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Abstract—Speaker identification using Gaussian Mixture 

Models (GMMs) based on Mel Frequency Cepstral Coefficients 

(MFCCs) as features, proposed by Reynolds (1995), is one of the 

most effective approaches available in the literature. The use of 

GMMs for modeling speaker identity is motivated by the 

interpretation that the Gaussian components represent some 

general speaker-dependent spectral shapes, and the capability 

of mixtures to model arbitrary densities. In this work, we have  

established empirically how combining two different 

well-known set of features (MFCCs and Perceptual Linear 

Predictive Coefficients) and using ensemble classifiers in 

conjunction with principal component transformation and 

some robust estimation procedures, can be used to enhance 

significantly the performance of the MFCC-GMM speaker 

recognition systems, using the benchmark speech corpus 

NTIMIT. 

 

Index Terms—Mel frequency cepstral coefficients, 

Perceptual Linear Predictive Coefficients, Gaussian mixture 

models, ensemble classifiers, classification accuracy, trimmed 

means, NTIMIT. 

 

I. INTRODUCTION 

Automatic speaker identification/recognition (ASI/ASR) 

is the generic term applied to the automatic process of 

inferring the identity of a person from an utterance made by 

him, on the basis of speaker-specific information embedded 

in the corresponding speech signal. This technique has 

important practical applications, e.g., it can be used to verify 

the identity claimed by persons trying to access secure 

systems, that is, it enables access control of various services 

by voice. Other real-life activities where it is immediately 

applicable and useful include voice dialing, banking over a 

telephone network, telephone shopping, database access 

services, information and reservation services, voice mail, 

security control for confidential information, and remote 

access to computers. Another important application of 

speaker recognition technology is in forensics. 

Speaker recognition, being essentially a pattern 

recognition problem, can be specified broadly in terms of the 

features used and the classification technique adopted. From 

experience gained over the past several years from research 

going on, it has been possible to identify certain features 

extracted from the complex speech signal, that carry a great 
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deal of speaker-specific information. In conjunction with 

these features, researchers have also identified classifiers 

which perform admirably. Mel Frequency Cepstral 

Coefficients (MFCCs) and Perceptual Linear Predictive 

Coefficients (PLPCs) are the popularly used features, while 

Gaussian Mixture Models (GMMs), Hidden Markov Models 

(HMMs), Vector Quantization (VQ), Neural Networks are 

some of the more successful speaker models/classification 

tools. Any good review article on speaker recognition (for 

example, [1], [2]) contains details and citations about more 

than a few of these features and models. It is quite apparent 

that much of the research involves juggling various features 

and speaker models in different combinations to get new 

ASR methodologies.  

Reynolds [3], Reynolds and Rose [4] proposed a speaker 

recognition system based on MFCCs as features and GMMs 

as speaker models and, by implementing it on the benchmark 

data sets TIMIT and NTIMIT, demonstrated that it works 

almost flawlessly on clean speech (TIMIT) and quite well on 

noisy telephone speech NTIMIT). This approach is still one 

of the best available in the literature. 

In this paper, we have established empirically, with the 

help of the benchmark speech corpus NTIMIT, how the 

classification accuracy of the basic MFCC-GMM speaker 

recognition system can be further enhanced significantly by  

1) combining the two feature sets (MFCCs and PLPCs): It 

was evident that both the feature sets have relevant 

information regarding the identity of the speaker though 

MFCCs had a little edge. After combining the two 

feature sets, the classification accuracy vastly improved. 

2) implementing robust estimation procedures like the 

trimmed mean, to eliminate the effect of outliers, that is, 

observations that are too different from the majority of 

observations, and may be due to the inherent variability 

in the data set or to measurement error. 

We also use the following two ideas from our previous 

work [5]: 

1) incorporating into the model the individual correlation 

structures of the feature sets for each speaker:  This is a 

significant aspect of the speaker models that Reynolds 

ignored totally by assuming the MFCCs to be 

independent. This is achieved by the simple device of the 

Principal Component Transformation (PCT) [6]), which 

is a linear transformation derived from the covariance 

matrix of the MFCC vectors obtained from the training  

utterances of a given speaker, and is  applied to the 

MFCC vectors  of the corresponding speaker to make the 

individual coefficients uncorrelated. Due to differences 

in the correlation structures, these transformations are 

also different for different speakers. The GMMs are 

fitted on the MFCCs transformed by the principal 

component transformations instead of the original 
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MFCCs. For testing, to determine the likelihood values 

with respect to a given target speaker model, the MFCCs 

from the test utterance are transformed by the principal 

component transformation corresponding to that speaker. 

