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Abstract—Machine learning algorithms for data containing 

histogram variables have not been explored to any major 

extent. In this paper, an adapted version of the random forest 

algorithm is proposed to handle variables of this type, 

assuming identical structure of the histograms across 

observations, i.e., the histograms for a variable all use the same 

number and width of the bins. The standard approach of 

representing bins as separate variables, may lead to that the 

learning algorithm overlooks the underlying dependencies. In 

contrast, the proposed algorithm handles each histogram as a 

unit. When performing split evaluation of a histogram variable 

during tree growth, a sliding window of fixed size is employed 

by the proposed algorithm to constrain the sets of bins that are 

considered together. A small number of all possible set of bins 

are randomly selected and principal component analysis (PCA) 

is applied locally on all examples in a node. Split evaluation is 

then performed on each principal component. Results from 

applying the algorithm to both synthetic and real world data 

are presented, showing that the proposed algorithm 

outperforms the standard approach of using random forests 

together with bins represented as separate variables, with 

respect to both AUC and accuracy. In addition to introducing 

the new algorithm, we elaborate on how real world data for 

predicting NOx sensor failure in heavy duty trucks was 

prepared, demonstrating that predictive performance can be 

further improved by adding variables that represent changes 

of the histograms over time.  

 
Index Terms—Histogram random forest, histogram data, 

random forest PCA. histogram features. 

 

I. INTRODUCTION 

Learning algorithms for data where the features are 

expressed as histograms have not been widely explored yet. 

Histogram data is frequently encountered in domains where 

multiple observations are aggregated over time. The type of 

histogram that we focus in this study assumes that each 

histogram of a variable has the same number of bins and bin 

size (width) across all the observations. The bins of a 

histogram may have dependencies that are easily overlooked 

if the bins are treated as separate numeric variables. So, 

exploiting such dependencies in histogram variables may 

have a potential positive effect on predictive performance. 

The field of Symbolic Data Analysis (SDA) attempts to 

address issues of dealing with complex data structures [1], 
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with histograms being one example of such complex data 

structure. There are few studies on applying PCA [2] and 

clustering [3] on histogram data. These studies consider a 

slightly more general scenario than what is considered in 

this study, by allowing varying bin structures for different 

observations. However, none of these studies consider 

learning predictive models from multiple histogram 

variables, possibly mixed with standard numerical and 

categorical variables, with the exception of our own work on 

decision tree learning from histogram data [4], [5]. In these 

studies, decision trees for histogram data were shown to 

give better results compared to their standard counterparts. 

Such histogram decision trees may seem to be employed 

quite straightforwardly in random forests, to further improve 

predictive performance (at the cost of interpretability). 

However, the employed search heuristic in the algorithm for 

generating histogram trees has some limitations, which 

makes it less suited for generating forests (these limitations 

will be discussed in detail in the following section). In this 

paper, an alternative search heuristic is instead proposed to 

overcome those limitations by using the well-studied 

principal component analysis (PCA) method [6]. 

In the next section, the limitations of the existing 

algorithm for learning decision trees from histogram data 

are discussed together with some improvements that are 

proposed and discussed. In Section III, data preparation, 

experimental setup, and results from both synthetic and real 

world data are presented and discussed. In Section IV, we 

briefly discuss related approaches. Finally, in Section V, the 

main conclusions are summarized and directions for future 

research are pointed out. 

 

II. METHOD 

The binary decision tree algorithm [7] repeatedly tries to 

partition the examples in a node based on a variable (only 

numerical or categorical) that separates the examples in the 

best possible way until some stopping criteria are met. It 

may be adapted to handle features containing histograms. 

Bins of a histogram might have dependencies that can be 

captured if they are considered simultaneously, while 

making a node splitting decision, as illustrated by the 

algorithm proposed in [5]. When a histogram variable is 

selected for split evaluation by this algorithm, sets of bins 

are considered simultaneously. The number of bins to be 

considered simultaneously is a parameter of the algorithm, 

which employs a sliding window of this size over the 

ordered bins as illustrated by Fig. 1. 

Histogram trees can be used as base models in a random 

forest [8]. Employing randomization when generating 

multiple trees has been shown to result in smaller error rates 
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compared to using single decision trees. Randomization is 

incorporated in the random forest algorithm by growing 

several trees from randomly generated bootstrap samples 

and by randomly selecting a few candidate variables to be 

evaluated for each split. For a histogram tree in a random 

forest, when a histogram variable is selected for split 

evaluation, not all the bin sets (obtained by the sliding 

window method) are evaluated. Instead, using the standard 

heuristics, a subset of the bin sets are randomly selected and 

hence considered as candidates for partitioning the examples. 

