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Abstract—Non Negative Matrix Factorization (NMF) has 

received considerable attention due to its application in pattern 

recognition and computer vision. However, the algorithm is 

sensitive to noise and assumes that the signals in the data can be 

linearly reconstructed. In this paper, we propose a robust 

non-linear probabilistic model and develop its optimization 

algorithm. The proposed model reduces the data to a lower 

dimensional manifold to get a more meaningful representation 

and takes into account the noisy nature of the data to improve 

the clustering performance of NMF. Additionally, our empirical 

study validates the effectiveness of the proposed method on some 

benchmark datasets. 

 
Index Terms—Clustering, denoising autoencoders, dimension 

reduction, non-negative matrix factorization. 

 

I. INTRODUCTION 

Non negative matrix factorization (NMF) is a widely used 

method for factorizing a matrix into a product of two matrices 

such that all the elements are non-negative. One of the 

matrices contains the degree of membership of each sample in 

each cluster and the other matrix contains a latent 

representation of the dataset. The method popularized by Lee 

and Seung [1], [2], has been found to have widespread 

applications in many areas such as clustering [3], pattern 

recognition [4], dimensionality reduction [5] and analyzing 

gene expression data [6], [7]. 

Many types of datasets in today's world are usually 

represented as vectors of high dimensionality and NMF has 

gained considerable attention as it can learn interpretable part 

based representations of the data by decomposing 

multivariate data into a linear combination of bases. Several 

extensions of NMF have been derived to enhance its 

performance by adding additional constraints and penalty 

terms to induce sparsity [8], smoothness [9] and spatial 

localization [10]. However, there are two inherent problems 

with these methods, the first being the assumption that the 

signals can be linearly reconstructed from the bases and 

second being the deterministic nature of the algorithm. 

Denoising autoencoders [11] have been shown to learn 

meaningful higher level representations from the data. In this 

paper, we propose a method to address the issues mentioned 

above by embedding stacked denoising autoencoders to 

non-linearly transform the data and considering a 

probabilistic case of NMF to take into account the stochastic 

nature of the data. 

The remainder of the paper is organized as follows. In 

Section II, we discuss some background and prior work 
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related to this paper. Section III contains a brief explanation 

of the NMF algorithm. We introduce our proposed method in 

Section IV and in Section V we show some experimental 

results on commonly used datasets. Finally, Section VI ends 

with conclusion. 

 

II. RELATED WORK 

Methods have been created to address the non-linearity 

issue and the deterministic nature of the algorithm separately. 

Kernel technique was initially used to address the 

non-linearity issue and recently there have been some 

methods that combine NMF with deep learning. Some 

variations of NMF have taken into account the noisy nature of 

the data and proposed robust extensions of NMF [12]. Here 

we briefly describe some prior work relevant to our method. 

Kernel based methods [13] have been used to deal with 

non-linear correlation between data points [14] by using 

kernel induced non-linear mapping to extract useful latent 

features from the data. However, the selection of kernels and 

their parameters is crucial for its performance.  

In the Deep NMF model developed by [15], they use a 

multi-layered NMF combined with a pooling layer which is 

optimized with backpropagation. The last layer of the 

multi-layered NMF is decomposed by semi-supervised NMF, 

instead of NMF. In [16], they attempt to improve encoding 

vector estimation by using deep neural network to learn a 

mapping between data vectors and the corresponding 

encoding vectors. The method proposed by [17] addresses the 

non-linearity issue by embedding autoencoders to the NMF 

framework and by training the network and the factor matrices 

together. However, denoising autoencoders are known to 

extract more robust and meaningful representation of data as 

compared to standard autoencoders [18]. Here we initially 

train the network separately as a pretraining phase and then in 

a fine-tuning phase, we jointly optimize the weights of the 

network and the factor matrices to get the final set of clusters. 

Additionally, the learning criterion for standard autoencoders 

is deterministic in nature whereas it is stochastic in case of 

denoising autoencoders.  

 

III. THE NMF ALGORITHM 

A. Standard NMF 

Given a non-negative matrix , NMF aims to find 

two non-negative matrices  and  such 

that 

           (1) 

NMF is formulated as a constrained optimization problem 

where an error function is minimized. The two most 
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commonly used error functions are the Frobenius norm and 

the Kullback-Leibler divergence between two matrices. The 

standard approximation problem can be formulated as 

follows: 

        (2) 

The non-negativity constraints allow interpretation of the 

basis elements in the same way as the data. The constraints 

lead to a parts-based representation because they allow only 

additive combinations. 

Lee and Seung [2] presented the multiplicative update rules 

for solving the above problem: 

              (3) 

               (4) 

The formulation provides a generative model of the data 

through linear non-negative constraints. One should note that 

the minimization problem is convex in  and  separately 

but the minimization with constraints on both the matrices is 

highly non-convex [19]. 