2) Using ensemble classifiers: It is well known now that the 

use of an ensemble of classifiers instead of a single 

classifier can improve the accuracy to a great extent. In 

this paper we have used a clever idea to design an 

ensemble classifier which further improved the 

classification accuracy. 

The paper is organized as follows. MFCCs are introduced 

in the following section, while Gaussian Mixture Models 

(GMMs) are briefly described in Section III, which also 

outlines how speaker recognition is carried out using MFCCs 

as features and GMMs as speaker models. The proposed 

approach is delineated in Section IV. Section V gives a brief 

description of the speech corpus used, namely, NTIMIT, and 

contains results obtained by applying the proposed approach 

on it, which clearly establish its effectiveness. Section VI 

contains concluding remarks. 

 

II. MEL FREQUENCY CEPSTRAL COEFFICIENTS 

The Mel Frequency Cepstrum (MFC) is a representation of 

the short-term power spectrum of a sound, based on a linear 

cosine transform of a log-energy spectrum on a nonlinear mel 

scale of frequency. It exploits auditory principles, as well as 

the decorrelating property of the cepstrum, and is amenable 

to compensation for convolution distortion. As such, it has 

turned out to be one of the most effective feature 

representations in speech-related recognition tasks [7]. 

Mel-frequency cepstral coefficients (MFCCs) [8] are 

coefficients that collectively make up an MFC. A given 

speech signal is partitioned into overlapping segments or 

frames, and MFCCs are computed for each such frame.  

Based on a bank of K filters, a set of M MFCCs is computed 

from each frame as follows: 

Let x[m], w[m] denote respectively the speech signal and a 

window function at a time point m within the frame. The 

speech waveform x[m] is windowed with w[m], and its 

short-time Fourier transform (STFT),  𝑌 𝑛, 𝜔𝑘 , 𝑛 =

1,2, … , 𝑁,  is computed as 

𝑌 𝑛, 𝜔𝑘 =  𝑥 𝑚 𝑤 𝑛 − 𝑚 𝑒−𝑗𝜔𝑘𝑚  

∞

𝑚=−∞

, 

where 𝜔𝑘 =
2𝜋

𝑁
𝑘, N being the length of the discrete Fourier 

transform.  The magnitude of  𝑌 𝑛, 𝜔𝑘  is then weighted by a 

series of filter frequency responses whose center frequencies 

and bandwidths roughly match those of the auditory critical 

band filters, that is, the so-called mel-scale filters, 

collectively referred to as a mel-scale filter bank (see below). 

If the frequency response of the l-th mel-scale filter is 

denoted by 𝑉𝑙 𝜔 , then its energy at n is 

𝐸𝑚𝑒𝑙  𝑛, 𝑙 =
1

𝐴𝑙

  𝑉𝑙 𝜔𝑘 𝑌 𝑛, 𝜔𝑘  
2

𝑈𝑙

𝑘=𝐿𝑙

, 

where 𝐿𝑙  and 𝑈𝑙  denote respectively the lower and upper 

frequency indices over which the l-th filter is non-zero, and  

𝐴𝑙 =   𝑉𝑙(𝜔𝑘) 2.

𝑈𝑙

𝑘=𝐿𝑙

 

 Finally, the i-th MFCC computed from the frame is 

𝑀𝐹𝐶𝐶𝑖 =  log 𝐸𝑚𝑒𝑙 (𝑖, 𝑘)   cos  𝑖  𝑘 −
1

2
 

𝜋

𝐾
 

𝐾

𝑘=1

,

𝑖 = 1,2, … , 𝑀. 

A. Mel-scale Filter Banks 

A mel-scale filter bank (Fig. 1) is a set of filters spaced 

uniformly on the mel scale (described below), which has a 

triangular bandpass frequency response, and the spacing as 

well as the bandwidth is determined by a constant mel 

frequency interval.  
 

 
Fig. 1. A mel scale filter bank. 