This includes randomization at yet another level, possibly 

resulting in even more diverse trees. In the following section, 

the previous approach for splitting a node is described in 

more detail, followed by a description of the proposed novel 

approach.  

 

 
Fig. 1. Sliding window approach on histogram. 

 

 
Fig. 2. Splitting hyperplanes 

 

A. Current Node Splitting Method 

In the algorithm proposed in [5], for a given histogram 

variable, each observation is considered to be a point in d 

dimensional space where the number of bins is equal to d. 

For example, consider a scenario when there are only two 

bins, as shown in the Fig. 2, where the bins are represented 

along x and y axes of each subplot. Assume there is a simple 

linear decision boundary between the points of each of the 

two classes. In order to find the best splitting hyperplane, 

the previous algorithm employed a crude approach where 

first a small set of special points (supposedly near the 

decision boundary) were selected to create possible splitting 

hyperplanes. A simple heuristic was used to select the 

special points, by choosing the centroids of each class and then 

calculating the distance of all points of one class against the 

centroid of the opposite class and vice versa, as illustrated 

by second and third subplots in Fig. 2. The number of such 

special points was determined by a parameter and the points 

with the shortest distances from opposite centroids were 

selected. If for example six such special points are to be 

chosen, two of them (determined by the number of bins in 

the set) are taken at a time to get a hyperplane that passes 

through them as  
 

𝐶1. 𝑋 +  𝐶2. 𝑌 = 1               (1) 
 

If (𝑥1 , 𝑦1) and (𝑥2 , 𝑦2) are two randomly selected special 

points, the coefficients of a hyperplane through these two 

points can be calculated as 
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1
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Limitations: Apparently, the quality of the split depends 

on the selected special points, which in turn are dependent 

on the employed point selection heuristic. Moreover, the 

quality also depends on the number of such special points 

that are considered, as the number of possible hyperplanes is 

proportional to this number, and hence the chances of 

obtaining a good split increase with this number. However, 

the computational cost also increases rapidly with the 

number of selected special points. Moreover, the 

coefficients of the hyperplane can only be found when the 

inverse of the matrix created by using the selected points 

exists, otherwise the combination of selected points are 

simply discarded. Also, this heuristics works only for 

classification problems. 

B. Proposed Node Splitting Method 

The purpose of using multiple bins simultaneously for 

splitting is to make sure that the split utilizes relevant 

information from all the bins and adhere to possible 

dependencies among bins. However, searching for the 

splitting plane in d dimensions with a lot of freedom (any 

direction or inclination) results in a very large search space. 

Using heuristics to limit the search space has a possibility of 

missing good splits. Therefore, we propose to search for a 

split in a transformed space such that the new variable in the 

new space carries information from all the variables in 

original space. This new variable in the new space can be 

treated as a standard numerical variable and we can expect it 

to contain information about (linear) dependencies that are 

present in the original space. We use the Principal 

Component Analysis (PCA) method to transform the space 

such that each principal component is a variable in the new 

space. Principal components are linear combinations of the 

original variables and the new transformed space is obtained 

by rotating the original axis along the direction of maximum 

variance. We can expect to find the best split in the rotated 

space more easily by looking for splits orthogonal to the 

axis, as done in standard approach when handling numerical 

features. It should be noted that the rotation is performed 

only for evaluating splits of a histogram variable within a 

node, and the original values for the bins are kept intact (in 

the original space) in each resulting child node. 

C. High Level Description of the Algorithm 

1) Draw B bootstrap samples from the original data. 
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2) Grow a histogram tree from each bootstrap sample 

until the stopping criteria are met. 

 At each node of the histogram tree, randomly select 

a subset of p candidate variables. 

 For each numeric variable, find the most 

informative cutoff value. 

 For each histogram variable, randomly select  𝑛  of 

the n possible sets of bins that can be generated 

(using a fixed window size for one-dimensional 

histograms and using a 2×2 window for two-

dimensional histograms). Apply PCA and find the 

most informative principal component and cutoff 

value. 

 Partition according to the most informative split. 

3) When a test example is to be classified, it is dropped 

down from the root node of all base trees. When a node 

with a histogram split variable is reached, the PCA 

rotation coefficient for the selected bin set is used to 

transform the bin set of a test case into the new space, 

using the saved cutoff value to determine which child 

node the example should be routed to. 

