

Abstract—This paper proposes a novel method of applying

Hill Climbing algorithm for optimizing a problem which has

more than one dependent variable and a very large search space.

Tuning of PID controller for complete Black-Box plant model is

an example of one such problem, where the search algorithm is

applied to find PID gains which satisfy the desired optimization

criteria. The traditional Hill Climbing algorithm cannot be

directly applied to tune PID since the PID controller has three

parameters to be tuned and search space is a large collection of

real numbers. Searching the entire 3D infinite space without

knowing the step size is not easy for this search method. Hence,

the traditional Hill Climbing algorithm is modified to adjust the

step size and the direction of search dynamically to make the

search faster. The algorithm maintains the direction of search

as long as it is approaching the optimal point with increase in

step size. When it fails in its prediction, the search is

randomized in all directions with decrease in step size. This

predictive search method reduces the search time and is

effective for a very large search space. This paper explains how

the algorithm is successful in tuning PID controller and the

performance of the algorithm is analyzed.

Index Terms—Hill climbing, PID tuning, search algorithm.

I. INTRODUCTION

Search algorithms are used in many applications to find a

solution in the search space based on the defined constraints.

There are many algorithms like Hill Climbing, Genetic

Algorithm, Simulated Annealing, etc. which are used

depending on the type of application. Although Hill Climbing

suffers from a drawback of getting stuck at the local

maxima/minima, it is used in applications such as wind

power system [1], evacuation route planning [2], modelling

of soil behavior [3], forward planning [4] and many other

applications because it is simple and easy to implement.

There are different variants of Hill Climbing algorithm and

these variants have evolved based on the need to make the

search effective in addressing a particular problem. For

example, Variable Step Hill Climbing algorithm is already

being used to track Maximum Power Point of Wind Power

System [1]. In this case, the searching time is reduced by

varying the step based on a certain formula. This idea is

extended to a problem where multiple variables are to be

altered. One such example is PID tuning.

PID controller is a very popular control strategy used in

many industrial applications. Though PID is simple in its

operation, selecting the proper PID gains is difficult and

Manuscript received November 7, 2017; revised January 18, 2018. This

work was supported in part by the Department of RD I/CEP, Mercedes-Benz
R&D India Pvt. Ltd.

Karthikeyan Nagarajan is with the Modeling & Simulation Team, RD

I/CEP, Mercedes-Benz R&D India Pvt. Ltd., Bangalore, Karnataka, India

(e-mail: nk_karthi@ymail.com).

time-consuming. In some cases, the mathematical model of

the plant is available and PID gains can be derived based on

few methods like Pole Placement or some PID tuning rules. If

the plant model is not known, tuning the PID manually by

trial and error method is very tedious. PID values can be of

any order such as 10
-3

 or even 10
3
. With the help of thumb

rules, manual tuning can be made easier but it is not very

helpful when the system is complex.

However, many technical papers have described how

different search or optimization techniques like Genetic

Algorithm [5], [6], Neural network [7], Particle Swarm [8],

etc. are used to tune PID. In [5] and [6], the Genetic

Algorithm‟s performance in PID tuning depends on the

following factors: size of the initial population, if the initial

population has sufficient variety of good candidate solutions

resulting in good crossover, and the method of crossover.

Sometimes, it is difficult to create the initial population for an

application like PID tuning because the search space is very

large and determination of initial population with good PID

values is not practically feasible. In [7], it is mentioned that

the training periods are too long to identify the weights in the

network because it uses supervised learning algorithm. As

explained in [8], a modified Particle Swarm Optimization

(PSO) is used to eliminate the problem of getting stuck at the

local maxima/minima. Optimization methods such as PSO

require more computational time and space. There are a few

applications where such complex techniques are not needed

to solve the problem. For such applications, Hill Climbing is

used to tune PID since it is simple and easy to implement.

This paper primarily focusses on the development of a

generic Hill Climbing variant to solve a problem like PID

tuning where the plant model is a complete black box. As

described in [9], the PID tuning can be made more efficient

by including prior knowledge of the system to help the

algorithm find solutions faster. But, in order to make the

algorithm generic, no thumb rules are used in tuning the

controller heuristically. This paper demonstrates a method

that not only solves the PID tuning problem but also other

similar problems.

