
  

 

Abstract—Grammar-based Classifier System (GCS) is one of 

the evolutionary approached context-free grammar induction 

methods. Any learning process creates a large amount of data, 

which is hard to analyze in a raw form. In the present paper we 

aim to present a reporting tool, created to facilitate analysis and 

conclusion drawing by presenting learning data in a neat and 

readable form, yet fully conveying its complexity. 

 
Index Terms—Context–free grammars, data visualization, 

grammatical inference.  

 

I. INTRODUCTION 

Grammatical inference is an intensively studied area of 

research that sits at the intersection of several fields including 

finite state machines, formal grammars, machine learning, 

language processing and the learnability theory. Many 

problems of grammar inference are important in theory, and 

most of them belong to the class NP-hard.  

Let G = (Σ,V,P,s) be a context-free grammar (CFG), where 

Σ is a finite set of terminal symbols, V∩Σ =∅, V is a finite set 

of non-terminal symbols, P is a finite set of production rules, 

P ⊂ V×(Σ∪V)∗, and s ∈ V is a start symbol. Production rules 

of a context-free grammar are usually written in the form:  

A → α, where A ∈ V and α ∈ (Σ∪V)∗. Let L(G) denote the set 

of strings (the string language) generated by G over the 

alphabet Σ, for which there exists a derivation s ⇒∗x using 

rules in P, where x∈ Σ∗. The time complexity to recognize 

whether a certain sentence (string) belongs to a given 

context-free language L(G) is O(n
3
), where n is the length of a 

sentence.  

Due to large complexity of generating the set P of 

production rules, the induction of a context-free grammar G, 

regardless of the learning model used (identification in the 

limit, PAC, MDL, etc.), is computationally complex. The 

literature implicitly indicates that G is not learnable in 

polynomial time [1]. One approach to deal with this difficulty 

is to use methods of machine learning. 

 

II. GRAMMAR-BASED CLASSIFIER SYSTEM 

Learning Classifier System (LCS) [2], which combines two 

biological metaphors - evolution and learning - is part of this 

area. It develops a set of classifiers in a form of 
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condition-action rules adapted to a set of positive and 

negative input examples.  

Grammar-based Classifier System, introduced in 2005 [3], 

derives from LCS, implementing a new representation of 

classifiers population, the scheme of classifiers’ matching the 

environmental state and the methods of exploring new 

classifiers.  

Classifiers population in GCS systems has a form of 

context-free grammar rules set in Chomsky Normal Form 

(CNF) [4]. Chomsky Normal Form allows only production 

rules in the form of A→α or A→BC, where A, B, C are 

non-terminal symbols and α is a terminal symbol. Each 

classifier is described by the fitness which shows overall 

classifier adaptation to the environment. There are two 

constituent elements of fitness: 

 Classic fitness function - calculated only on the basis of 

classifier usages in positive examples parsing. 

 Fertility fitness function – which takes into consideration 

also the position of the classifier in a parsing tree. 

The core of the system is CYK (Cocke–Younger–Kasami) 

parser [5], which enables checking whether the set of  rules 

can parse the input example. CYK array stores a complete 

history of sentence’s parsing, which in turn can be used to 

give awards to the rules which parse positive examples. 

One of the methods used to create new classifiers is a 

genetic algorithm. It is launched with a given probability once 

the analysis of the train set ends. It can be applied only to 

non-terminal rules. The following genetic operators are 

available: 

 Mutation - the symbol in any position can be changed to 

another non-terminal symbol with a  pre-defined 

probability. 

 Crossover - two classifiers exchange their left sides and 

random symbols from their right sides. 

 Inversion - a permutation of the symbols located on the 

right side of the rule. 

The algorithm is able to use multiple methods of rule 

selection, such as a roulette-wheel or a random selection. 

