
  

 

Abstract—To date, decision trees are among the most used 

classification models. They owe their popularity to their 

efficiency during both the learning and the classification phases 

and, above all, to the high interpretability of the learned 

classifiers. This latter aspect is of primary importance in those 

domains in which understanding and validating the decision 

process is as important as the accuracy degree of the prediction. 

Pruning is a common technique used to reduce the size of 

decision trees, thus improving their interpretability and 

possibly reducing the risk of overfitting. In the present work, we 

investigate on the integration between evolutionary algorithms 

and decision tree pruning, presenting a decision tree 

post-pruning strategy based on the well-known multi-objective 

evolutionary algorithm NSGA-II. Our approach is compared 

with the default pruning strategies of the decision tree learners 

C4.5 (J48 - on which the proposed method is based) and C5.0. 

We empirically show that evolutionary algorithms can be 

profitably applied to the classical problem of decision tree 

pruning, as the proposed strategy is capable of generating a 

more variegate set of solutions than both J48 and C5.0; 

moreover, the trees produced by our method tend to be smaller 

than the best candidates produced by the classical tree learners, 

while preserving most of their accuracy and sometimes 

improving it. 

 
Index Terms—Data mining, decision trees, evolutionary 

computation, pruning methodologies. 

 

I. INTRODUCTION 

As it is commonly recognized, decision trees have a pre- 

dominant position among classification models [1]. This is 

mainly due to the facts that (1) they can be trained and 

applied efficiently even on big datasets and (2) they are easily 

interpretable. Thanks to the latter feature, they turn out to be 

useful not only for prediction, but also for highlighting 

relevant patterns or regularities in the data. This is extremely 

beneficial in those application domains where understanding 

the classification process is at least as important as the 

accuracy of the prediction itself.  

A typical decision tree is constructed recursively, starting 

from the root, following the traditional Top Down Induction 

of Decision Trees (TDIDT) approach: at each node the 

attribute that best partitions the training data, according to a 

predefined score, is chosen as a test to guide the partitioning 

of instances into child nodes, and the process continues until 

a sufficiently high degree of purity (with respect to the target 

 
Manuscript received September 30, 2017; November 15, 2017.  

A. Brunello and A. Montanari are with the University of Udine, Udine, 

Italy (e-mail: andrea.brunello@uniud.it, angelo.montanari@uniud.it). 
E. Marzano is with Gap SRL Company, Udine, Italy (e-mail: 

e.marzano@gapitalia.it). 

G. Sciavicco is with the University of Ferrara, Ferrara, Italy (e-mail: 

guido.sciavicco@unife.it). 

class), or a minimum cardinality constraint (with respect to 

the number of instances reaching the node), is achieved in the 

generated partitions. A decision tree induced by the TDIDT 

approach tends to overgrow, and this leads to a loss in 

interpretability as well as to a risk of overfitting training data, 

that results in capturing unwanted noise. As a direct 

consequence, such trees typically do not perform well on new, 

independent instances, since they fit the training data ―too 

perfectly‖.  

In order to simplify the tree structure, thus making the trees 

more general, pruning methods are typically applied. 

According to the time when such an operation is performed, 

we may distinguish among: (1) pre-pruning, consisting of 

interrupting the construction of the decision tree according to 

a stopping criterion such as minimum node cardinality, or 

when none of the attributes leads to a sufficiently high 

splitting score, and (2) post-pruning, that is, building the 

entire tree first, and then removing or condensing some parts 

of it. While pre-pruning has the advantage of not requiring 

the construction of the whole tree, it usually leads to worse 

accuracy results than post-pruning [2].  

In this paper, we focus on post-pruning approaches. There 

are two main strategies for evaluating the error rate in this 

setting. The first one consists of keeping part of the training 

data as an independent hold out set (and, thus, working on 

three, independent, datasets: training, hold out, and test), and 

deciding whether to prune a section of the tree or not on the 

basis of the resulting classification error on it. Examples of 

such techniques include a variant of CART’s 

Cost-Complexity Pruning [3] and the so-called 

Reduced-Error Pruning [4]. It should be noticed that splitting 

data in three different partitions reduces the amount of 

labelled instances available for training which, in some cases, 

are already scarce. The second strategy, on the contrary, 

focuses on estimating the apparent classification error due to 

pruning on the basis of the training data only, as in, for 

instance, Pessimistic Error Pruning [4] and C4.5’s 

Error-Based Pruning [2].  

From a computational point of view, it is known that the 

problem of constructing an optimal binary decision tree is 

NP-Complete [5]. The result is that all practical 

implementations of TDIDT algorithm and pruning 

methodologies are based on heuristics, that typically have a 

polynomial complexity in the number of instances and 

features in the training set.  

In the following, we pursue an approach to the 

post-pruning of decision trees based on Evolutionary 

Algorithms (EAs), observing that such a problem can be 

considered as a search in the space of possible subtrees [6]. In 

fact, EAs have already been successfully applied to various 

phases of the decision tree induction process (see, for 

Decision Tree Pruning via Multi-Objective Evolutionary 

Computation 

Andrea Brunello, Enrico Marzano, Angelo Montanari, and Guido Sciavicco 

International Journal of Machine Learning and Computing, Vol. 7, No. 6, December 2017

167doi: 10.18178/ijmlc.2017.7.6.641



  

instance, [7]). Despite of that, to the best of our knowledge, 

the integration between evolutionary algorithms and decision 

tree pruning has not been investigated in detail yet. Even 

among recent works evolutionary computation has not been 

taken into account, see for example [8], [9].  