B. The Mel Scale 

Psychophysical studies show that human perception of the 

frequency contents of sounds for speech signals does not 

follow a linear scale.  For each tone with an actual frequency, 

f, measured in hertz, a subjective pitch is measured on the 

so-called „mel‟ scale. The mel scale is a scale of pitches 

judged by listeners to be equal in distance from one another. 

The word mel comes from the word melody to reflect this. 

This scale has linear frequency spacing below 1000 hz and 

logarithmic spacing above 1000 hz (Fig. 2). 

A popular formula to convert f  hertz into m mel is: 

𝑚 = 2595 log10  1 +
𝑓

700
 . 

 
Fig. 2. The mel scale. 

C. Computation of MFCCs 

This involves the following steps: 

1) Partitioning the speech signal into overlapping segments 

or frames 

2) Taking the Fourier transform of signal from each frame. 

3) Mapping the powers of the spectrum obtained above onto 
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the mel scale, using triangular overlapping windows. 

4) Taking the logs of the powers at each of the mel 

frequencies. 

5) Taking the discrete cosine transform of the list of mel log 

powers, as if it were a signal. 

 

III. PERCEPTUAL LINEAR PREDICTIVE COEFFICIENTS 

Perceptual Linear Prediction is a method of spectral 

estimation proposed by Hermansky [9]. In different 

psycho-acoustic experiments it was observed that human 

frequency resolution varies over different frequency ranges 

and low frequencies mask higher ones. Moreover, it has been 

found that hearing is most sensitive at mid-frequencies. 

While listening people generally integrate 1 bark of spectrum, 

whereas for discrimination purpose people seem to integrate 

about 3.5 barks of spectrum. These observations inspired the 

development of Perceptual Linear Predictive Coefficients 

(PLPC) which turned out to be superior in many ways to the 

Linear Predictive (LP) coefficients in the task of speaker 

identification. 

In this technique of speech analysis, mainly three 

psycho-acoustic concepts are used to estimate the auditory 

spectrum which are critical-band spectral analysis, the equal 

loudness curve and the intensity power law. PLP algorithm 

can be described using the following steps -- first in the 

spectral analysis phase the speech signal is partitioned into 

overlapping segments and each segment is weighted by the 

Hamming window. 

The short-term power spectrum P(ω) is computed for each 

of these segments. In the next stage, the spectrum P(ω) is 

warped along the frequency axis into the Bark Frequency 

which is then convolved with power spectrum of the 

simulated critical band masking curve that results in samples 

of the critical-band power spectrum. In this step, spectral 

resolution is significantly reduced. The sampled power 

spectrum is then pre-emphasized by an equal-loudness curve 

and a cubic-root amplitude compression is performed 

simulating the power law of hearing. Finally in the 

autoregressive modeling phase, the resulting spectrum is 

modeled by a 5
th

 order model using the autocorrelation 

method of all-pole spectral modeling. The following block 

diagram shows the steps of PLP algorithm. 

 

 
Fig. 3. PLP algorithm. 

 

PLP has an advantage of approximating the speaker 

independent effective second formant. It reduces the 

disparity between voiced and unvoiced speech. It has been 

shown in different experiments that there exists a strong 

correlation between the perceptually estimated second 

formant and that estimated by the PLP method. 

IV. SPEAKER RECOGNITION WITH MFCC-BASED GMM 

SPEAKER MODELS 

A. Gaussian Mixture Models (GMMs) 

If x is a d-dimensional feature vector, then for a K-speaker 

problem, the probability distribution of the MFCCs obtained 

from speaker i, i=1, 2,…, K is modeled as a mixture of N 

component probability densities as follows: 

𝑝 𝐱 λ𝑖 =  𝑝𝑖𝑗

𝑁

𝑗 =1

𝑓𝑗  𝑥 𝛉𝑖𝑗  ,  𝑝𝑖𝑗

𝑁

𝑗 =1

= 1.  