Another optimization problem similar to PID tuning is

model parameter estimation in the field of system

identification. As already mentioned in [3], there are a few

instances where the exact values of model parameters are not

derived, instead they are found in the heuristically defined

search space. By this method, the model is fine-tuned to

simulate accurate behavior of the system. In this case, the

dimension of the search space depends on the number of

model parameters to be estimated. One more example is the

determination of optimal input-output scaling factors for a

fuzzy system. In [10], different algorithms are used to find

the optimal values of the scaling factors and their

performance is compared. The method illustrated in this

A Predictive Hill Climbing Algorithm for Real Valued

multi-Variable Optimization Problem like PID Tuning

Karthikeyan Nagarajan

International Journal of Machine Learning and Computing, Vol. 8, No. 1, February 2018

14doi: 10.18178/ijmlc.2018.8.1.656

paper can also be applied to the types of problems mentioned

above.

In [11], Modified Hill Climbing uses an approach to alter

one variable at a time and continues the search in both

directions (increasing and decreasing values). Variables are

changed one at a time, independent of other variables. But the

step size is not modified and remains constant for each

variable. There is no prediction involved while searching for

the solution. Another variant of Hill Climbing is mentioned

in [1] which uses a heuristic method of altering the step size

to find the solution specifically for wind power systems. In

view of the above mentioned Hill Climbing variants, a

predictive method of Hill Climbing is proposed in this paper.

It does not involve a specific heuristic approach to solve the

problem and so it is a generic method that can be applied to

any problem. Unlike [11], all the variables are changed

simultaneously but the total magnitude of those changes is

equal to the step size which is not constant. So this algorithm

can be considered as an extension of [1].

The rest of this paper is organized as follows. Section II

describes the problem statement and formulation of

optimization function for PID tuning. Section III elaborates

the concept of the proposed algorithm and the analysis of its

results. Section IV demonstrates how the algorithm is applied

to tune PID for a fixed wing airplane model. Section V is the

conclusion of this work.

II. PROBLEM DESCRIPTION

The algorithm is developed in MATLAB script and the

closed loop system comprising PID and the plant is modeled

in MATLAB Simulink. The plant model defined by the

transfer function (1) is randomly selected first and the

algorithm is developed using that plant model in the

simulation environment. Then the algorithm is applied to

tune PID for a fixed wing airplane model [12] defined by the

transfer function (2).

𝐸 𝑠 =
1

𝑠4 +4𝑠3+14𝑠2+6𝑠+1
 (1)

𝑃 𝑠 =
𝜃(𝑠)

∆(𝑠)
=

1.151𝑠+0.1774

𝑠3+0.739𝑠2+0.921𝑠
 (2)

The optimization function is formulated based on the

performance evaluation criteria comprising Overshoot, IAE,

ISE, ITAE, Settling time and Oscillations. Each criterion has

a weightage and these are adjusted based on the requirements

of closed loop performance. The function output is

normalized and ranges between 0-100 percent. The drawback

of Hill Climbing Algorithm is that it gets stuck at local

maxima/minima and this can be overcome by formulating a

proper optimization function. It is important to select the

weightages in such a way that the function is monotonically

increasing and has only one maximum/minimum. The

function should also output non-zero values for a major

portion of the search space. Instead, if the function has a

sudden hill arising abruptly covering a small area, then

finding the initial non-zero value (foothills) by random

search is time-consuming. In this case, the search is not

effective when the appropriate initial values to tune PID are

not known. For example, if the weightages are chosen only to

avoid overshoot, this will result in the function having 0

percent value covering a large search space. This will lead to

a randomized search instead of Hill Climbing in the

beginning of the search. In this case, it is advisable to have

non-zero weightage for IAE since it will contribute to

non-zero value for most of the PID gains in search space. But,

considering only IAE will result in a state where the function

will have many local maxima/minima because a particular

IAE can be achieved by multiple set of PID gains in the space.

So it is very important to formulate the optimization function

by selecting proper weightages in case of PID tuning.

III. PREDICTIVE HILL CLIMBING ALGORITHM

A. Overview

The proposed Hill Climbing algorithm is basically a

best-first search method where the neighbor is selected

randomly and the algorithm moves to the neighbor where it

finds an improvement. Since it has infinite number of

neighbors in this case, it is not possible to evaluate all the

neighbors and choose the best among them. During the start,

if the start point lies on a flat surface, the algorithm does a

randomized search in the entire space till it finds the foothills

of the optimization function. For example, this can happen if

the optimization function has constant value covering a large

search space and a sudden peak in a small region as

mentioned previously.

