
  

 

Abstract—This paper proposes a novel method of applying 

Hill Climbing algorithm for optimizing a problem which has 

more than one dependent variable and a very large search space. 

Tuning of PID controller for complete Black-Box plant model is 

an example of one such problem, where the search algorithm is 

applied to find PID gains which satisfy the desired optimization 

criteria. The traditional Hill Climbing algorithm cannot be 

directly applied to tune PID since the PID controller has three 

parameters to be tuned and search space is a large collection of 

real numbers. Searching the entire 3D infinite space without 

knowing the step size is not easy for this search method. Hence, 

the traditional Hill Climbing algorithm is modified to adjust the 

step size and the direction of search dynamically to make the 

search faster. The algorithm maintains the direction of search 

as long as it is approaching the optimal point with increase in 

step size. When it fails in its prediction, the search is 

randomized in all directions with decrease in step size. This 

predictive search method reduces the search time and is 

effective for a very large search space. This paper explains how 

the algorithm is successful in tuning PID controller and the 

performance of the algorithm is analyzed. 

 
Index Terms—Hill climbing, PID tuning, search algorithm.  

 

I. INTRODUCTION 

Search algorithms are used in many applications to find a 

solution in the search space based on the defined constraints. 

There are many algorithms like Hill Climbing, Genetic 

Algorithm, Simulated Annealing, etc. which are used 

depending on the type of application. Although Hill Climbing 

suffers from a drawback of getting stuck at the local 

maxima/minima, it is used in applications such as wind 

power system [1], evacuation route planning [2], modelling 

of soil behavior [3], forward planning [4] and many other 

applications because it is simple and easy to implement. 

There are different variants of Hill Climbing algorithm and 

these variants have evolved based on the need to make the 

search effective in addressing a particular problem. For 

example, Variable Step Hill Climbing algorithm is already 

being used to track Maximum Power Point of Wind Power 

System [1]. In this case, the searching time is reduced by 

varying the step based on a certain formula. This idea is 

extended to a problem where multiple variables are to be 

altered. One such example is PID tuning. 

PID controller is a very popular control strategy used in 

many industrial applications. Though PID is simple in its 

operation, selecting the proper PID gains is difficult and 
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time-consuming. In some cases, the mathematical model of 

the plant is available and PID gains can be derived based on 

few methods like Pole Placement or some PID tuning rules. If 

the plant model is not known, tuning the PID manually by 

trial and error method is very tedious. PID values can be of 

any order such as 10
-3

 or even 10
3
. With the help of thumb 

rules, manual tuning can be made easier but it is not very 

helpful when the system is complex.   

However, many technical papers have described how 

different search or optimization techniques like Genetic 

Algorithm [5], [6], Neural network [7], Particle Swarm [8], 

etc. are used to tune PID. In [5] and [6], the Genetic 

Algorithm‟s performance in PID tuning depends on the 

following factors: size of the initial population, if the initial 

population has sufficient variety of good candidate solutions 

resulting in good crossover, and the method of crossover. 

Sometimes, it is difficult to create the initial population for an 

application like PID tuning because the search space is very 

large and determination of initial population with good PID 

values is not practically feasible. In [7], it is mentioned that 

the training periods are too long to identify the weights in the 

network because it uses supervised learning algorithm. As 

explained in [8], a modified Particle Swarm Optimization 

(PSO) is used to eliminate the problem of getting stuck at the 

local maxima/minima. Optimization methods such as PSO 

require more computational time and space. There are a few 

applications where such complex techniques are not needed 

to solve the problem. For such applications, Hill Climbing is 

used to tune PID since it is simple and easy to implement. 

This paper primarily focusses on the development of a 

generic Hill Climbing variant to solve a problem like PID 

tuning where the plant model is a complete black box. As 

described in [9], the PID tuning can be made more efficient 

by including prior knowledge of the system to help the 

algorithm find solutions faster. But, in order to make the 

algorithm generic, no thumb rules are used in tuning the 

controller heuristically. This paper demonstrates a method 

that not only solves the PID tuning problem but also other 

similar problems. 

