

Abstract—Grammar-based Classifier System (GCS) is one of

the evolutionary approached context-free grammar induction

methods. Any learning process creates a large amount of data,

which is hard to analyze in a raw form. In the present paper we

aim to present a reporting tool, created to facilitate analysis and

conclusion drawing by presenting learning data in a neat and

readable form, yet fully conveying its complexity.

Index Terms—Context–free grammars, data visualization,

grammatical inference.

I. INTRODUCTION

Grammatical inference is an intensively studied area of

research that sits at the intersection of several fields including

finite state machines, formal grammars, machine learning,

language processing and the learnability theory. Many

problems of grammar inference are important in theory, and

most of them belong to the class NP-hard.

Let G = (Σ,V,P,s) be a context-free grammar (CFG), where

Σ is a finite set of terminal symbols, V∩Σ =∅, V is a finite set

of non-terminal symbols, P is a finite set of production rules,

P ⊂ V×(Σ∪V)∗, and s ∈ V is a start symbol. Production rules

of a context-free grammar are usually written in the form:

A → α, where A ∈ V and α ∈ (Σ∪V)∗. Let L(G) denote the set

of strings (the string language) generated by G over the

alphabet Σ, for which there exists a derivation s ⇒∗x using

rules in P, where x∈ Σ∗. The time complexity to recognize

whether a certain sentence (string) belongs to a given

context-free language L(G) is O(n
3
), where n is the length of a

sentence.

Due to large complexity of generating the set P of

production rules, the induction of a context-free grammar G,

regardless of the learning model used (identification in the

limit, PAC, MDL, etc.), is computationally complex. The

literature implicitly indicates that G is not learnable in

polynomial time [1]. One approach to deal with this difficulty

is to use methods of machine learning.

II. GRAMMAR-BASED CLASSIFIER SYSTEM

Learning Classifier System (LCS) [2], which combines two

biological metaphors - evolution and learning - is part of this

area. It develops a set of classifiers in a form of

Manuscript received July 15, 2017; revised November 10, 2017. This

work was supported by National Science Center, grant

2016/21/B/ST6/02158.

The authors are with the Department of Computer Engineering, Wrocław

University of Science and Technology, Wrocław, Poland (e-mail:

olgierd.unold@pwr.edu.pl, agnieszka.kaczmarek@pwr.edu.pl,

lukasz.culer@pwr.edu.pl)

condition-action rules adapted to a set of positive and

negative input examples.

Grammar-based Classifier System, introduced in 2005 [3],

derives from LCS, implementing a new representation of

classifiers population, the scheme of classifiers’ matching the

environmental state and the methods of exploring new

classifiers.

Classifiers population in GCS systems has a form of

context-free grammar rules set in Chomsky Normal Form

(CNF) [4]. Chomsky Normal Form allows only production

rules in the form of A→α or A→BC, where A, B, C are

non-terminal symbols and α is a terminal symbol. Each

classifier is described by the fitness which shows overall

classifier adaptation to the environment. There are two

constituent elements of fitness:

 Classic fitness function - calculated only on the basis of

classifier usages in positive examples parsing.

 Fertility fitness function – which takes into consideration

also the position of the classifier in a parsing tree.

The core of the system is CYK (Cocke–Younger–Kasami)

parser [5], which enables checking whether the set of rules

can parse the input example. CYK array stores a complete

history of sentence’s parsing, which in turn can be used to

give awards to the rules which parse positive examples.

One of the methods used to create new classifiers is a

genetic algorithm. It is launched with a given probability once

the analysis of the train set ends. It can be applied only to

non-terminal rules. The following genetic operators are

available:

 Mutation - the symbol in any position can be changed to

another non-terminal symbol with a pre-defined

probability.

 Crossover - two classifiers exchange their left sides and

random symbols from their right sides.

 Inversion - a permutation of the symbols located on the

right side of the rule.

The algorithm is able to use multiple methods of rule

selection, such as a roulette-wheel or a random selection.

The second rule-creating method, covering, works during

train set analysis and regardless of genetic algorithm. It adds

productions that allow continuation of parsing in the current

state of the system. There are different types of covering for

different types of rules:

 Start covering - creates a rule deriving a terminal symbol

from the starting symbol s.

 Terminal covering – a rule producing terminal symbol

using any non-terminal symbol, created when the system

finds unknown terminal symbol during example parsing.

 Aggressive covering - a production rule in the form of C →

AB is created if symbols A and B can be derived.