4) The predictions of all base models are combined. 

 

III. EMPIRICAL EVALUATION 

Our proposed random forest algorithm for handling 

histogram variables was implemented in R and evaluated on 

two synthetic datasets and a real world data set. 

A. Synthetic Data 

The first synthetic dataset has two histogram variables 

(with four and five bins respectively) where the decision 

boundary is defined by a linear pattern in each variable. The 

bins of each histogram sums to 1. The linear pattern for the 

first histogram variable is ℎ1
1 + ℎ2

1 < 0.8  while it is ℎ1
2 +

ℎ2
2 + ℎ3

2 < 0.8 for the second histogram variable, where ℎ𝑗
𝑖  

represents 𝑗𝑡ℎ  bin of 𝑖𝑡ℎ  histogram. The observations are 

assigned the positive class if they fulfill the conditions of 

both histograms (with some noise injected around the 

boundary region by flipping the class labels randomly). The 

resulting dataset consists of 1912 observations of which 440 

are positive. 

The second synthetic dataset was generated using a 

nonlinear pattern for a single histogram variable with four 

bins. A nonlinear decision boundary is set as (ℎ1
1 − 0.3)

2
+

(ℎ2
1 − 0.3)

2
< 0.32 . Noise is injected along the boundary 

region using similar technique as in first data-set. The final 

data-set has 1912 examples out of which 624 are positive. 

B. Real World Data: Heavy Duty Trucks 

The objective here is to identify trucks with a faulty NOx 

sensor using information about the operation of individual 

trucks, which have been extracted during their workshop 

visits. Each extract is a snapshot covering various 

operational features, such as ambient temperature, vehicle 

speed, fuel temperature etc. stored as histogram variables. In 

order to limit our analysis to a homogeneous fleet, only 

trucks built for long haulage operation are considered. This 

data has been provided by Scania AB, a large truck 

manufacturing company in Sweden. 

Typically, each truck has multiple snapshots extracted 

during each workshop visits and operational variables in 

these snapshots are cumulative in nature (value in histogram 

bins adds up) over corresponding snapshots. For positive 

cases, i.e., trucks with a faulty NOx sensor, the latest 

snapshot taken at least 7 days before the first time 

breakdown is considered, while for the negative cases, the 

last snapshot extracted at least 7 days before the final 

snapshot is selected, see Fig 3. Instead of discarding the 

remaining snapshots, they are used to track the change 

(increase) in value of bin over time (taking each snapshot as 

a time point). The rate of change of the bin value over time 

is then aggregated over number of snapshots. Two 

aggregation approaches are considered; simple average or 

weighted average. The use of weighted average can be 

justified by the assumption that recent activities (close to the 

breakdown point) are more relevant for the breakdown than 

the more distant ones, and hence the former should be given 

higher weight. 

 

 
Fig. 3. Snapshot selection in a truck. 

 

Let,  

𝑡𝑖 = number of days since truck was delivered to when 𝑖𝑡ℎ 

snapshot was extracted such that 1 ≤ 𝑖 ≤ 𝑛  assuming that 

𝑛𝑡ℎ snapshot is chosen for the truck. 

𝑏𝑖𝑗
ℎ  = value in bin j of histogram h in i

th
 snapshot. 

Rate of increase in bin value from (𝑖 − 1)𝑡ℎ
to 𝑖𝑡ℎsnapshot 

is calculated as: 

𝑟𝑖𝑗
ℎ =

(𝑏𝑖𝑗
ℎ−𝑏 𝑖−1 𝑗

ℎ
)

(𝑡𝑖−𝑡𝑖−1)
, where 𝑏0𝑗

ℎ = 0                     (3) 

 

So, for bin 𝑏𝑗
ℎ, Simple Average Rate (SAR) is 

(𝑆𝐴𝑅)
𝑗
ℎ =

 𝑟𝑖𝑗
ℎ𝑛

𝑖=1

𝑛
                                    (4) 

For weighted average, weight function is chosen to be a 

decaying function over time. 

Let, 𝛾
𝑖

=
𝑡𝑖

𝑡𝑛
 , which ensures 0 ≤ 𝛾𝑖 ≤ 1 

The weight assigned to 𝑟𝑖𝑗
ℎ  is set as  

𝑤𝑖 = 𝛾
𝑖
𝑒(𝛾𝑖−1)                                   (5) 

This function ensures that the weight 1 for the n
th 

(selected) snapshot and it gradually decreases as we go back 

in time. 