B. Probabilistic Extension 

In [20], the authors present a robust extension of NMF 

which assumes that the data is not deterministic and is noisy in 

nature. The algorithm assumes that the data is corrupted by 

noise and follows the conditional distribution, 

       (5) 

where  is the probability density function of the 

Gaussian distribution with mean  and standard deviation 

 and  denote the  row of matrix  and  column 

of matrix , respectively. They show that under this 

assumption the problem reduces to the following weighted 

regularized matrix factorization problem, 

 

    (6) 

 

such that . The rules to update the factors  

and  for the given problem are, 

             (7) 

             (8) 

where  and  denote the weights of the regularization terms. 

 

IV. PROPOSED METHOD 

We propose a robust extension of NMF that performs well 

on non-linearly structured data by using deep neural networks 

as compared to the standard NMF.  

Using stacked denoising autoencoders we aim to learn a 

stochastic non-linear mapping  to transform the data 

to a lower -dimensional space.  A standard autoencoder 

takes an input vector  and maps it to a latent 

representation  through a deterministic mapping 

, parameterized by . 

 is a weight matrix and b is a bias vector. The latent 

representation is then mapped back to a reconstructed vector 

 in the input space  where 

.  The parameters ( ) of the model are optimized 

to get the minimum reconstruction error between  and .  

In case of denoising autoencoders the initial input vector  

is corrupted by means of a stochastic mapping . 

The two most common forms of corruption are adding 

Gaussian noise to the input data or randomly forcing a 

proportion  of each input vector to 0. As with standard 

autoencoders, the corrupted input is then mapped to a latent 

representation and then reconstructed back to the input space. 

One should note that although the mapping function is still 

deterministic but it is a function of  rather than  resulting in 

a stochastic mapping of . It must be mentioned that once the 

mapping  has been learned, the original uncorrupted inputs 

will be used to produce the higher level representations. 

While training, we transform the input vectors using, 

             (9) 

and for subsequent layers, 

 

where .  and  are the same weight matrix and 

bias vector as defined before.  is any non-negative 

non-linear activation function and the last layer must be 

sigmoid activation function ( ) so that the 

output vector  is in . 

The layers of the stacked denoising autoencoders are 

trained layerwise. Only the layer which is being trained will 

receive corrupted input from the previous layer. Once the 

layer has been trained, it will receive clean input and the next 

layer will receive corrupted input for training [11]. Once the 

whole network has been trained, we use the encoder to map 

the input vectors to a lower  dimensional space, 

   (10) 

The traditional squared error and cross-entropy are the 

most commonly used loss functions for autoencoders. We use 

the cross-entropy error function for our model and for each 

vector , it is defined as, 

 

        (11) 

 

where 

 

Although the encoder receives corrupted input while 

training, the reconstruction error is minimized over the clean 

input and the reconstructed vector . This enables denoising 

autoencoders to learn more robust and meaningful 
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representations [18] of the input data. 

Based on the non-linear transformation , the adapted 

loss function for PNMF (6) is defined as, 

    (12) 

We take a weighted combination of the transformed PNMF 

error function and the cross-entropy function to form our 

overall loss function for the network, 

              (13) 

Once the network has been trained layerwise to learn a 

suitable mapping based on minimizing only the  

reconstruction error, we fine-tune the overall network and 

update the matrices  and  to minimize the overall loss 

function (13) and get the desired factorization. 

In the overall loss function (13), the factorized matrices  

and  only influence the first term whereas the 

parameters  of the neural network influence both the terms.  

Thus, we update the factor matrices and the parameters of 

the network separately for each iteration. Since optimizing  

and  is equivalent to minimizing we use the 

multiplicative update rules (7), (8) with respect to , 

              (14) 

             (15) 

We use gradient descent to fine-tune the parameters  of 

the neural network. To minimize the overall loss function (13) 

with matrices  and  fixed, we need the derivatives of the 

function  with respect to . The derivatives with respect 

to each parameter  in  are, 

 

 

 

The partial derivatives  and  can be computed 

using backpropagation algorithm. The derivatives of  with 

respect to  and  are computed as in the case of a general 

autoencoder using standard backpropagation. Thus, in each 

iteration we update the factor matrices  and  with the 

parameters of the network fixed and then using gradient 

descent, we update the parameters of the network with the 

factor matrices fixed. 

The overall algorithm can be divided into two phases, i.e. 

Pretraining and Training. Initially the matrices  and  are 

set to random non-negative numbers. The parameters of the 

network are initialized randomly. During pretraining the 

network is trained layerwise by minimizing the reconstruction 

error (11) and by feeding corrupted input to the layer being 

trained. During the training phase, the factor matrices and the 

parameters of the network are updated circularly in each 

iteration to minimize the overall loss function (13). 

