
  

 

Abstract—Using key frames instead of video to train single 

image deep neural networks make sense as successive images of 

one video contain almost the same information. However, we 

show that using all images can significantly increase 

performances of deep networks on medium size datasets. 

Considering, that annotating video can be done much more 

efficiently than annotating disparate images, we argue that 

using complete videos should be considered where data are 

naturally collected this way which is often the case in robotic, 

autonomous driving, or aerial acquisitions. 

 
Index Terms—Deep learning, video, medium size dataset.  

 

I.   INTRODUCTION 

In robotic, video surveillance, autonomous driving or aerial 

acquisitions, collected data are naturally in form of video. 

Due to the large size of these data, it is natural to want to keep 

key frames only. Keeping key frames seems also interesting 

especially if the goal of the data is to train single image deep 

convolutionnal neural networks (CNN) because using all 

images is widely thought to not increase the performance of 

single image CNN. Indeed, successive images from a video 

are visually quite the same. As an example, CITYSCAPE, one 

of the largest autonomous driving datasets, provides only 

spaced images. 

However, we argue that using all images of video could be 

interesting. First, using the temporal consistency of the video 

allows to propagate the expensive human annotation needed 

for learning. So, for human annotation, using key images or 

all images of a video costs almost the same. Then, we show, in 

this paper, that using all images of all videos provides 

significant performance increases on several medium size 

datasets and for several deep networks. 

More precisely, to provide quantitative evaluation, we fix a 

use case. We focus on the relevancy of using all images of 

video datasets to train single image CNN for binary semantic 

segmentation. Semantic segmentation (see Fig. 1) aims to 

produce semantic mask of an image. In other words, it aims at 

deciding a semantic label for each pixel of an image. In our 

experiment, we will perform such segmentation task but with 

two classes only. However, binary segmentation should be 

considered as an example (we are planning to tackle other use 

cases like object detections). 

The contribution of this paper is to present an experimental 

protocol to evaluate the relevancy of video datasets in this 

context. 
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We apply state of the art deep learning pipelines which are 

designed to process single images: each mask is completely 

estimated using one image only (beside training images will 

be randomly shuffled even if training set will contain 

successive images from a common video).  

 

 
Fig. 1. Example of a semantic mask of an image. 

 

For this purpose, we select (or create) several datasets 

consisting of very different annotated videos. Then, we 

perform 4 kinds of experiments to measure the performance 

of CNN trained with different training datasets extracted from 

the video. For example, we measure the performance of 

segmentation pipelines while increasing the number of 

successive images used from each video. We also perform 

these experiments with 2 different deep learning pipelines: 

CNN as feature extractor with support vector margin (SVM) 

as classifier, and, classical CNN training. Currently, both 

pipelines require specific hardware. SVM based experiment 

needs large hard disk to store model file (2To here) but are 

possible on any modern GPU card. CNN experiments are 

more scalable but required latest and more expensive GPU 

(typically a Titan P). 

The structure of this paper is the following. In next section, 

we describe related works. Then, Sections III and IV describe 

experiments and performances: Section III for SVM based 

experiments and Section IV for CNN ones. Finally, Section V 

presents the conclusion and perspectives. 

 

II.    RELATED WORKS 

A.  Semantic Segmentation 

Semantic segmentation is a growing paradigm [1]. 

However, comparing to classification, detection or tracking, 

annotating is even more expensive in semantic segmentation. 

For applications linked with a large economic market, it is 

possible and relevant to collect and annotate very large 

datasets (CITYSCAPE is an example of large datasets 

designed for autonomous cars –  a market friendly 

application). However, the situation is very different for most 
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computer vision applications like medical images, aerial 

images, video surveillance or robotic applications. For 

example, the 2015 IEEE data fusion contest contains less than 

400 car instances which limits the stability of algorithm 

evaluation. 

Currently, most computer vision applications still deal with 

medium size datasets (at least for the annotated data). If we 

discard unsupervised algorithms which have not yet reached a 

sufficient efficiency, and algorithms which are able to learn 

from few data (which are at the opposite of current trends), 

there are only one possibility to increase performances for 

these applications: increase annotation productivity.  

B.  Semi Automatic Annotation 

As, annotating large annotated datasets is a very expensive 

human process, there are research to increase annotation 

productivity. It includes active learning where computer 

vision proposes best next thing to annotate [2], crow 

engineering [3] and, optimization of human time [4]. Crow 

engineering does not really increase productivity, it allows to 

share the work. However, by sharing the work, it introduces 

annotation errors, and thus, needs to use validation 

procedures to check annotation consistency between several 

user. 