  

Weighted Average Rate (WAR) for bin 𝑏𝑗
ℎ is  

(𝑊𝐴𝑅)
𝑗
ℎ =

 𝑤𝑖𝑟𝑖𝑗
ℎ𝑛

𝑖=1

𝑛
               (6) 

Finally, SAR and WAR for all bins of histogram variables 

are calculated for all trucks. 

The original dataset has eight one-dimensional histogram 

variables, of which seven have 10 bins and one has 20 bins. 
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There is also one two-dimensional (matrix) histogram 

variable with 11× 12 (132) bins. So, in total there are 222 

bins belonging to the original histogram variables. For each 

of these bins, the average rate of change is calculated. The 

resulting variables (here called shadow variables) are also 

treated as histograms. So, in total there are 444 variables 

associated to histogram variables. The considered dataset 

has around 12,500 trucks (of which only around 900 have a 

faulty NOx sensor) with overall 450 variables including 

technical specifications of trucks such as power, engine 

stroke volume, age, technical weight etc. 

C. Experiment and Results 

For the synthetic data sets, five-fold cross validation was 

performed. Five-fold cross validation was chosen instead of 

more common ten-fold to counter the computation time it 

incurs. For the random forests with histogram trees 

generated using the previous approach, the number of 

special points for generating a splitting hyperplane was 

varied between  x = 1, 2 and 3 plus the number of bins in the 

histogram (number of special points = x + number of bins). 

The number of trees in the random forest was set to 300. 

Each tree was grown until each node was either pure or had 

only five observations. The results on the two synthetic 

datasets are shown in Table I and Table II. 

 
TABLE I:  SYNTHETIC DATA WITH LINEAR PATTERN 

Random Forest Models AUC Accuracy Leaf Nodes 

Standard RF  0.9633 93.25 83.4 

Histogram RF (x=1) 0.9852  94.19 62 

Histogram RF (x=2) 0.9862 94.19 53 

Histogram RF (x=3) 0.9868 94.24 47.8 

Histogram RF (PCA) 0.9839 93.87 47.2 

 
TABLE II:   SYNTHETIC DATA WITH NON-LINEAR PATTERN 

Random Forest Models AUC Accuracy Leaf Nodes 

Standard RF  0.9552 86.55 110.2 

Histogram RF (x=1) 0.9580 87.02 115.2 

Histogram RF (x=2) 0.9590 86.92 100.4 

Histogram RF (x=3) 0.9597 87.12 92 

Histogram RF (PCA) 0.9594 87.70 82.2 

 

The results on the synthetic data shows that the new 

approach of using PCA in node splits outperforms the 

standard approach (Standard RF row in the table) but also 

performs at least as good as using the previous histogram 

approach. It can also be seen that when using PCA, the trees 

become less bushy. Improvements over the standard 

approach are more significant when the decision boundary is 

linear while still comparable to our earlier approach in terms 

of AUC and accuracy. However, computation time for PCA 

approach was not found to be any better than our previous 

approach. 

For the NOx sensor data set, the experimental setup was 

identical to the one used for the synthetic datasets, with the 

exception that the number of split points parameter x was set 

to 1 (number of split points equals x plus number of bins). 

Setting the value for x larger than 1 was computationally 

very expensive and was therefore refrained. Here we also 

used the new shadow variables as we mentioned earlier, 

resulting in five different models and their results shown in 

Table III. 

1) Standard RF: using original variables and weighted 

average rates. 

2) Histogram RF (x = 1): using original variables and 

weighted average rates. 

3) Histogram RF (PCA): using original variables and 

weighted average rates. 

4) Histogram RF (PCA): using only original variables. 

5) Histogram RF (PCA): using original variables and 

simple average rates. 

 
TABLE III:  NOX SENSOR FAILURE PREDICTION 

RF Models Description AUC Leaf Nodes 

Standard RF  With weighted avg. rate 0.8519 397.8 

Hist. RF (x=1) With weighted avg. rate 0.8735 426.8 

Hist. RF (PCA) With weighted avg. rate 0.8809 312.8 

Hist. RF (PCA) With simple avg. rate 0.8622 315.8 

Hist. RF (PCA) Only original variables 0.8494 356.4 

 

The results clearly show that the proposed approach 

outperforms the other in terms of AUC in the context when 

weighted average rate were used (comparing the methods 

with respect to accuracy is not very informative in this case 

due to the dataset being heavily imbalanced). In addition, 

the low average number of leaf nodes resulting from the 

PCA approach suggests that it was good at discovering 

informative node splits. The PCA approach was further 

compared with cases firstly when new variables were simple 

average rates of bins and secondly when the new variables 

were not considered at all. The comparison shows that using 

weighted average outperforms both cases. The AUC plot 

against the number of trees in Fig. 4 shows that the AUC 

gain of the model almost stalls after 300 trees. 