Visual Report Generation Tool for Grammar-Based

Classifier System

Olgierd Unold, Agnieszka Kaczmarek, and Łukasz Culer

International Journal of Machine Learning and Computing, Vol. 7, No. 6, December 2017

176doi: 10.18178/ijmlc.2017.7.6.642

mailto:olgierd.unold@pwr.edu.pl
mailto:agnieszka.kaczmarek@pwr.edu.pl

 Full covering – aggressive covering modification used to

generate a rule with the start symbol on the left side.

For both methods the crowding technique is used in order

to maintain diversity in the population.

All the above mentioned elements lead to the induction of

final grammar, which shall accept the correct sentences, reject

the incorrect ones, and is able to generalize the knowledge in

order to classify new sentences correctly.

The GCS systems modification was widely described in the

previous works [6], [7].

III. REPORTING TOOL

As previously mentioned, the goal of this project was to

create a tool that presents the collected data in a clear and

elegant way. Moreover, generated reports should be easy to

share and open with popular software. In order to achieve this

goal and design a tool that meets the established assumptions,

we decided to implement it using web technologies, like

HTML5 and JavaScript. This solution allows our reports to be

displayed using a regular web browser.

A. Data flow

Two types of data used for generating report are collected

using a plug-in integrated into GCS.

The first type, real-time measurements, are gathered

throughout the whole learning process in each iteration. They

contain information about each individual that occurred in a

given step as well as operations applied to it - starting from

age, fitness, usages in proper and invalid parsing, and profit

and debt points like in final grammar, to the information if

they were removed (with the information about removal

reason), added (with the information about its creation

process) or retained from the previous iteration. Each

iteration contains also information about the results obtained

at its end - a table of confusion and other measures, with every

example’s evaluation.

The second type of measurements is taken at the end. The

core feature is the final grammar which contains information

about all obtained rules and symbols. The rules are described

with identical parameters as during the learning process. It

also contains a results summary - a table of confusion and

some basic classification statistical measures - sensitivity,

specificity, precision, F1, and fitness. The last included

feature is a set of examples and their evaluation.

The final step of the simulation is creating the report with

the collected data.

B. Report structure

The whole report is divided into seven separate tabs, each

containing differently visualized data. Each tab is described

by one of two possible kinds of labels. One label, Learning,

denotes tabs with information about learning the process.

Those labeled as Grammar describe only the final grammar.

Results evaluation is the first possible tab, which contains

the information about the evolution of basic measures (fitness,

sensitivity and specificity) during the entire simulation. They

are visualized using an interactive chart. It is possible to resize

it, exposing the demanded parts of the simulation.

The Grammar evolution tab contains the largest amount of

significant data. It is the main tool for learning process

analysis. It collects the information about the system state in

each step. In the top part, the key explanation of the applied

symbols is placed. The bottom part is filled with a horizontal,

scrollable panel, with separate sections for each iteration.

Each iteration is divided into four parts - first, denoted with a

“+” sign, contains rules that were added (and remained) in

grammar during a given iteration. Each added rule contains

the information about the process that led to its creation on its

left side, and its possible parents or children. The second

section is labeled with “0” sign - in this section rules that

retain from the previous iteration occur. They do not have

special symbols besides the ones reserved for those which

were parent rules for the genetic algorithm. The third section

is marked by “-” sign. It contains rules which were removed

during iteration. The reason for their removal is on their right

side. What is important, a rule that was added or used as a

parent in the genetic algorithm can also occur in this section.

It means that it was removed at the later part of the iteration.

All of the rules in the abovementioned sections show

additional information about them while keeping the mouse

cursor over them. That information contains a given rule’s age,

fitness, usages in proper and invalid parsing, profit and debt

points. All of the rules in the first section are marked with blue

color and are of the same size, however the rules in last two

sections differ in color and size. Bigger rules have greater

fitness value than the smaller ones. Rules age is also

distinguished - rules with brighter green color are younger

than the darker rules. Additionally, they are sorted by their

fitness. The last section contains test set examples. Positive

ones are denoted with tick symbol and the negative ones with

the cross symbol. The examples differ with their background

color - green means that a particular example was correctly

classified in this iteration and the red one means that it was not

so.

The Rules lifespan tab includes information about rules

lifespan by placing bars on a timeline. The bars for each rule

span between the rule’s creation and its annihilation. Each

rule can have multiple bars because it can appear in the

grammar many times throughout the simulation.

