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

Abstract—Few studies have been published on recognizing

objects in panoramic images. To prevent copyright infringement 

related to artwork in 360° images, this paper proposes an 

efficient method for recognizing such artwork. First, we employ

an improved cubic projection approach to transform distorted 

panoramas. Next, we use an optimized affine invariant feature 

transform (ASIFT) algorithm to extract local features of the 

transformed images. Finally, we employ point feature matching 

based on a one-to-one mapping constraint. We investigate the

method’s overall performance on a panorama dataset and 

compare the results with those for other popular local feature 

extraction methods as well as the original panorama image. The 

experimental results show that the proposed method is both 

faster and can improve accuracy by around 30% for

highly-distorted panoramas.

Index Terms—Panoramic image, artwork, recognition,

ASIFT, cubic projection.

I. INTRODUCTION

Recently, owing to the continuing improvement of 

panoramic photography and the advent of easy-to-use 360°

cameras, such as the Samsung Gear 360 and LG G5 360 CAM, 

360°videos and images have become increasingly popular. 

Users can easily capture the view in all directions 

simultaneously in a single 360°image, and feel a strong sense 

of immersion when viewing the image [1]. Given these

developments, the potential risk of copyrighted artworks 

being photographed without permission is greater than ever 

before, hence the infringement of artwork copyrights using

360°images is a hot topic. We therefore need to find a way to

detect and recognize unauthorized artworks in panoramic

images.

Although many image recognition studies have been 

published, relatively few studies have been conducted on 

360° images, never mind detecting artworks in such images. 

Nonetheless, methods that have been found useful for image 

recognition can sometimes be helpful for recognizing objects

in panoramas as well.

Since the 1990s, image content-based methods have been a 

popular way to solve image recognition problems. These 

methods describe the image’s content by extracting low-level

visual features, and can perform well in terms of both

accuracy and speed [2]. Various local feature extraction 

algorithms have been proposed in recent years. Of these, the 

most typical and widely-used method is scale-invariant 
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feature transform (SIFT) [3]. Other algorithms have also been 

found to perform quite well, such as the speeded up robust 

features (SURF) [4], affine SIFT (ASIFT) [5], oriented FAST 

and rotated BRIEF (ORB) [6], binary robust invariant 

scalable keypoints (BRISK) [7], and fast retina keypoint 

(FREAK) [8] algorithms. Currently, deep learning methods,

such as AlexNet [9], ZFNet [10], GoogLeNet [11], or ResNet 

[12], are employed to learn suitable local feature vectors and

obtain classification models for large dataset tasks such as the

ImageNet Large Scale Visual Recognition Challenge.

With respect to object recognition in panoramic images, 

Xiao [13] introduced the problem of scene viewpoint 

recognition and also studied the canonical view biases 

exhibited by people photographing particular locations. Yang 

[14] addressed the problem of recognizing the room structure

from a 360° cylindrical panorama by transforming the 

original panorama into sub-images projected from four 

different perspectives. An algorithm has also been proposed 

that can detect and recognize road lane markings from 

panoramic images [15].

Zhang [16] advocated the use of 360°full-view panoramas 

for understanding scenes and proposed a three-dimensional 

(3D) whole-room context model. A region-based 

convolutional neutral network (R-CNN) has been trained and 

then tested on a set of indoor panoramas [17], and a novel 

panorama-to-panorama matching process has been developed 

[18] that involves either aggregating the features of a group of 

individual images or explicitly constructing a larger panorama. 

In addition, an improved ASIFT algorithm for matching 

indoor panoramas has been analyzed and compared with 

algorithms such as SIFT, SURF, and ASIFT [19]. 

Few studies have been conducted on recognizing artwork 

in panoramic images. However, an artwork identification 

approach has been hypothesized [20] that transforms the 360°

image into a 3D sphere and surrounds it with a polyhedron

[20]. The results of [20] show that this method can 

significantly increase identification precision for artwork, 

displayed on a monitor, that would otherwise be severely

distorted. In addition, the use of different local features for 

feature matching was analyzed. Although employing more 

polyhedra can significantly improve performance, more time 

would be required for feature detection and matching, and the

panorama’s visual appearance would also worsen.

The aim of this study is to develop an efficient method for 

recognizing artworks in 360°images. In attempting to solve 

this problem, we focus on two main issues: (1) achieving

better performance by generating faster results, and (2) using

a simple, feasible projection to ensure the transformed 

panoramas offer a good visual experience. 

The remainder of the paper is organized as follows. Section 
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II discusses panorama transformation, feature extraction, and 

feature matching methods. Section III demonstrates the

performance of the proposed artwork recognition method via

experiments on a dataset of panoramas involving artworks. 

Finally, Section IV presents our conclusions.