where, for the i-th speaker, 𝑝𝑖𝑗   is the prior probability for the 

j-th component of the mixture, λ𝑖 =   𝑝𝑖𝑗 , 𝛉𝑖𝑗 , 𝑗 =

1,2,⋯,𝑁 is the collection of unknown parameters, and 

𝑓(𝐱|𝛉𝑖𝑗 ) is the probability density of x  in the  j-th component, 

assumed to be Gaussian in this case. That is, for a GMM,  

𝑝 𝐱 λi =  𝑝𝑖𝑗

𝑁

𝑗=1

 
1

 2𝜋 
𝑑
2

  𝚺𝑖𝑗  
 𝑒−

1
2

(𝒙−𝝁𝑖𝑗 )𝑇𝚺𝑖𝑗
−1(𝒙−𝛍𝑖𝑗 ), 

and  𝛉𝑖𝑗 =  𝛍𝑖𝑗 , 𝚺𝑖𝑗  , 𝑖 = 1,2, … , 𝐾, 𝑗 = 1,2, … , 𝑁. 

GMM models for all speakers are trained by the 

Expectation-Maximization algorithm [10]. An unknown 

speech sample is split into a number of overlapping segments, 

with MFCCs computed from each segment. The likelihood 

function for the sample is computed, based on all MFCC 

vectors obtained from it, and it (the unknown sample) is 

classified by the principle of maximum likelihood, described 

below. 

B.  Speaker Recognition by Maximum Likelihood 

Consider a speaker database consisting of K speakers 

where the i-th speaker is being represented by a GMM  

𝑝 𝑥 𝜆𝑖  as defined above.  If a speech utterance of unknown 

origin is presented, and it is known that is speaker is 

represented in the speaker database, the objective of speaker 

recognition is to identify which of the K speakers could have 

uttered it.  

Suppose the unknown utterance is split into P overlapping 

frames using the same procedure as for the training samples, 

and MFCCs are computed from each segment. If  𝐱𝑝  denotes 

the MFCC vector computed from the p-th segment, then the 

overall likelihood of the unknown utterance under the i-th 

speaker model is  

𝐿 λ𝑖 =  𝑝 𝐱𝑝  λ𝑖 ,

𝑃

𝑝=1

 

assuming the MFCC vectors from different segments to be 

mutually independent statistically. 

Speaker number k is identified as the speaker of the 

unknown speech utterance if 
 

𝐿 λ𝑘 = max
1≤𝑖≤𝐾

𝐿 λ𝑖 . 
 

Since the logarithm function is monotonically increasing 

in its argument, maximizing the likelihood function 𝐿 λ𝑖  is 

equivalent to maximizing the log-likelihood  

ℓ λ𝑖 = log 𝐿 λ𝑖 =  log 𝑝 𝐱𝑝 λ𝑖 .

𝑃

𝑝=1
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Thus speaker number k is identified as the speaker of the 

unknown speech utterance if 
 

ℓ λ𝑘 = max
1≤𝑖≤𝐾

ℓ λ𝑖 . 

                          

V.  THE PROPOSED APPROACH 

The objective of the proposed approach is to enhance 

significantly the classification accuracy of the basic 

MFCC-GMM speaker recognition system, by a combination 

of the following: 

1) Combining the MFCCs and the PLPCs: Results were 

obtained with both these feature sets. Further 

investigations revealed that the classifiers built based on 

the two feature sets could identify different speakers 

accurately. It was then natural to see whether a more 

powerful classifier can be built with an enhanced feature 

set by combining both the feature sets. 

2) Using ensemble of classifiers: Since there were quite a 

few parameters in the MFCC-GMM model, one could 

build many classifiers by choosing different combination 

of values for the parameters. An ensemble classifier 

based on 3-4 such classifiers was employed for the final 

classification.  

There are many different ways to combine the decisions of 

different classifiers in an ensemble classifier. Majority voting 

is quite popular. However we used aggregation of likelihood 

values of different classifiers and maximized the aggregated 

likelihood values.  

Thus if there are c number of classifiers in an ensemble, 

then the aggregated likelihood 𝐿′ λ𝑖  is 

𝐿′ λ𝑖 =  𝐿 λ𝑗 

𝑐

𝑗 =1

. 

3) Incorporation of the individual correlation structures of 

the feature sets for each speaker into the corresponding 

speaker model: This is achieved through the use of the 

Principal Component Transformation (PCT) [6], which 

is described below. The basic MFCC-GMM system 

ignores this totally by assuming the MFCCs to be 

independent.   

Since correlation structures differ from speaker to speaker, 

these transformations are also different for different speakers. 