The algorithm is developed to search in 3D space and each

set of PID gains is denoted by spherical coordinate system (3).

The representation is defined by the step size (r), which is

also referred to radius of search, and two angles (θ1, θ2). The

current point is considered as the center of the sphere. The

region of search is bounded by the upper and lower limit of

radius [rLL, rUL] and two angles [θ1LL, θ1UL, θ2LL, θ2UL] and a

neighbor is randomly selected in that region. This actually

defines a small portion of a solid spherical surface. The main

reason for using limits is to control the region of search by

altering the limits individually as explained below.

𝐾𝑝
𝑥+1

= 𝐾𝑝
𝑥

+ 𝑟 ∗ cos 𝜃1 ∗ sin 𝜃2

𝐾𝑖𝑥+1 = 𝐾𝑖𝑥 + 𝑟 ∗ sin 𝜃1 ∗ sin 𝜃2 (3)

𝐾𝑑𝑥+1 = 𝐾𝑑𝑥 + (𝑟 ∗ cos 𝜃2)

where r, θ1 and θ2 are randomly selected in the ranges [rLL,

rUL], [θ1LL, θ1UL] and [θ2LL, θ2UL] respectively.

The logic of the algorithm is shown in Fig. 1. It is

explained in the following sections in detail. The algorithm

differs from the traditional method in terms of:

 Step Size Adjustment

 Focused Directional Search

B. Step Size Adjustment

If the algorithm notices successive improvements during

the search, the lower limit of radius (rLL) is increased by some

factor, say 2. A constant radius width (rwidth) is considered

and therefore the upper limit (rUL) is also increased

accordingly.

Successive improvements in search may indicate that the

solution can be found faster if the search progresses in same

direction with increased step size. The threshold that defines

the minimum number of successive improvements required

International Journal of Machine Learning and Computing, Vol. 8, No. 1, February 2018

15

to increase the step size is called „Positive Trial Threshold‟

(α). This is an important parameter to be defined according to

the given problem in order to obtain efficient search results.

However, the rLL can increase till it reaches the maximum

value (rLL_max) since it cannot be too large to step out of the

entire space in few steps.

Fig. 1. Flowchart of the algorithm.

If the algorithm observes no successive improvements, the

lower limit of radius (rLL) is decreased by a factor, say 2.

Anticipating an improvement, the neighbors are chosen very

close to the current point. As the algorithm reaches the top of

the hill, the radius has to be reduced to search nearby points

to find the peak and not to fall off the other side of the hill by

leaping too much. There is a minimum radius limit (rLL_min)

defined for an optimization problem to stop the reduction of

radius after that limit. If rLL_min threshold is not defined then

the algorithm keeps reducing the radius and continues the

search where such small perturbations will not have any

impact. It is assumed that if the algorithm does not find any

improvement with the minimum radius, then it has reached

maximum/minimum. The threshold that defines when the

radius is to be reduced is called „Negative Trial Threshold‟

(β). This is also one of the parameters that defines the

performance of the algorithm.

C. Focused Directional Search

As mentioned above, the two angles (θ1, θ2) define the

direction of the search. By fixing the limits of these two

parameters, the search can be localized or it can cover the

entire spherical surface defined by the radius. When the

algorithm detects an improvement, both the limits of the

angles are brought close together and a focused search is

performed in that direction. Using (4), the window of search

is narrowed down by reducing the span (θ1width, θ2width) of θ1

Initial conditions &

parameters set

Maximum

iteration

reached?

Evaluate the

performance of Next

PID values

 Selection of Next PID

values in the defined

region of search

Desired

performance

obtained?

End

Yes

Yes

No

No

Next

Performance >

Current

Performance

If Count_β is

equal to
β ?

If Count_α is

equal to α?

