use DANs optimized 

with GAs searching for optimal networks that can transform 

raw time series into optimal time series, which can be 

eventually used for efficient ECG clustering. In this work, a 

DAN model comprised three hidden layers; according to the 

literature, such a structure can yield the best representation. 

The flowchart of the proposed work is given in Fig. 4. The 

overall process can be explained as follows. 

An input process is reading the data and manually setting 

the parameters. The dataset X is the ECG signal with 

population size P=20, iteration M=3, and epoch E=50 for the 

learning DAN model. The initial population is generated at 

random with the chromosome encoding defined as 

chromosome (hidden1(500-1000), hidden2(100-500), code 

layer(1-30)). 

The fitness evaluation is a purity value based on the DAN 

model that can produce the best representation. 

Then, selection, crossover, and mutation are used to 

reproduce the next generation. The process is repeated until 

meeting the termination condition, followed by the exit loop. 
 

 
Fig. 4. The flowchart of our proposed method. 

After genetic operation optimization, the most optimal 

DAN (the best chromosome) is used to produce a time series 

representation. Then, the time series representatives are 

clustered using the PDC algorithm. To evaluate the 

performance of the proposed method for time series 

representation (whether it is suitable for clustering or not), we 

compare the clustering results with those obtained from other 

representation techniques. Based on this proposed algorithm, 

we implement the program using the R language. 

 

IV. EXPERIMENTAL RESULTS 

This study focuses on DAN optimization using GAs for 

effectiveness of time series clustering. We, thus, present the 

experimental results based on our main concern as follows. 
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The best chromosome, which is the best solution for the 

3-layer AE network with the structure 700-200-20, has a 

fitness value (purity) of 82.5%. The details of the network 

structures optimized by GAs are summarized in Table I. 

 
TABLE I: PERFORMANCE OF THE DEEP AUTOENCODER NETWORKS 

OPTIMIZED WITH GENETIC ALGORITHM 

#Model Hidden1 Hidden2 Code Layer Fitness 

1 500 100 3 78.5 

2 500 100 10 81.5 

3 500 200 1 77.0 

4 500 200 10 76.5 

5 600 100 10 76.5 

6 600 200 1 76.5 

7 600 200 10 82.0 

8 600 200 20 76.5 

9 600 500 10 75.5 

10 600 500 20 79.0 

11 700 100 30 78.0 

12 700 200 20 82.5 

13 800 200 10 79.0 

14 800 300 20 75.0 

15 800 400 10 75.0 

16 900 100 10 76.0 

17 900 300 20 78.0 

18 900 500 3 76.5 

19 1000 200 10 80.5 

20 1000 300 30 77.0 

 

The time series representatives, which are generated from 

optimal DANs (called TSR-DANs), are shown in Fig. 5. 

Examples of ECG representatives for normal cases are shown 

in Fig. 5(a) and abnormal cases are shown in Fig. 5(b).  
 

 
(a) Examples of ECGs Representatives (normal cases) 

 

 
(b) Examples of ECGs Representatives (abnormal cases) 

Fig. 5. An example shape of ECGs representative. 
 

The clustering and comparing performance is the last step 

in our experiment. We use the PDC algorithm in the R 

package for clustering the raw data, PAA representation, SAX 

representation, and TSR-DAN representation (our proposed 

method for time series representation). The results show that 

our method provides the best representation of ECGs for 

clustering using the PDC algorithm. The clustering 

performance evaluation based on the comparison of the 

accuracy, purity, and silhouette coefficient criteria is shown in 

Fig. 6. Based on the accuracy and purity metrics, our 

TSR-DANs reveal the best results. When considering the 

silhouette coefficient metric, our method comes in the second 

place. For comparing the increase in performance (Fig. 7), our 

TSR-DANs are the best. However, the processing time of our 

method is higher than the others. 
 

 
Fig. 6. The comparison of accuracy, purity, and silhouette coefficient. 

 

 
Fig. 7. The comparison of performance increase, optimal k (based on SSE), 

and processing time. 

 

V. CONCLUSION AND FUTURE WORK 

In this research, we study DANs that optimize their 

network structure using GAs for ECG clustering. The findings 

of this research are as follows. DANs are the most effective 

technique to represent ECG data, especially when their 

structures have been properly configured. Further, we show 

that GA is appropriate for obtaining the global optimization 

solution for DANs. In this study, the methodology combining 

DANs and GAs yield DANs that are optimized beyond 

expectations and can represent ECGs suitable for clustering. 

Moreover, the proposed modeling and optimization methods 

show great potential in complicated applications. 

The high processing time of TSR-DANs is still a 

challenging problem. Reducing time complexity while 

maintaining its power to produce effective time series 

representation is, therefore, our future research direction. 
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