 

 
Fig 4. AUC comparison and variable importance rank. 

 

Variables considered important are ranked as shown in 

Fig. 4 for the random forest model with PCA (with weighted 

average variables). Importance score was calculated based 

on their contribution on information gain while splitting the 

node. The names of the variable followed by theta suffix are 

the new shadow variables. It is interesting to see that in most 

of the cases, shadow variables are ranked higher than the 

corresponding original variables. Besides ranking based on 

information gain, the level or depth of the node where 

variable was used by the model to make the node split can 

also give additional information about how important the 

variable was. If the variable is used early in the tree, it can 

be considered important in general. Based on this 

assumption, minimum depth for each variable was 
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calculated and averaged over all trees. The minimal depth 

rank is compared with variable importance rank as shown in 

Fig. 5 (left subplot) and both approaches seem to agree in 

general. 
 

 
Fig 5. Important variable. 

 

The shadow variable of Engine Loadmatrix englm_theta 

seems to be most significant one. This is a matrix of size 

11×12, containing in total 132 bins. A square matrix of size 

2× 2 was used as sliding window to get 110 possible bin sets. 

11 sets were randomly selected for node split evaluation, so 

each bin set gets a significance score according to 

information gain. Each cell in the selected bin set gets the 

same score. Based on this score, a heat map was plotted for 

each cell as shown in Fig. 5 (right). Low RPM regions seem 

to be more significant for classification as depicted by the 

yellow regions. 

 

IV. RELATED WORK 

The idea of using PCA together with random forests is 

not entirely novel, and it has been considered in so-called 

rotation forests [9]. However, in that algorithm, the 

considered variables are not histograms and all the (numeric) 

variables are divided into a number of disjoint subsets and 

PCA is applied in turn to each subset to obtain the rotation 

matrix. The original dataset is multiplied by the rotation 

matrix which gives a new rotated dataset. This rotated 

dataset is then used to train base tree learner. So, in rotation 

forests, PCA is applied on (a bootstrap sample of) the whole 

training set before growing a tree, which is different from 

the approach proposed here, which uses PCA on a specific 

bin set, for split evaluation locally at each node. Since the 

transformation is applied only for split evaluation, it allows 

the random forest algorithm to estimate variable importance 

in the original space. 

The use of multiple variables when evaluating node splits 

during decision tree construction has also been considered 

within multivariate decision trees [10], using methods such 

as LDA (Linear discriminant analysis) [11]. Clearly, these 

approaches can in principle be applied to include also the 

bins of histogram variables, hence potentially exploiting 

dependencies among the bins. However, it has not been 

investigated how well such trees would perform within 

forests, e.g., whether or not they are too stable to achieve 

optimal performance of the forest and how well they 

perform on data with histograms.  

 

V. CONCLUSION 

In this work, the random forest algorithm has been 

adapted to learn from histogram data by evaluating multiple 

bins together when splitting a node during tree growth, 

which allows for exploiting dependencies among the bins. 

However, searching for splitting hyperplanes in the same 

number of dimensions as there are bins, as done earlier in a 

previous approach, is computationally very costly. 

In this work, a much more efficient approach is 

considered, which employs a sliding window to form groups 

of bins and then use PCA to generate principal components 

of the selected bins, for which the most informative cutoff 

point is selected.  

Experimental evaluation based on synthetic data and real 

world data shows that this method seems to outperform the 

standard random forest approach and performs on par with 

the computationally costly approach. The high AUC 

measures and small tree sizes suggest that the proposed 

approach is highly competitive in finding informative splits. 

The use of shadow variables in the considered real-world 

dataset demonstrated that performance can be further 

significantly improved. 

One direction for future work is to compare the proposed 

approach to other approaches for combining multiple 

features in decision trees and forests. Another direction for 

future research is to consider random survival forests [12], 

which can be used to predict the survival pattern of trucks. 

Rather than being able to say whether the truck is faulty or 

healthy, it could be more useful to be able to predict when a 

breakdown might happen. 
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