The GMM for a particular speaker is fitted on the MFCCs 

transformed by the principal component transformations for 

that speaker, rather than the original MFCCs. As far as testing 

is concerned, to determine the likelihood values with respect 

to a given target speaker model, the MFCCs from the test 

utterance are transformed by the principal component 

transformation corresponding to that speaker. 

4) Implementation of robust estimation procedures like the 

trimmed mean to eliminate the effect of outliers: Outliers 

are observations that are too different from the majority 

of observations, and may be due to the inherent 

variability in the data set or to measurement error.  

This is motivated by the observation that the log-likelihood 

function ℓ λ𝑖  can be interpreted as being equal to 𝑃𝜌 λ𝑖 , 

where  

𝜌 λ𝑖 =
1

𝑃
 log 𝑝 𝒙𝑝  λ𝑖 ,

𝑃

𝑝=1

 

which is nothing but the average or arithmetic mean of the P 

log 𝑝 𝒙𝑝  λ𝑖  values. Also, maximizing ℓ λ𝑖  over i is 

equivalent to maximizing  𝜌 λ𝑖  over i. To obtain a more 

robust estimate of the quantity 𝜌 λ𝑖 , we make use of the 

well-known trimmed mean procedure [11], which is 

described below. 

A. Principal Component Transformation (PCT) 

This is a widely-used linear orthogonal transformation for 

converting a set of observations on possibly correlated 

variables into a set of observations on linearly uncorrelated 

variables called principal components [6]. The number of 

principal components is less than or equal to the number of 

original variables. This transformation is defined in such a 

way that the first principal component has the largest possible 

variance (that is, accounts for as much of the variability in the 

data as possible), and each succeeding component in turn has 

the highest variance possible under the constraint that it be 

orthogonal to (i.e., uncorrelated with) the preceding 

components. Principal components are guaranteed to be 

independent only if the data set is jointly normally distributed. 

PCT is sensitive to the relative scaling of the original 

variables. Depending on the field of application, it is also 

called the Karhunen–Loève transform (KLT), and so on. 

Let X be a  𝑚 × 𝑛 data matrix each of whose n columns 

represents an observation on an m-variate random variable U.  

It is assumed that the columns have zero empirical mean (that 

is, the arithmetic mean of the n observations has been 

subtracted from each of them). If the 𝑚 × 𝑚 matrix Σ is the 

dispersion matrix of the observations, with eigenvalues 

λ1 ≥ λ2 ≥ ⋯ ≥ λm ,  the corresponding eigenvectors being 

𝑷1, 𝑷2, ⋯ , 𝑷𝑚 , then the principal component transformation 

of X that preserves dimensionality (that is, gives the same 

number of principal components as the original variables) is 

given by 

 

 

where P is a 𝑚 × 𝑚 orthogonal matrix having,𝑷1 , 𝑷2 , ⋯ , 𝑷𝑚   

as its columns, and the columns of Y are the transformed 

versions of the original m-variate observations on U forming 

the columns of X. 

B. The Trimmed Mean 

Let 𝑥1 , 𝑥2 , ⋯ , 𝑥𝑛  be n univariate observations, and let the 

corresponding ordered observations be 𝑥(1), 𝑥(2), ⋯ , 𝑥(𝑛) . 

Then, for some 𝛼 ∈  0,0.5 , where 𝛼 = 𝛼1 + 𝛼2,  for 

some 𝛼1 , 𝛼2 ∈  0,0.5 ,  the -trimmed mean of the n 

observations is defined as 

𝑥 𝛼 =
1

𝑛 − 𝐴1 − 𝐴2

 𝑥 𝑖 

𝑛−𝐴2

𝑖=𝐴1+1

, 

where 𝐴𝑗 =  𝑛𝛼𝑗 /2 , 𝑗 = 1,2,  ∙  being the floor function. It 

is nothing but the average of observations excluding the A1 

smallest and A2 largest, so that a proportion  of the 

observations (that are supposedly extreme) are excluded.  