The second rule-creating method, covering, works during 

train set analysis and regardless of genetic algorithm. It adds 

productions that allow continuation of parsing in the current 

state of the system. There are different types of covering for 

different types of rules:  

 Start covering - creates a rule deriving a terminal symbol 

from the starting symbol s. 

 Terminal covering – a rule producing terminal symbol 

using any non-terminal symbol, created when the system 

finds unknown terminal symbol during example parsing.  

 Aggressive covering - a production rule in the form of C → 

AB is created if symbols A and B can be derived. 
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 Full covering – aggressive covering modification used to 

generate a rule with the start symbol on the left side.  

For both methods the crowding technique is used in order 

to maintain diversity in the population. 

All the above mentioned elements lead to the induction of 

final grammar, which shall accept the correct sentences, reject 

the incorrect ones, and is able to generalize the knowledge in 

order to classify new sentences correctly. 

The GCS systems modification was widely described in the 

previous works [6], [7]. 

 

III. REPORTING TOOL 

As previously mentioned, the goal of this project was to 

create a tool that presents the collected data in a clear and 

elegant way. Moreover, generated reports should be easy to 

share and open with popular software. In order to achieve this 

goal and design a tool that meets the established assumptions, 

we decided to implement it using web technologies, like 

HTML5 and JavaScript. This solution allows our reports to be 

displayed using a regular web browser. 

A. Data flow 

Two types of data used for generating report are collected 

using a plug-in integrated into GCS.  

The first type, real-time measurements, are gathered 

throughout the whole learning process in each iteration. They 

contain information about each individual that occurred in a 

given step as well as operations applied to it - starting from 

age, fitness, usages in proper and invalid parsing, and profit 

and debt points like in final grammar, to the information if 

they were removed (with the information about removal 

reason), added (with the information about its creation 

process) or retained from the previous iteration. Each 

iteration contains also information about the results obtained 

at its end - a table of confusion and other measures, with every 

example’s evaluation. 

The second type of measurements is taken at the end. The 

core feature is the final grammar which contains information 

about all obtained rules and symbols. The rules are described 

with identical parameters as during the learning process. It 

also contains a results summary - a table of confusion and 

some basic classification statistical measures - sensitivity, 

specificity, precision, F1, and fitness. The last included 

feature is a set of examples and their evaluation. 

The final step of the simulation is creating the report with 

the collected data. 

B. Report structure 

The whole report is divided into seven separate tabs, each 

containing differently visualized data. Each tab is described 

by one of two possible kinds of labels. One label, Learning, 

denotes tabs with information about learning the process. 

Those labeled as Grammar describe only the final grammar. 

Results evaluation is the first possible tab, which contains 

the information about the evolution of basic measures (fitness, 

sensitivity and specificity) during the entire simulation. They 

are visualized using an interactive chart. It is possible to resize 

it, exposing the demanded parts of the simulation. 

The Grammar evolution tab contains the largest amount of 

significant data. It is the main tool for learning process 

analysis. It collects the information about the system state in 

each step. In the top part, the key explanation of the applied 

symbols is placed. The bottom part is filled with a horizontal, 

scrollable panel, with separate sections for each iteration. 

Each iteration is divided into four parts - first, denoted with a 

“+” sign, contains rules that were added (and remained) in 

grammar during a  given iteration. Each added rule contains 

the information about the process that led to its creation on its 

left side, and its possible parents or children. The second 

section is labeled with “0” sign - in this section rules that 

retain from the previous iteration occur. They do not have 

special symbols besides the ones reserved for those which 

were parent rules for the genetic algorithm. The third section 

is marked by “-” sign. It contains rules which were removed 

during iteration. The reason for their removal is on their right 

side. What is important, a rule that was added or used as a 

parent in the genetic algorithm can also occur in this section. 

It means that it was removed at the later part of the iteration. 