The only proposed EA for classical, that is, not oblique 

[10], decision tree post-pruning is Chen and al.’s 

single-objective algorithm [11]. In that work, the fitness 

function is given by a weighted sum of the number of nodes 

in the tree and the error rate. Oddly enough, the latter is 

estimated directly on the same test dataset also used to 

evaluate the accuracy of the final solution. As pointed out in 

[7], this constitutes a serious methodological mistake, since 

the test set should only be used to assess the validity of the 

finally generated tree, and the training set, or an independent 

pruning set, should have been used in evaluating the fitness of 

individuals during EA computation. 

In this paper, we correct and extend the approach outlined 

in [11], making use of the well-known, elitist, multi-objective 

evolutionary algorithm NSGA-II [12]. We design a post- 

pruning strategy that optimizes two objectives: the accuracy 

of the obtained tree (on the training dataset) and the number 

of its nodes. We compare our approach with the default post- 

pruning methodologies of both the algorithms J48/C4.5 [2] 

(on which our method is built) and C5.0 [13]. In both cases 

(EA-based pruning and default pruning strategies), a third 

hold-out set is not necessary: this makes our comparison 

easier and, of course, it is advantageous for those cases in 

which training instances are scarce.  

The paper is organized as follows. Section II gives a short 

account of the main methodologies and concepts used 

through the article. Section III presents the proposed 

approach in detail. Section IV is devoted to the experimental 

analysis of the achieved solution. Finally, the obtained results 

are discussed in Section V. Conclusions and future work are 

outlined in Section VI. 

 

II. BACKGROUND 

In this section, we present the main methodologies and 
concepts used in the paper.  

A. The Decision Tree Learner J48 (C4.5) 

J48 is the Weka [1] implementation of C4.5 [2], which, to 

date, is probably the single most used machine learning 

algorithm (note that the terms J48 and C4.5 will be used 

interchangeably in the remainder of the paper). C4.5 is known 

to provide good classification performances, to be 

computationally efficient, and to guarantee the interpretability 

of the generated model.  

In short, C4.5 recursively builds a decision tree from a set 

of training instances by using the Information Gain and Gain 

Ratio criteria, both based on the concept of Shannon Entropy. 

Starting from the root, at each node C4.5 chooses the data 

attribute that most effectively splits the set of samples into 

subsets, with respect to the class labels. The process continues 

until the sample reaches a minimum number of instances, or 

when no attribute proves to be useful in splitting the data. In 

such cases, the corresponding node becomes a leaf of the tree. 

After the tree growing phase, two default, independent, 

methodologies are typically employed to reduce the size of the 

generated model: Collapsing and Error-Based Pruning (EBP), 

which are usually employed together.  

Collapsing a tree can be seen as a special case of pruning, 
in which parts of the tree that do not improve the classification 
error on the training data are discarded. For example, given a 
node 𝑁 that roots a subtree in which all leaves predict the 
same class 𝐶, the entire subtree can be collapsed into the node 
𝑁 that becomes a leaf predicting 𝐶.  

EBP is based on a different idea. Since the decision tree 
error rate on the training set is biased by the learning phase, it 
does not provide a suitable estimate for the classification 
performance on future cases. Intuitively, EBP consists of 
systematically evaluating each node 𝑁  and deciding, using 
statistical confidence estimates, whether to prune the subtree 
rooted in 𝑁  or not. Since pruning always worsens the 
accuracy of the tree on the training dataset (or leaves it 
unchanged), EBP evaluates the effect of a pruning by trying to 
correct the bias, that is, estimating the true error that would be 
observed on independent data.  

In essence, given a node covering n training instances, e of 
which misclassified, the observed error rate 𝑓 = 𝑒/𝑛  is 
calculated; then, the method tries to estimate the true error 
rate 𝑝 that would be observed over the entire population of 
instances ever reaching that node, based on several additional 
hypothesis, among which assuming a binomial distribution 
for the error.  

This solution gives rise to a simple method to control the 
pruning aggressiveness consisting in suitably varying the 
binomial confidence intervals [14], but, at the same time, it 
has been criticized for the lack of a proper statistical 
foundation.  

Also, it has been observed to have a tendency for under- 
pruning, especially on large datasets [15].  

B. The Decision Tree Learner C5.0 

C5.0 (also known as See5) is an updated, commercial 

version of C4.5, reported to be much more efficient than its 

predecessor in terms of memory usage and computation time 

[16]. Moreover, the resulting trees tend to be smaller and 

more accurate than those generated by C4.5 [17]. The 

learning algorithm follows a similar TDIDT strategy as its 

predecessor, relying on information gain and gain ratio scores 

to partition the training instances. The pruning is based on an 

EBP-like strategy, complemented by an optional global 

pruning step. Other important characteristics of C5.0 include 

the possibility of generating an ensemble of trees through 

boosting, the integration of an attribute selection strategy, 

called winnowing, the support for asymmetric costs for 

different kinds of error, soft-thresholds for numeric attributes, 

splitting on value subsets for discrete attributes, and a 

multi-threaded architecture [13]. A single-threaded version 

of C5.0 is available under the Gnu GPL 

(https://www.rulequest.com/download.html).  