II. PANORAMA TRANSFORMATION AND OPTIMIZED ASIFT

A. Transforming Panoramic Images

Panoramas captured using 360°cameras are mainly in a 

equi-rectangular format with a 2:1 aspect ratio. Such

projections are widely used to map 3D scenes onto

two-dimensional (2D) planes; however they cause serious 

distortions, particularly near the two poles, and are thus a poor 

approach to use for artwork recognition.

Recently, several alternative projections have been 

investigated for 360°images and videos. Kim [21] proposed a

framework to automatically generate content-aware 2D 

videos using a normal view perspective from 360°videos,

based on a Panini projection [22] model. A recent study has 

also considered Oculus 360°video streaming using an offset 

cube map [23]. Following these investigations, Brown (a

Google engineer) presented an equi-angular cube map

method [24] that offers better results and uses resources more 

efficiently, aiming to resolve virtual reality video quality 

issues. 

Fig. 1. A panoramic image.

Fig. 2. Cube map corresponding to Fig. 1.

When considering possible panorama projections, a natural 

starting point are map projections such as the Mercator, 

Goode homolosine, Natural Earth, or cube map. However, 

most of these projections cannot be used for artwork

recognition, owing to two reasons: transforming a panorama 

into a 3D sphere and then mapping it onto these projections is 

computationally costly, and despite considerably longer 

processing times, the result will still have unavoidable 

distortions.

One exception to these limitations is the cube map, which is 

easily calculated and has relatively less distortion. Therefore,

in this study, we chose to begin with a cube map and attempt 

to improve it. A standard cube map converts a panorama into 

the six faces of a cube, where each face is a rectilinear image. 

Figure 1 shows an example of a low-resolution and 

low-distortion panorama, and Fig. 2 shows a standard cube

map created from this panorama.

For our improved method, we required the transformed 

images to show the object of interest clearly, which can be 

achieved by adjusting the pitch and yaw angles and the field 

of view (FOV). Figure 3 (taken from [23]) illustrates the 

concepts of yaw, pitch, and camera roll, and Fig. 4 illustrates 

a cube map, highlighting the front and back faces. The x, y,

and z directions represent the pitch, yaw, and roll of the view, 

respectively. The pitch and roll angles are varied depending 

on the image and screen to suit the situation, whereas the 

FOV is fixed at 90°. The transformation matrix is given by

( ) ( ) ( )TM roty yaw rotx pitch rotz roll   ,              (1)

where rotx, roty, and rotz perform clockwise rotations around 

the x, y, and z axes, respectively, and pitch, yaw, and roll are 

the desired rotations around these axes. We constrain the 

pitch values to be 20°–50°south for large monitors, and

10°–30°south for small monitors.

y

x

z

yaw

pitch

roll

Fig. 3. Illustration of yaw, pitch, and camera roll.

front

left

back

right

Fig. 4. Illustration of a standard cube map.

B. Optimized ASIFT Algorithm

The original ASIFT algorithm involves the following steps.

1) Transforming the image by rotating it to change the

directions of the latitude  and longitude  , according 

to the tilt t. Here, t is a T-subsampling in the height 

direction, as follows.

1 cost                                           (2)

height ' height / t                                  (3)

2) Rotating the image by changing the values of  and 

so that maximum objects of interest can be seen clearly in 

the resulting images.

3) Using the SIFT algorithm to detect features in all the 

simulated images.

Figure 5 (taken from [5]) shows the irregular sampling of 
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 and  parameters used by ASIFT to detect features.

y

x

θ=45° 

φ

Fig. 5. Sampling of θ and φ parameters.

In designing our optimized ASIFT algorithm, we first

evaluated possible sampling steps using SIFT with different 

simulated tilts, eventually fixingt experimentally as 2 . In

contrast, we change the value of  based on the variation

in t. For example, if the tilt is 2, then t = 2 and hence

= 45, whereas if the tilt is 3, then t = 2 and  = 30. Thus, 

setting the tilt to 2 means we generate four simulated images

at 45° intervals, whereas setting the tilt to 3 produces six 

simulated images at 30° intervals.

Figure 6 shows some example images simulated using

ASIFT. Navigating from left to right and top to bottom, these

images represent transforms 1 (t = 1,  = 0), 2 (t = 2 ,

= 0), 3 (t = 2 , = 45), 4 (t = 2 , = 90), 5 (t =

2 , = 135), and 6 (t = 2, = 0). As can be seen in Fig. 

6, transforms 3 and 5 are larger than the others, implying that 

feature detection and extraction will take longer, and hence,

finding a way to process these transforms more simply might 

be helpful. In addition, the rotation transformation affects the 

height direction comparatively less; thus, using fewer rotation 

transforms could reduce the running time and improve the 

relative performance as compared with using all the

transforms.