All of the rules in the abovementioned sections show 

additional information about them while keeping the mouse 

cursor over them. That information contains a given rule’s age, 

fitness, usages in proper and invalid parsing, profit and debt 

points. All of the rules in the first section are marked with blue 

color and are of the same size, however the rules in last two 

sections differ in color and size. Bigger rules have greater 

fitness value than the smaller ones. Rules age is also 

distinguished - rules with brighter green color are younger 

than the darker rules. Additionally, they are sorted by their 

fitness. The last section contains test set examples. Positive 

ones are denoted with tick symbol and the negative ones with 

the cross symbol. The examples differ with their background 

color - green means that a particular example was correctly 

classified in this iteration and the red one means that it was not 

so. 

The Rules lifespan tab includes information about rules 

lifespan by placing bars on a timeline. The bars for each rule 

span between the rule’s creation and its annihilation. Each 

rule can have multiple bars because it can appear in the 

grammar many times throughout the simulation.  

The Results tab includes the results obtained with the final 

grammar. The first part contains values of basic measures and 

the second one - the table of confusion. 

The Examples evaluation tab covers the  result of learning 

set classification performed using the final grammar. The 

examples are visualized exactly like on the Grammar 

evolution tab. 

The Final Grammar tab allows for analyzing the rules 

which were retained to the final grammar. These rules are 

represented in the same way as  in the Grammar evolution tab.  

 

IV. EXAMPLE OF USAGE 

As previously mentioned, in the given chapter we would 

like to present one of exemplary test reports, which resulted in 

some valuable insight and initiated the modification of 

covering approach. The test was performed using a 

context-free language {ac
m
 | m≥1} ∪ {bc

m
 | m≥1} over Σ = {a, 

b, c} [8] and standard parameters. 
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The analysis started with the Results evaluation tab. It 

helped to notice quickly that the collected main performance 

features repeat in a certain pattern (Fig. 1). 
 

 
Fig. 1. Main measures evolution over time. 

 

Fitness is presented using blue color, sensitivity and 

specificity with yellow and green respectively. All of those 

measures accept values from 0 to 1. Performance depends on 

the rules contained in the grammar in a given iteration, which 

were collected in the Grammar evolution tab. 

 

 
Fig. 2. Grammar rule-set evolution over time. 

 

Fig. 2 represents part of the exemplary tab. It is titled with 

iteration number. Each part is divided into added (+), 

remained (0) and removed (-) sections. All the symbols 

contained in this tab are described in Fig. 3. 
 

 
Fig. 3. Details of a specific rule. 

 

The star mark denotes rules added with covering (Fig. 4), 

the thunder and the crossed arrows application of the genetic 

algorithm – mutation (mutated symbols with red color) and 

crossover (exchanged symbols with red color). 

 
Fig. 4. Rule added with covering. 

 

P1 and P2 are parents for the genetic algorithm in this 

iteration, and C1, C2 are their children (Fig. 5). 

 

 
Fig. 5. Example of genetic algorithm children, with mutation and crossover 

operators applied. 

 

The rules removed using delock algorithm are marked with 

the crosshair symbol. Crowding uses the face-turned arrows 

as a symbol (Fig. 6). 

 

 
Fig. 6. Rules removed using crowning technique. 

 

The rules in the Remained section are marked with 

different shades of green, depending on their age (the light 

green rules are the youngest). The rules also vary in size – 

those with higher fitness value are bigger. The detailed data 

about iterations show that in every second iteration one of the 

rules is removed, and then, in the next step, added again. It is 

removed because the delock algorithm selects to remove only 

those rules which have invalid usages, and in such case, there 

is only one considered rule. Each iteration rule details can be 

easily displayed by placing a mouse cursor over it. It shows 

information about current rule’s features – fitness, proper 

usages, invalid usages, profit, debt and age (Fig. 7). 

 

 
Fig. 7. Details of a specific rule. 