Thus, crow engineering has made possible the creation of 

very large datasets but does not solve the human cost problem 

(it even worsen the problem by needing multi stage 

validation). So crow engineering does not seem to be the 

solution for medium budget computer vision applications. 

Optimization of the human time and active learning are 

relevant when sufficiently good algorithms are already 

available. [4] just moves from a sparse annotation to a dense 

annotation by using deep network trained on the same kind of 

datasets. Also, as learning algorithm are more and more 

complex, it is not trivial to perform an efficient online 

interactive semi automatic annotation system. To our 

knowledge, there is no widely used semi automatic annotation 

system whose efficiency has been successfully evaluated.  

C.  Video Annotation 

But, there exist a case where computer vision algorithm 

may provide a productivity gap for annotation: video. The 

interest of video is that information can be propagated (by 

tracking or optical flow [5]) from one frame to the next. This 

allows to save costly human annotation when the propagation 

behaves correctly. This propagation uses low level clue, 

which would not be sufficient if not helped by the temporal 

consistency. 

However, video datasets are not large in the same sense 

than image datasets: they are large but correlated. This is 

exactly why we focus on this paper on the question of the 

relevancy of training single image CNN from correlated 

images of one video i.e. even if two successive frames of a 

video are quite the same. 

For the purpose of experiments, we develop tracking based 

annotation tools. These tools are close to [3] but uses off the 

shelf trackers (e.g. opencv implementation of dsst tracker) to 

propagate annotations from one frame to the other. As we take 

binary semantic segmentation, this tracking tool is sufficient 

for propagating a coarse semantic map. With this tool, human 

correction is only needed when tracker fails to be sufficiently 

accurate.  

So to summarize, to apply semantic segmentation state of 

the art deep networks on medium budget applications (like 

most robotic applications), we need to find a way to increase 

the annotation productivity to produce larger datasets. One 

possible way is the use videos. But it raises the question of the 

relevancy of correlated data to train single image deep 

networks. In the next two sections, we show that deep 

networks indeed take advantage of these kind of correlated 

data: using more images than key frame images from videos 

provides significant performance increases. 

 

III. CNN+SVM ON VIDEO DATASETS 

A.  Datasets 

There is a lot of semantic segmentation datasets. But most 

of them (MSCOCO, IEEE data fusion contest, ...) are images 

datasets. They are thus irrelevant to focus on video datasets. 

Again, there exists very large datasets like  CITYSCAPE 

(which it is composed of 25000 HD frames pixelwise 

annotated into 30 semantic classes). 

However, this dataset has already been purged to keep only 

spaced image. So it can not be used to perform a successive vs 

spaced comparison.  

Thus, to tackle this paper issues, we rely on MOT 2016 

(MOT16) [6], VIRAT aerial dataset [7] (not video 

surveillance data - we use only the aerial videos). As no 

annotation has been released for VIRAT aerial, we annotate it 

ourselves using our annotation tools. 

MOT16 is a multi objects tracking dataset: detection are 

provided, the goal is to keep temporal id on the detection. 

Here, we use this dataset only to learn to produce a semantic 

mask corresponding to the detections (we only keep person 

detection). We convert the detection ground truth into a 

semantic segmentation ground truth by considering that all 

pixels in a detection are from class 1 and all pixels outside 

detections are from class -1. We do some experiment to check 

if applying graphcut to refine mask was relevant. Currently, 

we find it is not critical for deep learning. Thus, these 

experiment uses not refined masks. The training part of 

MOT16 is composed of 6 HD videos taken from a pedestrian 

or car or surveillance camera. For MOT16, we will use 

accuracy, gscore and iou score to evaluate all algorithms. 

Accuracy is the stablest measure as both gscore and iou have 

non linear behavior especially if the threshold between 

precision and recall is poorly adjusted. 

The VIRAT aerial dataset is a set of videos which are low 

resolution and contains camera motions, highly textured 

background and very small object. As no public annotation 

has been released for this dataset, we annotated a small subset 

of the data in a person detection setting (see 

https://github.com/achanhon/VIRAT-AERIAL-ANNOTATI

ON). We convert the ground truth in the same way than for 

MOT16. In order to provide a diversity of situations, we 

chose to annotate about thirty sub videos of 400 frames 

containing at least one person distributed over the dataset (but 

discarded infrared images). For VIRAT, we will use only 
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gscore and IoU score to evaluate all algorithms. Accuracy is 

not relevant as 99,2\% of the pixel are background pixel. 

B.  Global Pipeline 

In this section, we use a imagenet CNN to extract feature 

map for each training image. Then, we train SVM for 

semantic segmentation (see Fig. 2). 
 

 
Fig. 2. global pipeline for CNN+SVM experiments. 