 

VI. RESULTS 

A. The Benchmark Telephone Speech Corpus NTIMIT 

The database NTIMIT [12], [13], like TIMIT [14], [15] is 

PX,Y 
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an acoustic-phonetic speech corpus in English, belonging to 

the Linguistic Data Consortium (LDC) of the University of 

Pennsylvania. TIMIT consists of clean microphone 

recordings of 10 different read sentences (2 sa, 3 si and 5 sx 

sentences, some of which have rich phonetic variability), 

uttered by 630 speakers (438 males and 192 females) from 

eight major dialect regions of the USA.   It is characterized by 

8-kHz bandwidth and lack of intersession variability, 

acoustic noise, and microphone variability or distortion. 

These features make TIMIT a benchmark of choice for 

researchers in several areas of speech processing. 

B. Baseline Performance of the MFCC-GMM Method 

Using a number of competing MFCC-GMM classifiers, 

the overall classification accuracy obtained by us with all 630 

speakers in NTIMIT was 34.96% when 6 out of the 10 

recordings per speakers were used for training and the 

remaining 4 were used for testing (referred to as the 6:4 

dataset).  This improved to 42.14% when 8 out of the 10 

recordings per speakers were used for training and the 

remaining 2 were used for testing (referred to as the 8:2 

dataset) 

The competing classifiers referred to above were obtained 

by varying certain tuning parameters of the generic 

MFCC-GMM model.  The number of MFCCs as well as the 

number of mel-scale filters was 38 for all these classifiers, 

and a 32-component GMM was used in each case.  

C. Improvement after Principal Component 

Transformation 

Using the same set of competing MFCC-GMM classifiers 

as above, the greatest recognition accuracy obtained, after 

transformation of MFCCs by PCT, for all 630 NTIMIT 

speakers was 42.26% in the 6:4 case and 52.30% in the 8:2 

case.   

D. Improvement after Incorporating Robust Approach 

To compute the quantity 𝜌 λ𝑖 , the trimmed mean 

procedure was applied for different combinations of  𝛼1, 𝛼2, 

and  it was found that in the best scenario, there was a 

maximum improvement of a modest 3% over the baseline 

MFCC-GMM system, with 𝛼1 =  𝛼2= 0.1. However, when 

this was applied in conjunction with the PCT-transformation, 

the improvement was even more substantial, 48.29% and 

58.97% for the 6:4 and 8:2 cases respectively. 

E. Improvement after Combining Feature Sets 

We have used a combined feature set with 13 MFCCs, 13 

delta features based on them and 13 PLPCs. This combined 

set performed much better in improving the classification 

accuracy which climbed up to 54.8% and 64.76% 

respectively. 

F. Improvement Using Ensemble Classifiers 

 In Table I, we show the results of using the MFCC based 

classifier and the combined feature based classifier for two 

experiments where the window time for generating the 

MFCCs were set at two different values. When we employed 

an ensemble classifier using these four classifiers by 

aggregated likelihood method, the results improved to 

60.24% in the 6:4 case and 70.48% in the 8:4 case.  

Thus the overall improvement over the baseline 

GMM-MFCC classifier was nearly 70% (60% compared to 

35% in 6:4 and 70% compared to 42% in 8:2) in both cases. 

These results are summarized in Table I. 

 
TABLE I: RESULTS ON NTIMIT DATABASE 

Type of features used 

6:4 8:2 

MFCC  MFCC-

PLPC 

 MFCC  MFCC-

PLPC  

Window time (0.02) 48.29 51.27 58.97 59.92 

Window time (0.03) 47.94 54.82 59.60 64.76 

Combined 60.24 70.48 

Baseline (ordinary 

GMM-MFCC) 
34.96 42.14 

% Increase over 
baseline performance 

72.3 67.3 

 

VII. CONCLUSION 

From the results presented in the previous section, it is 

quite evident that the proposed approach, using an ensemble 

classifier with a combined feature set in conjunction with the 

principal component transformation, can significantly 

improve the performance of the Gaussian Mixture 

Model-based speaker identification system. Extensive 

experimentation with the benchmark NTIMIT data 

empirically establishes that it has tremendous potential for 

improving the degraded performance of the MFCC-GMM 

model particularly in the case of noisy speech data. In this 

work, we have experimented solely with the maximum 

likelihood approach. As a future direction, one could perhaps 

compare an estimated GMM model based on the test 

utterance with those based on different speakers. For this 

comparison one could possibly try minimizing an appropriate 

divergence measures between the estimated densities by the 

GMM models.  
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