Another optimization problem similar to PID tuning is 

model parameter estimation in the field of system 

identification. As already mentioned in [3], there are a few 

instances where the exact values of model parameters are not 

derived, instead they are found in the heuristically defined 

search space. By this method, the model is fine-tuned to 

simulate accurate behavior of the system. In this case, the 

dimension of the search space depends on the number of 

model parameters to be estimated. One more example is the 

determination of optimal input-output scaling factors for a 

fuzzy system. In [10], different algorithms are used to find 

the optimal values of the scaling factors and their 

performance is compared. The method illustrated in this 
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paper can also be applied to the types of problems mentioned 

above. 

In [11], Modified Hill Climbing uses an approach to alter 

one variable at a time and continues the search in both 

directions (increasing and decreasing values). Variables are 

changed one at a time, independent of other variables. But the 

step size is not modified and remains constant for each 

variable. There is no prediction involved while searching for 

the solution. Another variant of Hill Climbing is mentioned 

in [1] which uses a heuristic method of altering the step size 

to find the solution specifically for wind power systems. In 

view of the above mentioned Hill Climbing variants, a 

predictive method of Hill Climbing is proposed in this paper. 

It does not involve a specific heuristic approach to solve the 

problem and so it is a generic method that can be applied to 

any problem. Unlike [11], all the variables are changed 

simultaneously but the total magnitude of those changes is 

equal to the step size which is not constant. So this algorithm 

can be considered as an extension of [1].  

The rest of this paper is organized as follows. Section II 

describes the problem statement and formulation of 

optimization function for PID tuning. Section III elaborates 

the concept of the proposed algorithm and the analysis of its 

results. Section IV demonstrates how the algorithm is applied 

to tune PID for a fixed wing airplane model. Section V is the 

conclusion of this work. 

 

II. PROBLEM DESCRIPTION 

The algorithm is developed in MATLAB script and the 

closed loop system comprising PID and the plant is modeled 

in MATLAB Simulink. The plant model defined by the 

transfer function (1) is randomly selected first and the 

algorithm is developed using that plant model in the 

simulation environment. Then the algorithm is applied to 

tune PID for a fixed wing airplane model [12] defined by the 

transfer function (2). 

𝐸 𝑠 =  
1

𝑠4 +4𝑠3+14𝑠2+6𝑠+1
                               (1) 

𝑃 𝑠 =   
𝜃(𝑠)

∆(𝑠)
=  

1.151𝑠+0.1774

𝑠3+0.739𝑠2+0.921𝑠
                        (2) 

The optimization function is formulated based on the 

performance evaluation criteria comprising Overshoot, IAE, 

ISE, ITAE, Settling time and Oscillations. Each criterion has 

a weightage and these are adjusted based on the requirements 

of closed loop performance. The function output is 

normalized and ranges between 0-100 percent. The drawback 

of Hill Climbing Algorithm is that it gets stuck at local 

maxima/minima and this can be overcome by formulating a 

proper optimization function. It is important to select the 

weightages in such a way that the function is monotonically 

increasing and has only one maximum/minimum. The 

function should also output non-zero values for a major 

portion of the search space. Instead, if the function has a 

sudden hill arising abruptly covering a small area, then 

finding the initial non-zero value (foothills) by random 

search is time-consuming. In this case, the search is not 

effective when the appropriate initial values to tune PID are 

not known. For example, if the weightages are chosen only to 

avoid overshoot, this will result in the function having 0 

percent value covering a large search space. This will lead to 

a randomized search instead of Hill Climbing in the 

beginning of the search. In this case, it is advisable to have 

non-zero weightage for IAE since it will contribute to 

non-zero value for most of the PID gains in search space. But, 

considering only IAE will result in a state where the function 

will have many local maxima/minima because a particular 

IAE can be achieved by multiple set of PID gains in the space. 

So it is very important to formulate the optimization function 

by selecting proper weightages in case of PID tuning.  

 

III.  PREDICTIVE HILL CLIMBING ALGORITHM 

A. Overview 

The proposed Hill Climbing algorithm is basically a 

best-first search method where the neighbor is selected 

randomly and the algorithm moves to the neighbor where it 

finds an improvement. Since it has infinite number of 

neighbors in this case, it is not possible to evaluate all the 

neighbors and choose the best among them. During the start, 

if the start point lies on a flat surface, the algorithm does a 

randomized search in the entire space till it finds the foothills 

of the optimization function. For example, this can happen if 

the optimization function has constant value covering a large 

search space and a sudden peak in a small region as 

mentioned previously. 

The algorithm is developed to search in 3D space and each 

set of PID gains is denoted by spherical coordinate system (3). 