The Results tab includes the results obtained with the final

grammar. The first part contains values of basic measures and

the second one - the table of confusion.

The Examples evaluation tab covers the result of learning

set classification performed using the final grammar. The

examples are visualized exactly like on the Grammar

evolution tab.

The Final Grammar tab allows for analyzing the rules

which were retained to the final grammar. These rules are

represented in the same way as in the Grammar evolution tab.

IV. EXAMPLE OF USAGE

As previously mentioned, in the given chapter we would

like to present one of exemplary test reports, which resulted in

some valuable insight and initiated the modification of

covering approach. The test was performed using a

context-free language {ac
m
 | m≥1} ∪ {bc

m
 | m≥1} over Σ = {a,

b, c} [8] and standard parameters.

International Journal of Machine Learning and Computing, Vol. 7, No. 6, December 2017

177

The analysis started with the Results evaluation tab. It

helped to notice quickly that the collected main performance

features repeat in a certain pattern (Fig. 1).

Fig. 1. Main measures evolution over time.

Fitness is presented using blue color, sensitivity and

specificity with yellow and green respectively. All of those

measures accept values from 0 to 1. Performance depends on

the rules contained in the grammar in a given iteration, which

were collected in the Grammar evolution tab.

Fig. 2. Grammar rule-set evolution over time.

Fig. 2 represents part of the exemplary tab. It is titled with

iteration number. Each part is divided into added (+),

remained (0) and removed (-) sections. All the symbols

contained in this tab are described in Fig. 3.

Fig. 3. Details of a specific rule.

The star mark denotes rules added with covering (Fig. 4),

the thunder and the crossed arrows application of the genetic

algorithm – mutation (mutated symbols with red color) and

crossover (exchanged symbols with red color).

Fig. 4. Rule added with covering.

P1 and P2 are parents for the genetic algorithm in this

iteration, and C1, C2 are their children (Fig. 5).

Fig. 5. Example of genetic algorithm children, with mutation and crossover

operators applied.

The rules removed using delock algorithm are marked with

the crosshair symbol. Crowding uses the face-turned arrows

as a symbol (Fig. 6).

Fig. 6. Rules removed using crowning technique.

The rules in the Remained section are marked with

different shades of green, depending on their age (the light

green rules are the youngest). The rules also vary in size –

those with higher fitness value are bigger. The detailed data

about iterations show that in every second iteration one of the

rules is removed, and then, in the next step, added again. It is

removed because the delock algorithm selects to remove only

those rules which have invalid usages, and in such case, there

is only one considered rule. Each iteration rule details can be

easily displayed by placing a mouse cursor over it. It shows

information about current rule’s features – fitness, proper

usages, invalid usages, profit, debt and age (Fig. 7).

Fig. 7. Details of a specific rule.

However, in the next iteration, GCS tried to parse positive

examples that had been first classified as negatives. In order

to do that, a covering algorithm was called, and adding the

same rule was the only option. This pattern, repeated until a

rule added with the genetic algorithm interrupted it, blocked

and slowed down the learning process. What is worse, in

some other cases it could even make learning impossible. The

simulation ended without obtaining maximal performance.

The results were presented in the Results tab (Fig. 8).

The analysis of this report revealed the need for making the

system more aware of learning process history. Adjusting

simulation parameters during learning process using collected

history features could improve the performance of learning

algorithm when a similar problem would occur.

International Journal of Machine Learning and Computing, Vol. 7, No. 6, December 2017

178

The sample report is available online at

http://lukasz.culer.staff.iiar.pwr.edu.pl/reports/ex1.html.

Fig. 8. Final induction results.

V. APPLICATIONS

The presented tool lays a solid foundation for applications

in learning process analysis. A few of them are described

below:

1) Comparing algorithm work with different parameters -

visualization of main measures and legible representation

of rules for each iteration makes it accessible. Comparing

simulations with different parameters allows us to find

those, whose desired parameters (like fitness, ability to

generalize, learning speed) could be optimized.

2) Issues with learning stability – they could be detected

with ease, only with basic measure change or a number of

added or removed rules observation. It could also be

checked statistically when comparing to numerous other

simulations.

3) Adjusting the number of symbols and rules in a

simulation - due to the information about the usages of a

given rule in every iteration, it is possible to detect the

situations when a number of symbols or rules are not

adjusted. For instance, removing a crucial rule while

adding a new one for parsing may suggest that the

learning algorithm cannot fit into a given rule limits.