C. Evolutionary Algorithms 

Evolutionary Algorithms (EAs) are adaptive 

meta-heuristic search algorithms, inspired by the process of 

natural selection, biology, and genetics. Unlike blind random 

search, they are capable of exploiting historical information 

to direct the search into the most promising regions of the 

search space and, in order to achieve that, their basic 

characteristics are designed to mimic the processes that in 

natural systems lead to adaptive evolution. In nature, a 

population of individuals tends to evolve, in order to adapt to 

the environment; in EAs, each individual represents a 

International Journal of Machine Learning and Computing, Vol. 7, No. 6, December 2017

168



  

possible solution for the optimization problem, and its degree 

of ―adaptation‖ to the problem is evaluated through a fitness 

function, which can be single or multi-objective.  

 

 
Fig. 1. A maximum-height binary decision tree. 

 

 
Fig. 2. A balanced and complete binary decision tree. 

 

The elements of the population iteratively evolve toward 

better solutions, going through a series of generations. At 

each generation, the individuals which are considered best by 

the fitness function are given a higher probability of being 

selected for reproduction; the selection strategy mainly 

distinguishes one particular meta-heuristic from another.  

NSGA-II, on which our method is based, uses a 

Pareto-based multi-objective (𝜆 +  𝜇) strategy with a binary 

tournament selection and a rank crowding better function 

[18]. To the selected individuals, operations such as 

crossover and mutation are applied, with the goal of 

generating new offspring, creating a new generation of 

solutions. The iterations stop when a predefined criteria is 

satisfied, which can be a bound on the number of iterations, 

or a minimum fitness increment that must be achieved 

between subsequent generations. 

Multi-objective EAs are designed to solve a set of 

minimization/maximization problems for a tuple of 𝑛 

functions 𝑓1(𝑥 ), . . . , 𝑓𝑛(𝑥 ), where 𝑥  is a vector of parameters 

belonging to a given domain. A set 𝐹  of solutions for a 

multi-objective problem is said to be non-dominated (or 

Pareto optimal) if and only if for each 𝑥 ∈  𝐹, there exists no 

𝑦  ∈  𝐹 such that (1) 𝑓𝑖  (𝑦 ) improves 𝑓𝑖(𝑥 ) for some 𝑖, with 

1 ≤  𝑖 ≤  𝑛 , and (2) for all 𝑗, 1 ≤ 𝑗 ≤ 𝑛, 𝑗 ≠ 𝑖, 𝑓𝑗 (𝑥 )  does 

not improve 𝑓𝑗  (𝑦 ). The set of non-dominated solutions from 

𝐹 is called Pareto front.  

Multi-objective approaches are particularly suitable for 

multi-objective optimization, as they search for multiple 

optimal solutions in parallel. Such algorithms are able to find 

a set of optimal solutions in the final population in a single 

run, and once such a set is available, the most satisfactory one 

can be chosen by applying a preference criterion. In our case, 

we propose a system that optimizes, together, the accuracy on 

the training dataset of a pruned tree and the number of its 

nodes, as well as an a posteriori decision method to choose 

the best pruned tree in the resulting Pareto front.  

D. Complexity of the Decision Tree Pruning Problem 

Let us now focus our attention on the pruning problem 

viewed as a search problem. We are interested in establishing 

suitable lower and upper bounds to the search space and, to 

this end, we restrict our attention to binary trees, which 

makes it simpler to compute the bounds. More general lower 

and upper bounds can then be easily derived. Notice that 

binary decision trees are always full, that is, each node has 

zero or two children, and thus the pruning of a full binary 

decision tree, for any given internal node, either removes 

both subtrees or maintains both of them. 

The search space consists of all the different pruned trees 

that can be obtained from a fully-grown tree, that is, from the 

tree generated by the TDIDT recursive procedure. 

Let 𝑛 be the number of nodes of the given (fully-grown) 

tree. A lower bound on the cardinality of the search space is 

given by the number of pruned trees that can be obtained 

from the highest full binary decision tree that can be 

generated with 𝑛 nodes at our disposal. Consider the case 

with 𝑛 =  7. The height of the highest full binary decision 

tree with 7 nodes is ℎ =  3  (see Fig. 1). The number of 

distinct pruned trees that can obtained from it is 4: the 

complete tree, the one obtained by deleting nodes 3 and 4, the 

one obtained by deleting nodes 2, 3, 4, and 5; and the one 

consisting of the root 0 only. In general, if the height of the 

highest full binary decision tree is , the number of its 

distinct pruned trees is ℎ +  1, i.e., 𝑂(ℎ). 

An upper bound on the cardinality of the search space is 

given by the number of pruned trees that can be obtained 

from the perfect binary tree of height , whose levels are all 

complete (see Fig. 2). In such a case, the number of pruned 

trees can be determined by a recursive formula: 

𝑓 ℎ =   
1                          if ℎ = 0;

𝑓(ℎ − 1)2 + 1       otherwise.
  

An upper bound on the cardinality of the search space is 

thus 𝑂(𝑓(ℎ))  =  𝛺(2ℎ), which is a function that grows very 

fast. 

As an example, we have that:  

𝑓(0) =  1                    𝑓(4) =  677 
𝑓 1 =  2                    𝑓 5 =  458.330 
𝑓 2 =  5                    𝑓 6 =  210.066.388.901 
𝑓 3 =  26                  𝑓 7 =  4, 412788775 ∗ 1022  

The above formula can be easily generalized to cope with 

non-perfect, non-binary, and, therefore, non-full, decision 

trees. Let 𝑁 be the root of the given tree, let 𝑓’(𝑁) be the 

function that computes the number of its pruned trees (we 

identify the tree with its root), and let 𝐶(𝑁) be the set of all 

children of the node 𝑁. The function 𝑓′, that generalizes 𝑓, 

can be defined as follows:  

𝑓 ′ 𝑁 =   

   1                                     if 𝑁 is a leaf;

1 +   𝑓 ′ 𝑀      otherwise.