Yes

No

Increase step size;
 Count_α = 0;

No No

Yes Yes Decrease step size;
Count_β = 0;

 Current PID = Next PID;
Increment Count_α;

Reset angle span to min;
Count_β = 0;

 Increment Count_β;
Increase angle span;

Count_α = 0;

International Journal of Machine Learning and Computing, Vol. 8, No. 1, February 2018

16

and θ2 to a minimum value (θ1width_min, θ2width_min) with current

θ1 and θ2 as the center.

𝜃𝐿𝐿 = θ −
𝜃𝑤𝑖𝑑𝑡 ℎ

2 ; 𝜃𝑈𝐿 = θ +
𝜃𝑤𝑖𝑑𝑡 ℎ

2 (4)

The algorithm increases the width (θ1width, θ2width) by a

factor (θ1Δwidth, θ2Δwidth) for each „no improvement‟ condition.

According to (5), the (θ1Δwidth, θ2Δwidth) are chosen in such a

way that the entire spherical surface is searched before the

radius is reduced by „Negative Trial Threshold‟ parameter.

𝜃𝑤𝑖𝑑𝑡 ℎ𝑥+1
= 𝜃𝑤𝑖𝑑𝑡 ℎ𝑥 + 𝜃Δ𝑤𝑖𝑑𝑡 ℎ

𝜃Δ𝑤𝑖𝑑𝑡 ℎ =
𝜃𝑤𝑖𝑑𝑡 ℎ_𝑚𝑎𝑥

 0.5 ∗ 𝛽 (5)

where

𝜃𝑤𝑖𝑑𝑡 ℎ ≤ 𝜃𝑤𝑖𝑑𝑡 ℎ_𝑚𝑎𝑥

𝜃1𝑤𝑖𝑑𝑡 ℎ _𝑚𝑎𝑥 = 360 ; 𝜃2𝑤𝑖𝑑𝑡 ℎ _𝑚𝑎𝑥 = 180 ;

𝜃𝑤𝑖𝑑𝑡 ℎ _𝑚𝑖𝑛 = 𝜃Δwidth

The equation (5) states that the full surface search will start

at iteration equal to half of β after the first occurrence of

no-improvement case. This means, randomized search of the

entire surface is performed for β/2 iterations before the radius

is reduced. This is to ensure that the algorithm searches

thoroughly with a given radius limits even if the prediction of

focused search fails.

D. Analysis

For analysis purpose, the weightages chosen for tuning

PID for the plant (1) are 50% for Overshoot and 50% for

Oscillation and initial condition is Kp = 12.95; Ki = 8.44; Kd

= 31.07. The maximum number of iterations allowed to find

the desired solution is 300. The parameters of the algorithm

used for this model are shown in Table I.

TABLE I: ALGORITHM PARAMETERS

Parameter Value

β 10

α 3

rLL_min 0.01

rLL_max 10

rwidth 10

Search Space for Kp, Ki, Kd [0.01,10]

Fig. 2. Search path traced before finding the desired solution.

The following graphs are obtained when the algorithm is

used with the above setting to tune PID for the plant (1). Fig.

2 shows how the search progressed and the solution found is

Kp = 10.99; Ki = 0.61; Kd = 19.32. Fig. 3, Fig. 4 and Fig. 5

explains the adjustment of limits of radius and the angles of

search (θ1, θ2) respectively. The red and blue markers in the

plots denote upper and lower limits respectively and black

markers denote the random selection of a value between

those limits.

Fig. 3. Step size limit adjustment.

Fig. 4. θ1 Limit changes.

Fig. 5. θ2 Limit changes.

It is important to select α and β carefully because it

determines the rate at which the step size increases and

decreases respectively. A very low α will increase the step

size unnecessarily and result in jumping over the peaks. A

high value of α will result in a sluggish search. Let‟s assume

that β is set to a very high value and the algorithm has reached

close to the desired solution. In this case, the algorithm will

waste too much time evaluating solutions in the region which

is far away from the peak.

International Journal of Machine Learning and Computing, Vol. 8, No. 1, February 2018

17

Conversely, if β is set to a very low value and the search

direction is predicted incorrectly, this will result in a slow

search since the step size will be reduced within a few

iterations before exploring better candidate solutions. For

better understanding, the impact of different α values is

studied. Fig. 6 shows the average number of iterations

required to find the solution for different α values. The

optimum value is around 3.

Fig. 6. Selection of Positive Trial Threshold.