 

We rely on VGG16 [8]: we forward each image into 

VGG16 (pretrained on imagenet), extract several layers 

(conv12, conv22, conv33, conv43 and pool5).  We resize all 

extracted layers to the ground truth size, obtaining a feature 

map in which each pixel is described per a vector. 

We learn a SVM with each pixel of the feature map being a 

training point. We allow the ground truth to be eventually 

smaller than the original image when spatial accuracy of the 

human annotation is not relevant enough. 

This leads to very very large SVM model: if we have n 

training images with ground truth size w’xh’, then the SVM 

see nxw'xh' points. With n=100, w'=320 and h’=240, there 

are yet 7680000 points for the SVM. Each point will have a 

dimension corresponding to the number of neurons in the 

extracted layers (typically if we use only pool5 it will be 512 

but if we merge several layers in a UNET [1] fashion this lead 

to much more large dimension). 

We learn a SVM with liblinear or liblinear block when we 

reach the RAM limit (8Go). We also learn a SVM with a 

simple stochastic gradient descent (SGD) for comparison. 

C.  Different Types of Experiments 

We perform 4 kinds of experiments to evaluate the impact 

of video datasets: 

 1 vs 20: we compare the performance of a CNN trained 

with 1 image per video with the same CNN trained with 20 

successive images per video 

 1by20 vs 400: we also compare the performance of a 

CNN trained with the images {0,20,40,...,380} of each 

videos with the same CNN trained with 400 successive 

images per video (notice that one can concatenate 

experiment 1 and 2 to get the evolution of the performance 

from 1 image per video to 400) 

 1x20 vs 20: we compare the performance of a CNN 

trained with 20 successive images per video with the same 

CNN trained with 20 randomly noised images computed 

from the image 1 - so the number of image is the same but 

in one hand it is real successive images and on the other 

hand randomly generated one 

 20x20 vs 400: Finally, we do the same with images 1 to 

400 versus 20 images generated from each image 

{0,20,40,...,380} 

Experiments of types 1vs20 and 1by20vs400 aim to 

measure the performance improvement while increasing the 

number of correlated images. 

The global idea of the synthetic experiments (1x20vs20 

and 20x20vs400) is to remove any possible size bias: both 

training data contain the same number of images. But, in one 

side, there are images generated from a small set by adding 

different Gaussian noise and on the other side this is just 20 

successive images. 

Subsection III.D will deal about the two first set of 

experiments, III.E will deal about the last two. In all 

experiment, the name of the setting is formed by the frame 

setting (e.g. 1 frame or 400 or 1by20) and the pipeline (e.g. 

liblinear or sgd). 

D.  Performances VS Frames Per Video 

Performances of CNN+SVM experiments of type 1 vs 20 

or 1by20 vs 400 are reported in Tables I, II, III and IV. 

 
TABLE I: 1 VS 20 FOR CNN+SVM ON MOT16 

setting accuracy iou gscore 

1 liblinear 90 33 29 
20 liblinear 91 36 31 
1 sgd 88 12 10 
20 sgd 89 38 30 

 
TABLE II: 1BY20 VS 400 FOR CNN+SVM ON MOT16 

setting accuracy iou gscore 

1by20 liblinear 87 40 34 
400 liblinear 89 45 39 
1by20 sgd 87 35 27 
400 sgd 89 48 33 

 

TABLE III: 1 VS 20 FOR CNN+SVM ON VIRAT 

setting iou gscore 

1 liblinear 17 8 
20 liblinear 12 6 
1 sgd 13 9 
20 sgd 11 6 

 
TABLE IV: 1BY20 VS 400 FOR CNN+SVM ON VIRAT 

setting iou gscore 

1by20 liblinear 12 4 
400 liblinear 20 10 
1by20 sgd 11 6 
400 sgd 21 9 

 

These results are interesting especially on MOT because 

performances exhibit clear trends. Thus, we can state that 

using video dataset significantly (even if not largely) 

increases performances from 1 to 20 and from 1 by 20 to 400. 

On VIRAT, scores largely increases between 1 to 400. 

However, performances decreases in 1vs20. However, scores 

on VIRAT are low especially the gscore. When checking this 

decrease, we find that it is due to a worse balance between 

positive and negative in 20 than in 1. However, we compute a 

biased accuracy (accuracy when removing easy negatives) 

and we find that this biased accuracy increases by more than 

3% from 1 to 20. So results on VIRAT are less clear but score 

still increase from 1 to 400. 

These experiments shows that, contrary to what could have 

been thought, using all the videos instead of key frames  can 

increase performance of single image deep learning pipeline 

(here for binary segmentation).  
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E.  Successive Images Versus Data Augmentation 

To implement experiments 1x20vs20 and 20x20vs400, we 

generate images by adding Gaussian noise to a real images. 