𝑀 ∈𝐶(𝑁)

  

Clearly, both 𝑓 and 𝑓’ grow too fast to allow a systematic 

search of the space of all the pruned trees. To see how the 

number of solutions may grow in real-world cases, consider, 

as an example, the decision tree generated by applying 

Weka’s J48 on the UCI’s Soybean benchmark dataset (683 

instances, 36 attributes) [1], disabling pruning and collapsing 

operations (weka.classifiers.trees.J48 -O -U -M 2). The 

resulting model has 207 nodes (141 leaves) and, according to 

the previous formula, it admits 131.165.197.804 possible 

International Journal of Machine Learning and Computing, Vol. 7, No. 6, December 2017

169



  

pruned trees. For the sake of comparison, the default EBP 

pruned version has 93 nodes (61 leaves).  

 
Fig. 1. A fully-grown decision tree with nodes labeled in a pre-order fashion. 

 

 
Fig. 2. The gene corresponding to the tree in Fig. 3, representing a solution. 

 

III. EA-BASED PRUNING 

In this section, we present a novel, wrapper-based 

approach to the pruning of decision trees. In wrapper-based 

pruning, a search algorithm explores the search space of all 

possible pruned trees that can be obtained from a single, 

unpruned and un-collapsed decision tree, and potential 

candidates are evaluated step-by-step. We chose to 

implement our method with J48, the Weka implementation of 

the algorithm C4.5 and with the evolutionary search 

algorithm known as NSGA-II (see Section II).  

A. Representation of Solutions and Initial Population 

Given a training dataset, a fully-grown, un-collapsed and 

unpruned J48 decision tree is first built. Each solution to the 

search problem is conveniently represented as a binary array, 

whose size is equal to the number of nodes of the original J48 

tree given as input. Each cell of the arrays tracks whether the 

subtree rooted at the specific node of the tree is being kept or 

not. In order to establish a correspondence between the tree 

and the array, nodes are numbered according to a pre-order 

visit of the tree. As an example, the tree represented in Fig. 3 

corresponds to the binary array of Fig. 4. The decision tree 

obtained by removing the subtree rooted at node 1 and, 

consequently, the subtree rooted at node 3, is represented in 

Fig. 5. Its corresponding gene representation is shown in Fig. 

6. Basically, each gene keeps track of the subtree status with 

respect to the original, fully-grown decision tree.  

The initial population has been generated with the 

following schema to ensure both its correctness and its 

heterogeneity.  
 

 
Fig. 3. The pruned decision tree, with nodes labeled in a pre-order fashion. 

 

A binary array corresponding to a particular solution is 

initially set to represent the fully-grown tree. Then, a ―non- 

pruning probability threshold‖ 𝑡  is established (empirical 

evaluation suggested a random value in the range [0.85,0.95] 

for the threshold). For each cell of the array, we proceed as 

follows. The distance 𝑑 of the corresponding node from the 

root of the tree is computed (starting from 1), and, then, 𝑑 

random values are generated: if at least one of them is greater 

than 𝑡, the subtree corresponding to the array cell is pruned, 

that is, the cell is set to 0. 

The idea behind such a generation strategy is that pruning 

at higher levels should be more difficult than pruning at lower 

levels, as pruning a shallow node removes most of the tree. 

Obviously, pruning operations must be carried out in such a 

way that the resulting tree is a valid tree: if the subtree rooted 

at node 𝑁 is removed, then all subtrees rooted at descendants 

of 𝑁 must be removed as well.  
 

 
Fig. 6. The gene representing the pruned tree of Fig. 5. 

 

B. Operators 

We use the classical EA operators crossover and mutation.  

a) Crossover: Given two parent solutions, two children 

solutions are generated via crossover by simply performing a 

pairwise AND and a pairwise OR of the two corresponding 

binary arrays. Thus, one child will contain the subtrees which 

are in common between the two parents, whereas the other 

one will contain the union of the subtrees of the two parents. 

Correctness of the generated solutions straightforwardly 

follows from the correctness of the parents. 

b) Mutation: Given a binary array of length 𝑙 
corresponding to a solution, mutation is carried out as follows. 

A random number 𝑛 , 1 ≤  𝑛 ≤  𝑙  is generated, and 𝑛 

random flips are carried out in the binary array, preserving 

the correctness of the generated solution: if the subtree rooted 

at 𝑁 is removed, then all subtrees rooted at descendants of 𝑁 

must be removed as well, and if the subtree rooted at node 𝑁 

is restored, then all subtrees rooted at ancestors of 𝑁 must be 

restored as well. 

C. Fitness Functions 

We used two fitness functions in order to optimize two 

objectives. The first objective is to maximize the accuracy of 

the pruned tree on the training dataset and, to this end, we 

used the standard evaluation method provided by J48. The 

second objective is to minimize the size of the pruned tree, 

and we used a simple function to count the number of nodes, 

also provided by Weka. The two objectives are clearly 

antithetical: pruning a tree may possibly reduce the accuracy 

of it on the training set, but it never increases it. 