4) Significance of rules in grammar and identity check – the

final grammar and created structures analysis could find

those essential for algorithm performance. The rules and

structures repeating throughout multiple learning cycles

could be detected. Comparing them along many

simulations allows us to eliminate the redundant ones and

helps to verify their identity.

5) New operators benchmarking – the grammar evolution

tab creates a template where new operators can be easily

added with desired parameters, without creating any new

reporting unit. The premade template reduces the time

needed to implement and test new operators and features.

VI. CONCLUSIONS

The reports generated with the created visualization tool

proved to be helpful in making insights essential for

improving GCS performance. They allow to compile and

analyze data in ways that would be noticeably more

problematic in other situations. Substantial data presented in a

clear way promises even more future conclusions drawn from

developed visualizations.

VII. FUTURE WORK

One of currently developed features is the final grammar

visualization with the interactive graph that shows the

relations between symbols and rules. The start symbol is

highlighted with a red triangle symbol in the background. The

terminal symbols are marked with blue squares in the

background, while non-terminal - with a black ellipse.

Terminal rule relation is expressed using the blue line.

Non-terminal rules are visualized using the black and red lines.

The black line leads to the first symbol on the right side of the

rule, and the red one - to the second symbol of rule’s right side

(Fig. 9).

Fig. 9. Final grammar interactive graph – work in progress.

This feature will allow for representing grammar structure

in a way which is clear and accessible for analysis. Graphic

representation will make identifying structures easier, as well

as comparing complexity of two grammars from different

learning cycles.

Another extension that is planned to be added in the future

is an interactive CYK parsing table for each example in every

iteration. The CYK table, instead of presenting only one of

parsing trees, will enable to us to analyze the parsing process

of certain examples more deeply. It will be simpler to detect

structures which are more durable (due to the existence of

many equivalent parsing sub-trees) or those more fragile (due

to the availability of only one sub-tree, or the fact that it was

built using low fitness rules).

 Each property (the fitness of rules that build up parsing trees,

the number of alternative sub-trees) will be visualized with

colors and different types of lines. The new feature will allow

us to easily compare approaches to parsing given examples.

REFERENCES

[1] C. De la Higuera, Grammatical Inference: Learning Automata and

Grammars, Cambridge University Press, 2010.

[2] J. Holland, "Escaping brittleness: The possibilities of general-purpose

learning algorithms applied to parallel rule-based systems," in Machine

Learning, an Artificial Intelligence Approach, R. S. Michalski et al.,

Eds., Morgan Kaufmann, San Francisco, vol. II, pp. 593–623, 1986.

[3] O. Unold, "Context-free grammar induction with grammar-based

classifier system," Archives of Control Science 15, pp. 681–690, 2005.

International Journal of Machine Learning and Computing, Vol. 7, No. 6, December 2017

179

[4] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory,

Languages, and Computation, Addison-Wesley Publishing Company,

1st edition, 1979.

[5] D. Younger, "Recognition and parsing of context-free languages in

time n3," University of Hawaii Technical Report, Department of

Computer Science, 1967.

[6] O. Unold and L. Cielecki, "Grammar-based Classifier system," in

Issues in Intelligent Systems: Paradigms, O. Hryniewicz et al., Eds.,

Warsaw: EXIT Publishing House, 2005, pp. 273-286.

[7] O. Unold, "Playing a toy-grammar with GCS," in Proc. International

Work-Conference on the Interplay Between Natural and Artificial

Computation, Berlin: Springer, 2005, pp. 300-309.

[8] Y. Sakakibara and M. Kondo, "GA-based learning of context-free

grammars using tabular representations," ICML, pp. 354-360, 1999.

Olgierd Unold is an associate professor in the

Department of Computer Engineering of the Wrocław

University of Science and Technology. He received an

MSc degree in automation systems in 1989, an MSc

degree in information science in 1991, and PhD and

DSc degrees in computer science in 1994 and 2011,

respectively. His research interests focus on adaptive

machine learning methods.

Agnieszka Kaczmarek is a Ph.D. student in the

Department of Computer Engineering of the Wrocław

University of Science and Technology. She received

her Master’s Degree in 2014. Her main research

interests are artificial intelligence and bioinformatics.

Łukasz Culer is a Ph.D. student in the Department of

Computer Engineering of the Wrocław University of

Science and Technology. He received his Master’s

Degree in 2014. His scientific interests include

machine learning and image processing.

International Journal of Machine Learning and Computing, Vol. 7, No. 6, December 2017

180