 

However, in the next iteration, GCS tried to parse positive 

examples that had been first classified as negatives. In order 

to do that, a covering algorithm was called, and adding the 

same rule was the only option. This pattern, repeated until a 

rule added with the genetic algorithm interrupted it, blocked 

and slowed down the learning process. What is worse, in 

some other cases it could even make learning impossible. The 

simulation ended without obtaining maximal performance. 

The results were presented in the Results tab (Fig. 8). 

The analysis of this report revealed the need for making the 

system more aware of learning process history. Adjusting 

simulation parameters during learning process using collected 

history features could improve the performance of learning 

algorithm when a similar problem would occur. 

International Journal of Machine Learning and Computing, Vol. 7, No. 6, December 2017

178



  

The sample report is available online at 

http://lukasz.culer.staff.iiar.pwr.edu.pl/reports/ex1.html. 

 

 
Fig. 8. Final induction results. 

 

V. APPLICATIONS 

The presented tool lays a solid foundation for applications 

in learning process analysis. A few of them are described 

below: 

1) Comparing algorithm work with different parameters - 

visualization of main measures and legible representation 

of rules for each iteration makes it accessible. Comparing 

simulations with different parameters allows us to find 

those, whose desired parameters (like fitness, ability to 

generalize, learning speed) could be optimized. 

2) Issues with learning stability – they could be detected 

with ease, only with basic measure change or a number of 

added or removed rules observation. It could also be 

checked statistically when comparing to numerous other 

simulations. 

3) Adjusting the number of symbols and rules in a 

simulation - due to the information about the usages of a 

given rule in every iteration, it is possible to detect the 

situations when a number of symbols or rules are not 

adjusted. For instance, removing a crucial rule while 

adding a new one for parsing may suggest that the 

learning algorithm cannot fit into a  given rule limits. 

4) Significance of rules in grammar and identity check – the 

final grammar and created structures analysis could find 

those essential for algorithm performance. The rules and 

structures repeating throughout multiple learning cycles 

could be detected. Comparing them along many 

simulations allows us to eliminate the redundant ones and 

helps to verify their identity. 

5) New operators benchmarking – the grammar evolution 

tab creates a template where new operators can be easily 

added with desired parameters, without creating any new 

reporting unit. The premade template reduces the time 

needed to implement and test new operators and features. 

VI. CONCLUSIONS 

The reports generated with the created visualization tool 

proved to be helpful in making insights essential for 

improving GCS performance. They allow to compile and 

analyze data in ways that would be noticeably more 

problematic in other situations. Substantial data presented in a 

clear way promises even more future conclusions drawn from 

developed visualizations. 

 

VII. FUTURE WORK 

One of currently developed features is the final grammar 

visualization with the interactive graph that shows the 

relations between symbols and rules. The start symbol is 

highlighted with a red triangle symbol in the background. The 

terminal symbols are marked with blue squares in the 

background, while non-terminal - with a black ellipse. 

Terminal rule relation is expressed using the blue line. 

Non-terminal rules are visualized using the black and red lines. 

The black line leads to the first symbol on the right side of the 

rule, and the red one - to the second symbol of rule’s right side 

(Fig. 9). 

 

 
Fig. 9. Final grammar interactive graph – work in progress. 

 

This feature will allow for representing grammar structure 

in a way which is clear and accessible for analysis. Graphic 

representation will make identifying structures easier, as well 

as comparing complexity of two grammars from different 

learning cycles. 

Another extension that is planned to be added in the future 

is an interactive CYK parsing table for each example in every 

iteration. The CYK table, instead of presenting only one of 

parsing trees, will enable to us to analyze the parsing process 

of certain examples more deeply. It will be simpler to detect 

structures which are more durable (due to the existence of 

many equivalent parsing sub-trees) or those more fragile (due 

to the availability of only one sub-tree, or the fact that it was 

built using low fitness rules). 

 Each property (the fitness of rules that build up parsing trees, 

the number of alternative sub-trees) will be visualized with 

colors and different types of lines. The new feature will allow 

us to easily compare approaches to parsing given examples. 
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