D. Decision Method 

As it happens with any other multi-objective optimization 

algorithm, the result of our post-pruning method is a set of 

non-dominated solutions. To evaluate the quality of the 

proposed method, we compare the solutions it returns with 

the solutions provided, on the same training datasets, by C4.5 

and by C5.0. Thus, an a posteriori decision-making method 

must be designed to select a single solution (or a subset of 

solutions) in a systematic and controllable way. The proposed 

strategy is inspired by the Minimum Description Length 

(MDL) principle (see, e.g., [19]), which is based on the 

International Journal of Machine Learning and Computing, Vol. 7, No. 6, December 2017

170



  

assumption that any regularity in a given dataset can be 

exploited to compress the data. More specifically, each 

non-dominated tree can be considered as a theory, which can 

be used to ―explain‖ the training data. Each theory will have a 

related (possibly empty) set of exceptions, which are not 

―captured‖ by the model. Thus, we can define the coding cost 

of a candidate solution as the coding cost of the theory (in the 

present case, the relative size of the tree with respect to the 

original one) plus the coding cost of the exceptions, that is, 

the error rate of the tree, calculated over the entire training set. 

Both values, denoted here by 𝑆𝐼𝑍𝐸  and 𝐸𝑅 , respectively, 

belong to interval [0,1], and they can be arranged into a 

weighted sum as follows:  

𝑊 ∗ 𝐸𝑅 +  1 −𝑊 ∗ SIZE, 

where 𝑊 ∈  [0, 1] is a weight which can be modified by the 

user in order to vary the pruning aggressiveness. The 

candidate solution with the lowest combined value is selected. 

Intuitively, a large value of 𝑊 tends to favor larger, but more 

accurate, models, as far as the training set is concerned, 

whereas smaller 𝑊 values should result in more general trees 

being selected. Intentionally, the weight 𝑊 plays a similar 

role as the confidence factor in C4.5 and C5.0, and this makes 

it possible to better compare the results. 
 

TABLE I: THE UCI DATASETS UNDER STUDY 

Dataset #inst #preds Preds Type #nodes unpr 

Adult 48842 14 cat, num 31145 

Bank 41188 20 num 6820 

Breast W 699 9 num 53 

Credit Card 30000 23 num 5613 

Credit G 1000 20 cat, num 433 

Diabetes 768 8 num 69 

Eye State 14980 14 num 1579 

Labor 57 16 cat, num 16 

Sonar 208 60 num 29 

Spambase 4601 57 num 361 

Voting 435 16 cat 51 

Waveform 5k 5000 40 num 555 

 

IV. EXPERIMENTAL RESULTS 

In this section, we provide an experimental comparison 

among three post-pruning approaches, that is, the standard 

C4.5 and C5.0 EBP pruning and our wrapper-based EA for 

post-pruning. All experiments have been carried out on an 

Intel Core i5 processor running at 2.4 GHz, equipped with a 

main memory of 8 GB. 

A. Datasets 

We have used 12 standard UCI datasets (available at the 

website https://archive.ics.uci.edu/ml/datasets.html), which 

have been selected in order to maximize the variability in 

terms of number of instances as well as number and types of 

attributes. As witnessed by the recent literature, UCI datasets 

are a standard de facto in the machine learning community 

(see, e.g., [11], [14], [15], [20]). The chosen datasets are 

detailed in Table I, where, for each case, we show the number 

of nodes in the respective un-collapsed and unpruned J48 

decision tree. The kind of attributes (categorical, numeric) is 

also displayed. 

B. Methods 

The experiment phase has been designed as follows. Each 

dataset has been partitioned into a training set (75%) and a 

test set (25%), according to a stratified approach. Then, on 

each dataset, the three methods, namely, J48, C5.0, and 

EA-based, for post-pruning have been applied. As for C4.5 

and C5.0, we followed an approach similar to the one adopted 

in [14]. In particular, we trained a set of 27 decision trees for 

each dataset by varying the confidence factor over in the 

range [0.001, 0.49] (this is the widest implemented range). 

We tested all values from 0.1 to 0.49 (included) by steps of 

0.02, other than the very low values 0.005 and 0.001 — the 

lower the confidence factor, the more aggressive the pruning 

performed. For the sake of comparison, recall that Weka’s 

default confidence factor is 0.25. Collapsing option has also 

been activated. Moreover, in the case of C5.0, trees have been 

generated non-bagged, winnowing had been disabled, while 

global pruning and soft thresholds remained active. On the 

other hand, the EA-based experiment has been designed as 

follows. On each dataset we executed 30 independent runs, 

each with a different seed value. This led to 30 sets of 

non-dominated solutions which have been merged into a final, 

single set (from which all dominated solutions have been 

eliminated). Finally, for each dataset we empirically assessed 

the minimum amount of evaluations, in the range 

[10000, 100000], that are necessary to reach a satisfactory 

solution (given the population size of 100, 10000 evaluations 

correspond to 100 evolution steps). Table II summarizes the 

number of evaluations, and the required computation time, 

for each independent run over the considered datasets. 

 
TABLE II: EVALUATIONS NUMBER AND COMPUTATION TIME PER DATASET 

Dataset # evaluations Computation time (sec) 

Adult 75000 3200 

Bank 100000 720 

Breast W 10000 < 1 

Credit Card 60000 400 

Credit G 100000 46 

Diabetes 10000 1 

Eye State 100000 188 

Labor 10000 < 1 

Sonar 10000 < 1 

Spambase 100000 50 

Voting 10000 1 

Waveform 5k 60000 37 

 

 
Fig. 7. Results on the Adult dataset. 

 

C. Results 

For each dataset, we compared the results of the three 

post-pruning methods. The results are shown in a number of 

figures (from Fig. 7 to Fig. 18). Each graph shows the relation 

that emerges between the predictive accuracy and the size 

International Journal of Machine Learning and Computing, Vol. 7, No. 6, December 2017

171



  

(number of leaves) of each tree produced by a specific setting 

of the parameter that governs the pruning aggressiveness 

(confidence interval for C4.5 and C5.0, weight W for the 

EA-based wrapper), generating three curves for each dataset. 