The representation is defined by the step size (r), which is 

also referred to radius of search, and two angles (θ1, θ2). The 

current point is considered as the center of the sphere. The 

region of search is bounded by the upper and lower limit of 

radius [rLL, rUL] and two angles [θ1LL, θ1UL, θ2LL, θ2UL] and a 

neighbor is randomly selected in that region. This actually 

defines a small portion of a solid spherical surface. The main 

reason for using limits is to control the region of search by 

altering the limits individually as explained below. 

𝐾𝑝
𝑥+1

=  𝐾𝑝
𝑥

+   𝑟 ∗  cos 𝜃1 ∗  sin 𝜃2                         
 

𝐾𝑖𝑥+1 =  𝐾𝑖𝑥 +   𝑟 ∗  sin 𝜃1  ∗  sin 𝜃2                    (3) 
 

𝐾𝑑𝑥+1 =  𝐾𝑑𝑥 + ( 𝑟 ∗  cos 𝜃2 )                                
 

where r, θ1 and θ2 are randomly selected in the ranges [rLL, 

rUL], [θ1LL, θ1UL] and [θ2LL, θ2UL] respectively.  

The logic of the algorithm is shown in Fig. 1. It is 

explained in the following sections in detail. The algorithm 

differs from the traditional method in terms of:  

 Step Size Adjustment 

 Focused Directional Search 

B. Step Size Adjustment 

If the algorithm notices successive improvements during 

the search, the lower limit of radius (rLL) is increased by some 

factor, say 2. A constant radius width (rwidth) is considered 

and therefore the upper limit (rUL) is also increased 

accordingly.  

Successive improvements in search may indicate that the 

solution can be found faster if the search progresses in same 

direction with increased step size. The threshold that defines 

the minimum number of successive improvements required 
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to increase the step size is called „Positive Trial Threshold‟ 

(α). This is an important parameter to be defined according to 

the given problem in order to obtain efficient search results. 

However, the rLL can increase till it reaches the maximum 

value (rLL_max) since it cannot be too large to step out of the 

entire space in few steps. 

 
 

 
Fig. 1. Flowchart of the algorithm. 

 

If the algorithm observes no successive improvements, the 

lower limit of radius (rLL) is decreased by a factor, say 2. 

Anticipating an improvement, the neighbors are chosen very 

close to the current point. As the algorithm reaches the top of 

the hill, the radius has to be reduced to search nearby points 

to find the peak and not to fall off the other side of the hill by 

leaping too much. There is a minimum radius limit (rLL_min) 

defined for an optimization problem to stop the reduction of 

radius after that limit. If rLL_min threshold is not defined then 

the algorithm keeps reducing the radius and continues the 

search where such small perturbations will not have any 

impact. It is assumed that if the algorithm does not find any 

improvement with the minimum radius, then it has reached 

maximum/minimum. The threshold that defines when the 

radius is to be reduced is called „Negative Trial Threshold‟ 

(β). This is also one of the parameters that defines the 

performance of the algorithm. 

C. Focused Directional Search 

As mentioned above, the two angles (θ1, θ2) define the 

direction of the search. By fixing the limits of these two 

parameters, the search can be localized or it can cover the 

entire spherical surface defined by the radius. When the 

algorithm detects an improvement, both the limits of the 

angles are brought close together and a focused search is 

performed in that direction. Using (4), the window of search 

is narrowed down by reducing the span (θ1width, θ2width) of θ1 

Initial conditions & 

parameters set 

Maximum 

iteration 

reached? 

Evaluate the 

performance of Next 

PID values 

 Selection of Next PID 

values in the defined 

region of search 

Desired 

performance 

obtained? 

End 

Yes 

Yes 

No 

No 

Next 

Performance > 

Current 

Performance 

If Count_β is 

equal to  
β ? 

If Count_α is 

equal to α? 

Yes 

No 

Increase step size; 
 Count_α = 0; 

No No 

Yes Yes Decrease step size; 
Count_β = 0;  

 Current PID = Next PID; 
Increment Count_α; 

Reset angle span to min; 
Count_β = 0; 

 Increment Count_β; 
Increase angle span; 

Count_α = 0; 
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and θ2 to a minimum value (θ1width_min, θ2width_min) with current 

θ1 and θ2 as the center.  