The effect of the focused search on the performance is

studied and explained below. The comparison of total

number of iterations needed to find the solution with and

without focused search for 10 trials is shown in Table II.

Considering 99% and above as the desired solution and 300

as the maximum iteration limit, the probability of achieving

the desired result with focused search is 1. The mean and

standard deviation is 90.5 and 59.28 respectively. Meanwhile,

the probability of achieving the desired result without

focused search is 0.3. Although seven out of ten instances are

unsuccessful in finding the desired solution, the mean is

approximated as 272.7. It is clear that the focused search

helps in converging to the desired solution faster since the

average number of iterations is reduced and the probability is

quite high for a given maximum iteration. The prediction

works very well when the optimization function has a curve

as specified in the previous section. Even though the search

becomes faster, the standard deviation of 59.28 indicates that

the search does not always follow the optimal path. The

algorithm predicts the direction of optimal path and continues

its search even when the prediction is wrong.

TABLE II: SEARCH IMPROVEMENT

Without Focused Search With Focused Search

Best solution Iterations Best solution Iterations

100 229 100 226

82.20 300a 100 91

85.21 300a 99.68 30

85.34 300a 100 44

85.11 300a 99.75 98

85.00 300a 100 43

95.93 300a 100 70

100 119 100 142

100 279 100 111

82.21 300a 99.75 50

Average 272.7 Average 90.5

a. maximum iteration reached.

To summarize the efficiency of the algorithm, the space

requirement is low and constant since it does not keep track

of the search path traced. The algorithm is not always

complete as it gets stuck at local maxima/minima. It is also

not optimal since it looks for first-best neighbor instead of

finding the best of all neighbors. Theoretically, time

complexity is O (∞). The time efficiency can be measured in

terms of the time taken to reach the global

maximum/minimum. So, the algorithm can be made

complete and efficient only if the optimization function is

chosen properly. In addition to this, the choice of α and β

determines time efficiency.

IV. PID TUNING OF FIXED WING AIRPLANE MODEL

As stated earlier, a few experiments of PID tuning by

Modified Hill Climbing (MHC) algorithms have been

conducted. One such work where MHC is used for tuning

PID for the plant model (2) is described in [11]. In this paper,

the closed loop requirement is to have zero overshoot and

settling time less than 25s with steady state tolerance band of

± 0.01. The weights defined in the proposed algorithm are 50%

for overshoot and 50% for settling time. The parameter

values mentioned in Table I are also used for configuring the

algorithm to solve this problem. The results of the experiment

and performance analysis are tabulated in Table III and Table

IV respectively. The experiments suggest that the

optimization function for the plant (2) has more than one

maximum. Like the traditional Hill Climbing, the proposed

algorithm also yields different solutions when started with

different initial values. The step responses of the closed loop

system obtained with different PID solutions are shown in

Fig. 7. Compared to the results shown in [11], the algorithm

has shown better results and could find the following

solutions within 300 iterations.

TABLE III: PID GAINS

Initial Values Final values Solution

Kp Ki Kd Kp Ki Kd Name

1 1 1 2.12 0.90 1.61 Solution 1

5 5 5 6.92 2.09 3.45 Solution 2

10 10 10 23.95 4.74 7.79 Solution 3

Fig. 7. Closed loop responses with the PID tuned by the algorithm.

TABLE IV: PID PERFORMANCE ANALYSIS

Solution Name Overshoot (%) Settling Time (s)

Solution 1 6.8 27.8

Solution 2 4.8 25.5

Solution 3 2.6 23.9

V. CONCLUSION

In this paper, traditional Hill Climbing algorithm is

International Journal of Machine Learning and Computing, Vol. 8, No. 1, February 2018

18

modified by including a predictive logic which improves the

search. The importance of formulating the optimization

function for PID tuning is also explained. The

implementation of the algorithm is described and

experiments are conducted to demonstrate the effect of the

important algorithm parameters. The algorithm is applied to

tune PID which operates on fixed wing airplane model. The

results suggest that the proposed algorithm is very effective

when there are multiple real numbered variables to be tuned

and the search space is very large. The algorithm is generic,

hence, it can be applied to other similar problems like PID

tuning. Although the algorithm is efficient, it has a drawback

that it gets stuck at local maxima/minima like the traditional

Hill Climbing algorithm. This drawback can be overcome by

extending this algorithm to Iterative Predictive Hill Climbing

where multiple searches are performed with randomly

selected start points.