Each point in the graphs represents a model. Even if we did 

not focus on learning more precise trees than classical 

methods, in 7 out of 12 cases, the EA-based pruning 

produced at least one tree with equal or better predictive 

accuracy than the best tree produced by C4.5 or by C5.0, 

regardless its size. These are: Breast W, Credit Card, 

Diabetes, Labor, Spambase, Sonar, and Voting.  

In the case of Breast W (Fig. 9) the EA-based pruning 

generated a tree with 20 leaves and 97.7% accuracy (best 

overall accuracy), and the smallest tree generated by classical 

methods has 5 leaves and an accuracy of 94.2%, while the 

wrapper has been able to produce a tree with only 2 leaves 

and an accuracy of 93.7%.  
 

 
Fig. 8. Results on the Bank dataset. 

 

 
Fig. 9. Results on the Breast W dataset. 

 

In the case of the dataset Credit Card (Fig. 10), we 

produced a tree with 24 leaves and 82.2% accuracy (best 

overall accuracy), as well as the same smallest result as C5.0 

(2 leaves, 81.7% accuracy), and we surpassed the smallest 

tree generated by J48 (7 leaves and 81.8% accuracy).  

 
Fig. 10. Results on the Credit Card dataset. 

As for Diabetes (Fig. 12), the EA-based pruning matches 

the best result obtained by J48 (3 leaves and 75.5% accuracy), 

and proposes a smaller but almost as much as accurate tree (2 

leaves and 75.0% accuracy), while C5.0 is capable of 

achieving the same result but with a (slightly) bigger tree (3 

leaves, 75.0% accuracy).  

 

 
Fig. 11. Results on the Credit G dataset. 

 

 
Fig. 12. Results on the Diabetes dataset. 

 

In the case of Labor (Fig. 14), J48, C5.0 and the EA- 

based wrapper are all capable of generating the best tree (2 

leaves and 85.7% accuracy), while in the case of Sonar (see 

Fig. 15), the wrapper constantly surpasses J48 in terms of 

classification performance, and it is also capable of achieving 

the same accuracy result of C5.0 (78.4%) with a slightly 

smaller tree (9 vs 11 leaves). 

 
Fig. 13. Results on the eye state dataset. 

 

As for Spambase (Fig. 16), we observe that the results 

obtained by the three approaches tend to be quite similar; 

however, the wrapper is capable of generating the best tree 

(141 leaves and 92.7% accuracy) as well as a very small 

International Journal of Machine Learning and Computing, Vol. 7, No. 6, December 2017

172



  

(smaller than those proposed by J48 and C5.0) yet accurate 

enough tree (12 leaves, 89.6% accuracy).  

 

 
Fig. 14. Results on the Labor dataset. 

 

 
Fig. 15. Results on the Sonar dataset. 

 

Finally, in the case of Voting (Fig. 17), the three methods 

all produce the best (and smallest) tree (2 leaves and 96.3% 

accuracy).  

In the case of the dataset Adult (Fig. 7), the best accuracy 

is obtained by C5.0; however, while the most accurate model 

generated by J48 has 144 leaves and 56.7% accuracy, its 

smallest tree has 17 leaves and 56.5% accuracy. In 

comparison, the wrapper produced a pruned tree with 10 

leaves, while still retaining an accuracy of 56.1%. Given the 

exceptionally big unpruned tree, probably, a better result 

would be obtained with more EA evaluations.  

As for the dataset Bank (Fig. 8), even if the wrapper is 

surpassed by both J48 and C5.0 in terms of accuracy, it is still 

capable of generating a pruned tree with 7 leaves, while still 

retaining a test set accuracy of 91.1%, and a tree with only 3 

leaves, keeping an accuracy of 90.1%. This contrasts with the 

smallest tree generated by J48 (25 leaves and 91.5% accuracy) 

and the one produced by C.50 (13 leaves and 91.2% 

accuracy.  

In the case of Eye State (Fig. 13), while the wrapper does 

not reach the same accuracy as C4.5 and C5.0, it is able of 

providing a variety of much smaller trees, without loosing too 

much accuracy.  

Finally, in the case of Credit G (Fig. 11), the wrapper 

achieved an overall higher accuracy than J48 (74.0% vs 

73.6%), but lower than C5.0 (74.8%), while in the case of  

Waveform 5k (Fig. 18) the wrapper produced more 

accurate trees than J48, and, while the most accurate model is 

generated by C5.0 (120 leaves and 77.9% accuracy), the 

wrapper generated two smaller, yet accurate enough, models 

(one with 76 leaves and 77.7% accuracy and the other with 39 

leaves and 75.4% accuracy).  

 
Fig. 16. Results on the Spambase dataset. 

 

 
Fig. 17. Results on the Voting dataset. 

 

 
Fig. 18. Results on the Waveform 5k dataset. 