𝜃𝐿𝐿 =  θ −   
𝜃𝑤𝑖𝑑𝑡 ℎ

2   ;   𝜃𝑈𝐿 =  θ +   
𝜃𝑤𝑖𝑑𝑡 ℎ

2                   (4) 

The algorithm increases the width (θ1width, θ2width) by a 

factor (θ1Δwidth, θ2Δwidth) for each „no improvement‟ condition. 

According to (5), the (θ1Δwidth, θ2Δwidth) are chosen in such a 

way that the entire spherical surface is searched before the 

radius is reduced by „Negative Trial Threshold‟ parameter. 

𝜃𝑤𝑖𝑑𝑡 ℎ𝑥+1
=  𝜃𝑤𝑖𝑑𝑡 ℎ𝑥 + 𝜃Δ𝑤𝑖𝑑𝑡 ℎ   

𝜃Δ𝑤𝑖𝑑𝑡 ℎ =  
𝜃𝑤𝑖𝑑𝑡 ℎ_𝑚𝑎𝑥

 0.5 ∗  𝛽                      (5) 

where    

𝜃𝑤𝑖𝑑𝑡 ℎ ≤  𝜃𝑤𝑖𝑑𝑡 ℎ_𝑚𝑎𝑥   
 

𝜃1𝑤𝑖𝑑𝑡 ℎ _𝑚𝑎𝑥 = 360 ;  𝜃2𝑤𝑖𝑑𝑡 ℎ _𝑚𝑎𝑥 = 180 ;  

 

𝜃𝑤𝑖𝑑𝑡 ℎ _𝑚𝑖𝑛 =  𝜃Δwidth  
 

The equation (5) states that the full surface search will start 

at iteration equal to half of β after the first occurrence of 

no-improvement case. This means, randomized search of the 

entire surface is performed for β/2 iterations before the radius 

is reduced. This is to ensure that the algorithm searches 

thoroughly with a given radius limits even if the prediction of 

focused search fails. 

D. Analysis 

For analysis purpose, the weightages chosen for tuning 

PID for the plant (1) are 50% for Overshoot and 50% for 

Oscillation and initial condition is Kp = 12.95; Ki = 8.44; Kd 

= 31.07. The maximum number of iterations allowed to find 

the desired solution is 300. The parameters of the algorithm 

used for this model are shown in Table I. 
 

TABLE I: ALGORITHM PARAMETERS 

Parameter Value 

β 10 

α 3 

rLL_min 0.01 

rLL_max 10 

rwidth 10 

Search Space for Kp, Ki, Kd [0.01,10] 

 

 

Fig. 2. Search path traced before finding the desired solution. 

 

The following graphs are obtained when the algorithm is 

used with the above setting to tune PID for the plant (1). Fig. 

2 shows how the search progressed and the solution found is 

Kp = 10.99; Ki = 0.61; Kd = 19.32. Fig. 3, Fig. 4 and Fig. 5 

explains the adjustment of limits of radius and the angles of 

search (θ1, θ2) respectively. The red and blue markers in the 

plots denote upper and lower limits respectively and black 

markers denote the random selection of a value between 

those limits. 
 

 

Fig. 3. Step size limit adjustment. 

 

 

Fig. 4. θ1 Limit changes. 

 

 

Fig. 5. θ2 Limit changes. 

 

It is important to select α and β carefully because it 

determines the rate at which the step size increases and 

decreases respectively. A very low α will increase the step 

size unnecessarily and result in jumping over the peaks. A 

high value of α will result in a sluggish search. Let‟s assume 

that β is set to a very high value and the algorithm has reached 

close to the desired solution. In this case, the algorithm will 

waste too much time evaluating solutions in the region which 

is far away from the peak. 
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Conversely, if β is set to a very low value and the search 

direction is predicted incorrectly, this will result in a slow 

search since the step size will be reduced within a few 

iterations before exploring better candidate solutions. For 

better understanding, the impact of different α values is 

studied. Fig. 6 shows the average number of iterations 

required to find the solution for different α values. The 

optimum value is around 3. 

 

 
Fig. 6. Selection of Positive Trial Threshold. 

 

The effect of the focused search on the performance is 

studied and explained below. The comparison of total 

number of iterations needed to find the solution with and 

without focused search for 10 trials is shown in Table II. 