ACKNOWLEDGMENT

Thanks to Daimler and MBRDI members for making this

paper possible.

REFERENCES

[1] F. Lan, L. Tao, J. Li, and Z. Yao, “An improved variable step

hill-climbing searching algorithm for tracking maximum power point

of wind power system,” in Proc. 2016 China International Conference
on Electricity Distribution (CICED), Xi'an, 2016, pp. 1-6. d

[2] T. P. Jiang, G. Ren, and X. Zhao, “Evacuation route optimization based

on Tabu search algorithm and hill-climbing algorithm,” Procedia -
Social and Behavioral Sciences, vol. 96, pp. 865-872, 2013.

[3] D. M. G. Taborda and L. Zdravkovic, “Application of a Hill-Climbing

technique to the formulation of a new cyclic nonlinear elastic
constitutive model,” Computers and Geotechnics, vol. 43, 2012, pp.

80-91.

[4] S. A. Akramifar and G. Ghassem-Sani, “Fast forward planning by
guided enforced hill climbing,” Engineering Applications of Artificial

Intelligence, vol. 23, issue 8, pp. 1327-1339, 2010.

[5] R. W. Wies, E. Chukkapalli, and M. Mueller-Stoffels, “Improved

frequency regulation in mini-grids with high wind contribution using

online genetic algorithm for PID tuning,” in Proc. 2014 IEEE PES
General Meeting | Conference & Exposition, National Harbor, MD,

2014, pp. 1-5.

[6] N. F. Mohammed, E. Song, X. Ma, and Q. Hayat, “Tuning of PID
controller of synchronous generators using genetic algorithm,” in Proc.

2014 IEEE International Conference on Mechatronics and Automation,

Tianjin, 2014, pp. 1544-1548.
[7] R. Hernandez-Alvarado, L. G. Garcia-Valdovinos, T. Salgado-Jimenez,

A. Gómez-Espinosa, and F. F. Navarro, "Self-tuned PID control based

on backpropagation Neural Networks for underwater vehicles,”
OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, pp. 1-5, 2016.

[8] K. Singh and G. Shankar, “PID parameters tuning using modified

particle swarm optimization and its application in load frequency
control,” in Proc. 2016 IEEE 6th International Conference on Power

Systems (ICPS), New Delhi, 2016, pp. 1-6.

[9] J. Chen, M. N. Omidvar, M. Azad, and X. Yao, “Knowledge-based
particle swarm optimization for PID controller tuning,” in Proc. 2017

IEEE Congress on Evolutionary Computation (CEC), San Sebastian,

2017, pp. 1819-1826.
[10] D. K. Sambariya, R. Gupta, and R. Prasad, “Design of optimal

input–output scaling factors based fuzzy PSS using bat algorithm,”

Engineering Science and Technology, an International Journal, vol. 19,
issue 2, pp. 991-1002, 2016.

[11] A. Abdulelah, A. C. Soh, N. A. Abdullah, M. K. Hassan, and S. B. M.

Noor, “Simulated real time controller using modified hill climbing
algorithm on fixed wing airplane,” in Proc. 2015 10th Asian Control

Conference (ASCC), Kota Kinabalu, 2015, pp. 1-5.

[12] Control tutorials for MATLAB and Simulink - aircraft Pitch: System
Modeling. Published with MATLAB® 7.14. (2012). [Online].

Available:

http://ctms.engin.umich.edu/CTMS/index.php?example=AircraftPitch
§ion=SystemModeling

Karthikeyan Nagarajan is currently working as a
modeling & simulation engineer in Mercedes Benz

R&D, India. He received his bachelor of engineering

degree from the Instrumentation Department, Madras
Institute of Technology, Chennai, India in 2013. He

has worked at Delphi Technical Center, Bangalore as a
software engineer from 2013-2015.

 His research interests include control system,

artificial intelligence and autonomous driving.

International Journal of Machine Learning and Computing, Vol. 8, No. 1, February 2018

19

http://ctms.engin.umich.edu/CTMS/index.php?example=AircraftPitch§ion=SystemModeling
http://ctms.engin.umich.edu/CTMS/index.php?example=AircraftPitch§ion=SystemModeling