V. DISCUSSION 

Results reported in Section IV clearly show that the 

proposed EA approach to pruning decision trees is capable of 

matching, and sometimes surpassing, the performances of 

classical C4.5 and C5.0 strategies in terms of the 

size-to-accuracy ratio of the generated trees. In particular, the 

proposed method is capable of producing a more variegate set 

of solutions, often characterized by smaller trees, which, 

nevertheless, preserve most of the accuracy of those 

traditionally pruned. The proposed EA-based pruning 

approach starts from a fully-grown C4.5 decision tree. Given 

that, as reported in [17], the trees grown by C5.0 tend to 

behave better than those grown by C4.5, we may speculate 

that better results could be achieved by applying our method 

to the former instead of the latter. Moreover, there are several 

EA-related aspects that could be taken into account to 

enhance our results. First, the classical selection strategy 

implemented in NSGA-II has been improved in, for instance, 

International Journal of Machine Learning and Computing, Vol. 7, No. 6, December 2017

173



  

the algorithm ENORA [21], [22]. Second, independently 

from the selection strategy, state-of-the-art implementations 

of EAs do not require explicit and fixed setting of the 

crossover and mutation rates, which are, instead, considered 

as characteristics of adaptiveness of each of the solutions. 

Empirically, adaptation has been observed to better the 

performance of traditional operators in terms of convergence 

to the Pareto optimal front and in diversity of the final 

solutions. Finally, in the last few years, the use of fitness 

functions is being progressively substituted by convergence 

directly based on the hypervolume, which seems to behave 

better than traditional fitness-based methods [23], and it 

would be interesting to understand its effects on our method 

as well. Overall, this entire work should be considered as a 

worthy proof-of-concept of the idea of EA-based 

post-pruning, which deserves some further investigation.  

Although EAs have been extensively applied in the past to 

various phases of decision tree induction [7], previous to our 

work, to the best of our knowledge, only Chen et al. [11] 

approach has used evolutionary algorithms for the purpose of 

pruning (non-oblique) decision trees. Their method and the 

present one differ from each other in various nontrivial 

aspects. First of all, Chen’s pruning is applied to a 

fully-grown ID3 decision tree, which is a predecessor of C4.5 

[24]. Concerning the representation of the solutions, our 

encoding is similar to theirs, except for the fact that we have 

chosen to denote nodes, that is, subtrees, instead of edges. On 

the contrary, our crossover operator is very different from the 

one proposed in [11], where its application partitions each of 

the two parents into a prefix and suffix substrings (then, to 

generate the offspring, the prefix of the first parent is 

combined with the suffix of the second parent, and vice 

versa). Moreover, our mutation strategy is more aggressive 

than Chen’s, where a single random bit flip is performed: 

empirically, allowing to perform more than one flip per 

individual has proven to help avoiding local optima 

convergence. Additionally, in [11], the single-objective 

fitness function is evaluated directly on the test dataset. As 

pointed out in [7], this is a serious methodological mistake, 

since such data should be kept aside for validation purposes, 

and not being used for tuning the algorithm. Finally, UCI 

datasets were also used in [11]; unlike our experiment, 

though, the authors have used only 4 datasets, making our 

experimental setting more comprehensive and variegate. 

 

VI. CONCLUSIONS AND FUTURE WORK 

Pruning is a technique commonly used to reduce the size of 

decision trees, with the aim of improving their interpretability 

and classification performance, while diminishing the risk of 

overfitting. In this paper, the integration between 

evolutionary algorithms and decision tree pruning has been 

studied, by presenting a multi-objective evolutionary 

approach to the problem of post-pruning decision trees. The 

method is based on the well-known NSGA-II evolutionary 

algorithm, and it starts from a fully-grown, unpruned and un- 

collapsed C4.5 decision tree. An a posteriori decision 

method to choose the best pruned tree in the resulting Pareto 

front has also been suggested. The proposed solution has 

been tested against the standard pruning strategies of C4.5 

and C5.0 decision tree learners over a selection of 12 UCI 

datasets, and it has proven to be capable of generating smaller 

trees than those offered by such competitors, while 

preserving most of their accuracy, and sometimes improving 

it. Despite the fact that this can be considered an exploratory 

study, it clearly demonstrates the feasibility of the overall 

idea, shading a light on the role that EAs can play even in a 

classical problem such as decision tree pruning. As for future 

work, state-of-the-art evolutionary algorithms such as 

adaptive NSGA-II and ENORA are to be considered for the 

problem of pruning a fully-grown C5.0 decision tree. 

Moreover, also the a posteriori decision process for the 

selection of the final solution from the set of non-dominated 

candidates generated by the evolutionary algorithm deserves 

some further investigation. 

REFERENCES 

[1] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: 

Practical Machine Learning Tools and Techniques, 4th ed. Morgan 

Kaufmann Publishers Inc., 2016.   

[2] J. R. Quinlan, C4.5: Programs for Machine Learning, San Francisco, 

CA, USA: Morgan Kaufmann Publishers Inc., 1993.  
[3] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and 

Regression Trees, Monterey, CA: Wadsworth and Brooks, 1984.   

[4] J. R. Quinlan, ―Simplifying decision trees,‖ International Journal of 

 Man-Machine Studies, vol. 27, no. 3, pp. 221-234, 1987.   

[5] L. Hyafiland and R. L. Rivest, ―Constructing optimal binary decision 
trees is NP-Complete,‖ Information Processing Letters, vol. 5, no. 1, 

pp. 15–17, 1976.   

[6] F. Esposito, D. Malerba, and G. Semeraro, ―Decision tree pruning as a 

search in the state space,‖ in Proc. the 6th European Conference on 

Machine Learning (ECML), 1993, pp. 165-184.   

[7] R. C. Barros and A. A. Freitas, ―A survey of evolutionary algorithms 

for decision-tree induction‖, in Proc. the IEEE Transactions on 
Systems, Man, and Cybernetics, Part C: Applications and Reviews, 

2011, pp. 291-312.   