Fig. 6. Images simulated using ASIFT.

C. One-to-One Mapping

In our experiments, we used the UBCMATCH feature 

matching algorithm [25], which finds the closest matching

feature in one image for each corresponding feature in the 

other image. Although the resulting matches can be filtered 

for uniqueness using a threshold (the ratio of the distances

between the best and second-best matching keypoints), errors

can still exist. After several tests, we found that the erroneous

matches were usually crowded around a point, and sometimes

one point in the original artwork was matched to many points 

in the training image when using UBCMATCH with a high 

threshold (3.0, rather than the default 2.0). Therefore,

one-to-one mapping was adopted to solve the issue of such

erroneous one-to-many matches. In Fig. 7, one keypoint in the

panorama has been matched to two different keypoints from 

the original artwork image, and the corresponding one-to-one 

mapping results are shown in Fig. 8. As compared with using 

UBCMATCH exclusively, one-to-one mapping has reduced 

the number of mismatched keypoints, clearly illustrating its

benefits.

Fig. 7. Feature matches produced using UBCMATCH.

Fig. 8. Feature matches produced using one-to-one mapping.

III. SIMULATION RESULTS

For our experiments, we used a dataset of panoramic 

images comprising artworks, created using images of 50 

famous artworks taken from Google, as shown in Fig. 9. The 

images were downloaded in JPG format and were of 

significantly different file sizes: the largest was 7.22 MB, 

while the smallest was 89.1 KB, and at least half were less 

than 1 MB. The panoramas were captured using an LG G5 

360 CAM that has dual wide-angle cameras. The default

panorama size was 5660 ×2830 at 72 dots per inch.

Fig. 9. Popular artworks used in the experiment.

To make the simulation more realistic, we captured three 

different distorted panoramas from three different positions
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for each artwork, which was displayed on two different 

screens, 32 and 79 inches in size. This resulted in a panorama

artwork dataset comprising 300 images, evenly distributed

among the six categories thus created. In panoramas with

larger distortions, the artworks were significantly further from 

the equator.

The experiments were conducted using a computer with a

Xeon 3.50 GHz CPU and 8 GB RAM, running Windows 7 

Professional K (64-bit).

As using large images means large numbers of feature 

points can be detected and most of them cannot be matched 

correctly, reducing the size of the experimental images could

not only reduce the computing time but also improve the 

percentage of correct matches. Therefore, the panorama 

images were resized to 800 ×1600, the artwork images to 400 

×400, and the generated transformed images were resized to

800 ×1200. 

When extracting the features, the SIFT method uses default 

parameters; however, we employed a Parallel function with 4 

local CPU pools for the ASIFT method to accelerate 

processing. Where the original ASIFT algorithm applies SIFT

five times (i.e., uses transforms 1–5), our optimized ASIFT 

algorithm only applies it four times (i.e., uses transforms 1, 2, 

4, and 6).

We used a UBCMATCH threshold value of 3.0 for feature 

matching as the default value of 2.0 generated too many 

erroneous matches for the more distorted panoramas. For 

example, as shown in Figs. 10 and 11, the number of matches

was sometimes higher when comparing the panorama with an

artwork other than the correct one, leading to false positives.

To ensure the experiments were reliable, we conducted

several test evaluations before selecting the parameters 

discussed above.

Fig. 10. Feature matching results when comparing the panorama with the 

correct artwork, with a UBCMATCH threshold of 2.0.

Fig. 11. Feature matching results when comparing the panorama with a

different artwork, with a UBCMATCH threshold of 2.0.

We measured the performance of the proposed method 

using three types of comparison experiments. First, we 

constructed the following example to compare SIFT’s

recognition performance for images generated via cubic 

projection and original panoramas. Figs. 12–15 show 

feature-matching results for low-distortion images displayed 

on a 32-inch monitor. 

Fig. 12. Feature matching results when comparing the original panorama

with the correct artwork.

Fig. 13. Feature matching results when comparing the cubic projection with 

the correct artwork.

Fig. 14. Feature matching results when comparing the original panorama 

with a different artwork.

Fig. 15. Feature matching results when comparing the cubic projection with

a different artwork.

Figures 12 and 14 show that using the original panorama 

yielded some true matches for the correct artwork together 

with some erroneous matches for different artworks. In 

contrast, Figs. 12 and 13 show that cubic projection yielded

more true matches than the panorama for correct artwork, and

Figs. 13 and 15 show that it yielded fewer erroneous matches 

than the panorama for a different artwork. Therefore, these

results indicate that the proposed cube map transform is more 

suitable than using the panorama directly for recognizing 

artwork in panoramas.

Second, we compared the performance of SIFT and ASIFT. 