Considering 99% and above as the desired solution and 300 

as the maximum iteration limit, the probability of achieving 

the desired result with focused search is 1. The mean and 

standard deviation is 90.5 and 59.28 respectively. Meanwhile, 

the probability of achieving the desired result without 

focused search is 0.3. Although seven out of ten instances are 

unsuccessful in finding the desired solution, the mean is 

approximated as 272.7. It is clear that the focused search 

helps in converging to the desired solution faster since the 

average number of iterations is reduced and the probability is 

quite high for a given maximum iteration. The prediction 

works very well when the optimization function has a curve 

as specified in the previous section. Even though the search 

becomes faster, the standard deviation of 59.28 indicates that 

the search does not always follow the optimal path. The 

algorithm predicts the direction of optimal path and continues 

its search even when the prediction is wrong. 
 

TABLE II: SEARCH IMPROVEMENT 

Without Focused Search With Focused Search 

Best solution Iterations Best solution Iterations 

100 229 100 226 

82.20 300a 100 91 

85.21 300a 99.68 30 

85.34 300a 100 44 

85.11 300a 99.75 98 

85.00 300a 100 43 

95.93 300a 100 70 

100 119 100 142 

100 279 100 111 

82.21 300a 99.75 50 

Average 272.7 Average 90.5 

a. maximum iteration reached. 
 

To summarize the efficiency of the algorithm, the space 

requirement is low and constant since it does not keep track 

of the search path traced. The algorithm is not always 

complete as it gets stuck at local maxima/minima. It is also 

not optimal since it looks for first-best neighbor instead of 

finding the best of all neighbors. Theoretically, time 

complexity is O (∞). The time efficiency can be measured in 

terms of the time taken to reach the global 

maximum/minimum. So, the algorithm can be made 

complete and efficient only if the optimization function is 

chosen properly. In addition to this, the choice of α and β 

determines time efficiency. 

 

IV. PID TUNING OF FIXED WING AIRPLANE MODEL 

As stated earlier, a few experiments of PID tuning by 

Modified Hill Climbing (MHC) algorithms have been 

conducted. One such work where MHC is used for tuning 

PID for the plant model (2) is described in [11]. In this paper, 

the closed loop requirement is to have zero overshoot and 

settling time less than 25s with steady state tolerance band of 

± 0.01. The weights defined in the proposed algorithm are 50% 

for overshoot and 50% for settling time. The parameter 

values mentioned in Table I are also used for configuring the 

algorithm to solve this problem. The results of the experiment 

and performance analysis are tabulated in Table III and Table 

IV respectively. The experiments suggest that the 

optimization function for the plant (2) has more than one 

maximum. Like the traditional Hill Climbing, the proposed 

algorithm also yields different solutions when started with 

different initial values. The step responses of the closed loop 

system obtained with different PID solutions are shown in 

Fig. 7. Compared to the results shown in [11], the algorithm 

has shown better results and could find the following 

solutions within 300 iterations. 
 

TABLE III: PID GAINS 

Initial Values Final values Solution 

Kp Ki Kd Kp Ki Kd Name 

1 1 1 2.12 0.90 1.61 Solution 1 

5 5 5 6.92 2.09 3.45 Solution 2 

10 10 10 23.95 4.74 7.79 Solution 3 

 

 
Fig. 7. Closed loop responses with the PID tuned by the algorithm. 

 

TABLE IV: PID PERFORMANCE ANALYSIS 

Solution Name Overshoot (%) Settling Time (s) 

Solution 1 6.8 27.8 

Solution 2 4.8 25.5 

Solution 3 2.6 23.9 

V. CONCLUSION 

In this paper, traditional Hill Climbing algorithm is 
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modified by including a predictive logic which improves the 

search. The importance of formulating the optimization 

function for PID tuning is also explained. The 

implementation of the algorithm is described and 

experiments are conducted to demonstrate the effect of the 

important algorithm parameters. The algorithm is applied to 

tune PID which operates on fixed wing airplane model. The 

results suggest that the proposed algorithm is very effective 

when there are multiple real numbered variables to be tuned 

and the search space is very large. The algorithm is generic, 

hence, it can be applied to other similar problems like PID 

tuning. Although the algorithm is efficient, it has a drawback 

that it gets stuck at local maxima/minima like the traditional 

Hill Climbing algorithm. This drawback can be overcome by 

extending this algorithm to Iterative Predictive Hill Climbing 

where multiple searches are performed with randomly 

selected start points. 
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