The variance of the noise is the same that the variance 

measured in the corresponding set of successive real images. 

Images generated are converted into 8 bits images to enter the 

CNN. As we want to make multiple runs of the training to 

average random noise effect, we perform this type of 

experiment with sgd only (and not with liblinear), because, 

the great advantage of sgd is that the noised images can be 

generated on the fly. However, we have see that sgd globally 

behaves like liblinear in Tables I-IV. 

The results of these experiments are clear: real images 

outperforms synthetic ones (we even observe no average 

increases of performance between using only the raw images 

vs using 20 noised version of the images). 

We acknowledge that other types of noise (or a noise not 

converted into 8 bits) could have been better, but still the 

result of this experiment show that the increase of 

performance observed in Tables I-IV is due to the use of 

successive images and is not trivial to obtain by another way. 

 

IV. CNN ON VIDEO DATASET 

A.  Global Pipeline 

In this section, we did a second time some of the 

experiments described in section III but in a straightforward 

deep learning fashion. 
 

 
Fig. 3. Global pipeline for CNN experiments. 

 

The networks are designed to directly produce an output 

with same shape as the ground truth. Back propagation is 

directly performed by computing the gradient corresponding 

to the loss between the ground truth and the network output 

(the loss is the average on all the pixels of the cross entropy - 

learning is done by stochastic gradient descent). 

Training is done with NVIDIA DIGITS tools (we work on 

random crop of size 256x256 at training time). We evaluated 

different state of the art networks: VGG [8] (the same as the 

svm experiment) and UNET [1], and a deeper UNET (we add 

a level to the UNET structure). All tested networks are based 

on VGG and are finetuned from VGG weight on imagenet.   

In order to strengthen the interest for video, we constraint 

the training to have close durations. Typically, even if we use 

400 images instead of 1 from each video, we do not let the 

training to run 400 more times. More precisely, we divide the 

number of epochs by 4 when scaling by 20 the number of 

frames. No training takes more than a week.  

B.  Results 

Finetuning experiments scale linearly with the data 

(compare to SVM which is super linear) but these 

experiments lock expensive (and thus shared) GPU hardware. 

So, it was not easy for us to replicate all SVM experiments. 

Instead, we evaluate the increase of performances while 

increasing the number of successive images between 1, 20 and 

400 which correspond to a partial mix of experiments 1 vs 20 

and 1by20 vs 400. Available results are presented in Tables V 

and VI. 
 

TABLE V: CNN ON MOT16 

setting accuracy iou gscore 

1 vgg 84 8 3 
20 vgg 85 13 6 
1 unet 88 9 6 
20 unet 88 12 8 
400 unet 83 17 11 
1 deep unet 87 0 0 
20 deep unet 89 20 16 
400 deep unet 91 31 35 

 
TABLE VI: CNN ON VIRAT 

setting iou gscore 

20 vgg 0 0 
1 deep unet 11 9 
400 deep unet 22 21 

 

These results are globally similar to the ones of Tables I, II, 

III and IV. 

Finetuning reaches comparable performance than 

CNN+SVM in the 400 images setting but not on all setting 

despite that CNN+SVM corresponds to a finetuning of the 

last layer only. 

However, the most important point, in our opinion, is that 

these experiments confirm the trend observed in SVM ones: 

performance tends to largely increase when increasing the 

number of successive images used from the videos. This is 

especially clear for 1 DEEP UNET to 400 DEEP UNET on 

VIRAT with a gscore who jumps from 9\% to 21\%. This is 

also especially clear for deep UNET on MOT who jumps 

from 0\% to 31\% of gscore when using 400 images instead of 

1 per video.Again, training times have not been allowed to 

increase by 400 even when data have 

 

V.    CONCLUSION 

This paper focuses on successive images of video datasets 

for single image semantic segmentation. The question is about 

the relevancy of using video on which temporal information 

can be used to help human annotation to train single image 

semantic segmentation pipeline (especially deep learning 

ones). In our experiments, using these successive images of 

video increases performance of the pipelines whereas using 

data augmentation (to form a dataset with the exact same size) 

does not. 

Of course, using uncorrelated images would be more 

efficient. But as using video is still useful, we argue that this 

should be considered when data are naturally collected as 

video. Because annotating video can be done efficiently, this 

could provide a nearly free increase of performances (free for 

human annotation time). 

Seeing our contribution, we hope that people who plan to 

form datasets from video compatible devices will, at least, 

consider the possibility to keep all available data - both for 
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video pipelines but also for single image ones. 
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