[8] L. Luo, X. Zhang, H. Peng, W. Lv, and Y. Zhang, ―A new pruning 

method for decision tree based on structural risk of leaf node,‖ Neural 

Computing and Applications, vol. 22, pp. 17-26, 2013. 

[9] Z. Nie, B. Lin, S. Huang, N. Ramakrishnan, W. Fan, and J. Ye,  
―Pruning decision trees via max-heap projection,‖ in Proc. the 2017 

SIAM International Conference on Data Mining, 2017, pp. 10-18. 
[10] D. Heath, S. Kasif, and S. Salzberg, ―Induction of oblique decision 

trees,‖ in Proc. the International Joint Conference on Artificial 

Intelligence (IJCAI), 1993, pp. 1002-1007.   

[11] J. Chen, X. Wang, and J. Zhai, ―Pruning decision tree using genetic 

algorithms,‖ in Proc.  the 2009 International Conference on Artificial 

Intelligence and Computational Intelligence (AICI), vol. 3, 2009, pp. 

244-248.   

[12] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ―A fast and elitist 
multiobjective genetic algorithm: NSGA-II,‖ IEEE Transactions on 

Evolutionary Computation, vol. 6, no. 2, pp. 182-197, 2002.   

[13] C5.0: An informal tutorial. [Online]. Available: 

https://www.rulequest.com/see5- unix.html   

[14] L. O. Hall, R. Collins, K. W. Bowyer, and R. Banfield, ―Error-based 

pruning of decision trees grown on very large data sets can work!‖ in 

Proc. the 14th IEEE International Conference on Tools with Artificial 

Intelligence (ICTAI), 2002, pp. 233-238.   

[15] F. Esposito, D. Malerba, and G. Semeraro, ―A comparative analysis of 

methods for pruning decision trees,‖ IEEE Transactions on Pattern 
Analysis and Machine Intelligence, vol. 19, no. 5, pp. 476-491, 1997.  

[16] L. Rokach and O. Maimon, Data Mining with Decision Trees: Theory 

and Applications, 2nd ed. World Scientific Publishing Company Inc., 
2014.  

[17] Is C5.0 better than C4.5? [Online]. Available: 

http://rulequest.com/see5-comparison.html  
[18] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing, 

SpringerVerlag, 2003.  

[19] M. Mehta, J. Rissanen, and R. Agrawal, ―MDL-based decision tree 
pruning,‖ in Proc. the First International Conference on Knowledge 

Discovery and Data Mining (KDD), 1995, pp. 216-221.  

[20] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, ―Do 
we need hundreds of classifiers to solve real world classification 

International Journal of Machine Learning and Computing, Vol. 7, No. 6, December 2017

174



  

problems?‖ Journal of Machine Learning Research, vol. 15, no. 1, pp. 

3133-3181, 2014.  

[21] F. Jiménez, A. Gómez-Skarmeta, G. Sánchez, and K. Deb, ―An 
evolutionary algorithm for constrained multi-objective optimization,‖ 

in Proc. the Congress on Evolutionary Computation (CEC), vol. 2, 

2002, pp. 1133-1138.  
[22] F. Jiménez, E. Marzano, G. Sánchez, G. Sciavicco, and N. Vitacolonna, 

―Attribute selection via multi-objective evolutionary computation 

applied to multi-skill contact center data classification,‖ in Proc. the 
IEEE Symposium Series on Computational Intelligence (SSCI), 2015, 

pp. 488-495.  

[23] H. Ishibuchi, R. Imada, Y. Setoguchi, and Y. Nojima, ―Performance 
comparison of NSGA-II and NSGA-III on various many-objective test 

problems,‖ in Proc. the IEEE Congress on Evolutionary Computation 

(CEC), 2016, pp. 3045–3052.  
[24] J. R. Quinlan, ―Induction of decision trees,‖ Machine Learning, vol. 1, 

no. 1, pp. 81-106, 1986.  

 
Andrea Brunello obtained his master degree in 

computer science from the University of Udine, Italy, 

in 2015. Later, he spent a year as a research fellow at 
the same University. Currently, he is a PhD student at 

the Department of Computer Science at the University 

of Udine, Italy. His main research interests are in data 
integration and modeling, data mining, and machine 

learning. He is co-author of some scientific seminars, 

and co-supervisor of theses. 

 
Enrico Marzano holds a master degree in computer 

science from the University of Udine. Then, he was 

research fellow at the same university. Currently, he is 
chief information officer and head of research at Gap 

srl, a Business Process Outsourcer and IT company. 

He has been involved in research and development 
projects with academic staff. He is co-author of some 

scientific publications and seminars, co-supervisor of 
thesis and of a Ph.D. 

 

Angelo Montanari is full professor of computer 

science at the University of Udine, Italy, where he 

chairs the Data science laboratory. He obtained his 
PhD in logic and computer science from the 

University of Amsterdam, The Netherlands, in 1996. 

His main research interests are in formal methods, AI 
knowledge representation and reasoning, and 

databases. He has published over 200 papers in 

international journals, conferences, and handbook 
chapters. 

 

Guido Sciavicco holds a bachelor degree, a master 
degree, and a PhD in computer science from the 

University of Udine, Italy. Currently, he is associate 

professor at the University of Ferrara, Italy. He has 
been working in logics for computer science for more 

than 10 years and, more recently, he has been doing 

research in the field of artificial intelligence applied 
to data science. He is co-author of more than 80 

papers in international journals and conferences. 

 
 

 

 
 

 

 
 

 

 
 

 

 

International Journal of Machine Learning and Computing, Vol. 7, No. 6, December 2017

175