Figures 16–19 show feature matching results generated using 

ASIFT. As our previous experiments used SIFT, we only 

show the matching results for ASIFT with cubic projection

images here. If we compare Figs. 16 and 17 (ASIFT) with

Figs. 13 and 15 (SIFT), ASIFT may have yielded fewer

matched points, but it outperformed SIFT in feature 

extraction and matching for more distorted images. In 
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addition, if we compare ASIFT’s performance with 

transforms two and five, we find that using more transforms 

actually makes ASIFT less effective; although Fig. 18 shows

more correctly-matched points than Fig. 16, Fig. 19 also 

shows more erroneously-matched points than Fig. 17.

However, further experiments using different distorted

images will be needed to verify the ASIFT’s performance

with different numbers of affine transforms.

Fig. 16. Feature matching results when using ASIFT with two transforms (1,

2) for correct artwork.

Fig. 17. Feature matching results when using ASIFT with two transforms (1,

2) for a different artwork.

Fig. 18. Feature matching results when using ASIFT with five transforms 

(1–5) for correct artwork.

Fig. 19. Feature matching results when using ASIFT with five transforms 

(1–5) for a different artwork.

Even though we applied the Parallel function with four 

local pools to accelerate ASIFT’s processing, its slowness 

remains a problem for real-time recognition. Therefore, we 

need to find a way to achieve satisfactory performance in less 

time. The following example is taken from an experiment 

where we compared the standard (transforms 1–5) and 

optimized (transforms 1, 2, 4, and 6) ASIFT algorithms. Here, 

highly-distorted images were displayed on a 79-inch monitor, 

and the results are shown in Figs. 20–23. 

Fig. 20. Feature matching results when using standard ASIFT for correct

artwork.

Fig. 21. Feature matching results when using standard ASIFT for a different

artwork.

Fig. 22. Feature matching results when using optimized ASIFT for correct

artwork.

Fig. 23. Feature matching results when using optimized ASIFT for a

different artwork.

Finally, we measured the proposed method’s performance 

using the entire artwork panorama dataset. Here, we 

computed the numbers of matched points, then sorted them in

descending order. As the parameters used were carefully

selected after testing, the number of erroneous matches could

be ignored. Thus, to simplify the calculations, all matches

were assumed to be true matches. Whether or not each

artwork was considered as having been recognized was

determined by the number of matches for each image. If the 

correct artwork had the highest number of matches, it was 

recognized; otherwise, it was not recognized. Next, we 

calculated the accuracy of each method in each panorama 

category as a fraction of correctly-recognized images in that
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category. Figure 24 compares the results for the proposed method with those for other methods.

Fig. 24. Accuracy of both the proposed and baseline methods on the artwork dataset, under several different conditions.

Here, “C” and “O” represent a cube map and the original 

panorama, respectively, while “S” and “AS” denote SIFT and

ASIFT, respectively; the following numbers indicate the 

transforms used: “1–5” denotes transforms 1 to 5, whereas

“1246” denotes transforms 1, 2, 4, and 6.

These results indicate that, for a small screen with high 

distortion, even though the accuracy of the proposed method

(CAS(1246)) was relatively low, it was still the 

best-performing method in the test. Furthermore, the 

proposed method also exhibited better performance than 

other methods in all the other cases tested, with recognition 

accuracies that were consistently more than 85%.

Therefore, we can conclude that the proposed panorama 

transformation method can offer significant improvements

compared with using the original panorama directly. We can 

also see that ASIFT has a notable advantage over SIFT for 

image recognition, and that the optimized ASIFT algorithm 

can achieve possibly even better performance than ASIFT in

comparatively less time. In summary, the proposed method 

for recognizing artwork in 360° images based on cubic 

projection and the optimized ASIFT algorithm is highly

efficient.

IV. CONCLUSION

The advantage of the proposed method over previous 

approaches to recognizing artwork in panoramic images is 

that this method is able to recognize artwork efficiently while 

providing a good visual experience and better performance.

In this study, we have used cubic projection to transform 

distorted panorama images and then employed an optimized 

ASIFT algorithm to accelerate computation and improve

recognition accuracy. We have also adopted a one-to-one 

mapping constraint to eliminate the majority of erroneous

feature matches. 

Our experimental results show that our proposed approach 

offers clear improvements in both accuracy and computing 

time. Satisfactory results can be obtained despite the 

panoramas being seriously distorted. 

However, the algorithm might face issues in real-world

situations, where artworks can be displayed anywhere. In 

addition, the efficiency could be improved using a GPU to 

accelerate the feature extraction and matching tasks. 

Therefore, in future work, we will consider adding a powerful 

GPU to accelerate the algorithm. In addition, we will apply 

the algorithm to large artwork datasets that cover as wide a 

variety of situations as possible. 
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