 

Algorithm I DP-NMF 

 Input Data:  

 Initialize  with Non-negative numbers 

 Randomly initialize  

 Set learning rate  

 For Each layer  do 

  Set corruption level  

  Corrupt output from  layer 

  repeat K-times 

    

    
 

 repeat I-times 

   

  repeat J-times 

    

    

 

 

 
Fig. 1. DP-NMF using stacked denoising autoencoders (SDA). 

 

V. NUMERICAL EXPERIMENTS 

In the experiments we use four image datasets, including 

UMIST
1
, YALE

2
and the ORL dataset [21]. UMIST is a face 

database, consisting of 575 images of 20 different people. The 

size of each cropped image is  with 256 gray levels per 

pixel. The YALE database contains 15 subjects and 11 

different pictures of each subject. The images are resized to 

 pixels. The ORL dataset includes 400 images of 40 

subjects and the images are resized to  pixels. Table I 

summarizes the details of the used datasets. 

 
TABLE I: DATASET DESCRIPTION 

Dataset Size Features Classes 

UMIST 575 1024 ( ) 20 

ORL 400 644 ( ) 40 

YALE 165 1024 ( ) 15 

 

We evaluate our method using two standard metrics used 

for clustering, i.e, Clustering Accuracy and Normalized 

 
1 https://www.sheffield.ac.uk/eee/research/iel/research/face 
2 http://cvc.cs.yale.edu/cvc/projects/yalefaces/yalefaces.html 
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Mutual Information, whose definition can be found in [12]. 

Performance of our proposed method (DP-NMF) is compared 

with standard NMF and k-means is chosen as a baseline 

method. 
 

TABLE II: SETUP AND PARAMETER SPECIFICATIONS 

Dataset Layer Specifications 
  

UMIST 1024-600-250-100 0.15, 0.25 0.2 

ORL 644-400-200-100 0.15, 0.20 0.4 

YALE 1024-600-200 0.30, 0.25 0.5 

 

Before applying our method, we pre-process the images by 

scaling the pixel values to . The details regarding the 

neural network architecture and other parameters are 

described in Table II. 

In our experiments we randomly set a proportion ( ) of the 

inputs to 0. A value of  in the range from 0.2 to 0.3 for every 

layer works well for the chosen datasets. To employ our 

method, we choose the parameters as specified in Table II and 

iterate (I in Algorithm I) the update rules 250-400 times 

depending on the size of the dataset and the learning rate. 

Initially we set J as 50 to update the factor matrices but to 

reduce time, we scale it down by a factor of 2 a few times as 

we iterate through the outer loop. 
 

TABLE III: CLUSTERING ACCURACY (%) 

Data\Method K-Means NMF DP-NMF 

UMIST 58.47 59.23 71.35 

YALE 43.71 47.24 55.16 

ORL 62.55 60.07 69.38 

 

TABLE IV: NORMALIZED MUTUAL INFORMATION (%) 

Data\Method K-Means NMF DP-NMF 

UMIST 68.70 67.59 76.01 

YALE 53.22 56.94 62.88 

ORL 77.81 76.32 83.19 

 

 

 

 
Fig. 2. Accuracy vs. . 

 

The comparison of the performance between DP-NMF and 

other mentioned algorithms are shown in Table III and Table 

IV. We can observe that the proposed method outperforms the 

baseline methods for all three datasets. We used k-means by 

randomly initializing the centroids and iterating multiple 

times and similarly for the standard NMF, we initialized the 

factor matrices randomly and repeated the update rules until 

convergence. 

The influence of the parameter  over clustering accuracy 

for each dataset is depicted in Fig. 2. Since the curve is neither 

monotonous nor concave, it is difficult to choose the optimum 

value of  without grid search. Low values of parameters  

and  improve the clustering performance but the 

performance decreases for higher values of the parameters in 

case of the datasets chosen for our experiments. Although the 

performance of the model seems sensitive to the choice of , 

based on our experiments the model will outperform 

traditional clustering methods in most cases irrespective of 

the choice of . This is important since, when applied to 

unlabeled real data, the hyperparameters cannot based on 

cross-validation. 

 

VI. CONCLUSION 

In this paper, we introduced a robust extension of NMF by 

embedding denoising autoencoders with a probabilistic form 

of NMF. The proposed model learns a mapping from the input 

space to a lower-dimensional feature space and then 

optimizes a clustering objective. The experiments validate 

that the non-linear dimension reduction is effective and 

improves clustering performance. We develop the 

optimization model for the proposed DP-NMF model and 

show an iterative method to optimize it by extending Lee and 

Seung's multiplicative update rules and by using gradient 

descent. Due to the robustness and the ability to find 

non-linear structure in the data, the proposed method can be 

applied to various high-dimensional practical datasets which 

inherently contain noise such as biological and geological 

datasets. 
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