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Abstract—It is getting harder to deal with the large data sets 

by the classical hierarchical clustering algorithm, so we propose 

an efficient quantum hierarchical clustering algorithm, in 

which the quantum bit (qubit) is used to represent the data 

point in the space. For quantum entanglement, the distance 

between two data points is calculated through adding an 

auxiliary particle to construct the entangled state. Then a 

projective measurement is performed on the auxiliary particle 

alone. The distance between two points is acquired by the 

projective measurement. We use the distance of the cluster 

centroids as a measure of similarity between clusters. Also, 

based on the principle of the minimum cluster centroids 

distance, the nearest two clusters are merged. We aim at 

improving time and space complexity and effect of the 

clustering of the hierarchical clustering algorithm.  

 
Index Terms—Large data, hierarchical clustering, qubit, 

entangled states.  

 

I. INTRODUCTION 

Nowadays, on the one hand, the data generated by 

mankind increase rapidly beyond our imagination. On the 

other hand, the size of the classic computer chip is difficult 

to become smaller as the post-Moore era ends, so further 

improvements in the calculation speed seem to be 

impossible. Scientists predicted big data analysis such as 

machine learning, natural language processing and pattern 

recognition will face more severe challenges in the future 

[1]-[3]. 

As one of the important research contents of machine 

learning, pattern recognition and so on, the clustering 

analysis plays an extremely important role in identifying the 

internal structure of data. The clustering analysis usually can 

be divided into five categories, partitioning-based approach, 

hierarchical approach, density-based approach, grid-based 

approach, and model-based approach [4], [5]. Hierarchical 

clustering analysis is one of the pillars of clustering analysis 
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in practical application [6]-[9] because it is simple and easy 

to implement. However, in the era of big data, the 

development and application of most clustering algorithms 

are constrained by the high time and space complexity. 

Hierarchical clustering analysis also has the same dilemma. 

Although hierarchical clustering analysis is simple, it seems 

to be too slow for the large data sets. The time complexity of 

at least O(nlog2n) is required, where n is the number of data 

points. However, quantum computing can provide a good 

solution for the low efficiency of the clustering analysis 

algorithm. 

In recent decades, quantum computing has made amazing 

achievements [10]-[13]. Quantum coherence and quantum 

entanglement are used to quantum computing, which making 

quantum computing has a unique way of calculating that is 

completely different from the classical computation. 

Moreover, the parallelism of quantum computing shows 

remarkable superiority that classic computing cannot catch 

up. In 1989, Deutsch first proposed the Deutsch quantum 

algorithm [10], which is used to solve the n-bit Deutsch 

problem. This quantum algorithm is a good demonstration of 

the parallelism of quantum computers for the first time. It 

also brings the inspiration for the quantum computing 

research. The efficiency of quantum computer is far faster 

indeed than that of classic computer in solving some 

problems. After that, Shor [11], [12] and Grover [13] 

showed the advantages of quantum computing in solving 

some of the classical problems respectively, such as RSA, 

DES, AES. Since then, the Algorithm quantization sets off a 

research boom in the international academia, and the 

quantum computing provides a new way of accelerating the 

classic algorithms. 

In the past ten years, some scholars carried out some 

preliminary researches about combinatorial machine 

learning and quantum algorithms [14]-[17]. Aïmeur et al. 

[18] first proposed learning in quantum states in 2006, and 

they put forward a quantum dichotomy algorithm. The 

fidelity of quantum states is used to determine the quantum 

state similarity. In 2008, a learning model of quantum state 

was raised by Gambs et al. [19], which is used to classify an 

unknown quantum state. In 2013, Lloyd et al. [20] proposed 

a supervised and unsupervised quantum machine learning. 

After that, more and more quantum machine learning 

algorithms have been presented [21]-[24]. In 2015, Cai et al. 

[25] implemented an experiment, based on entangled 

quantum machine learning. Although the above quantum 

machine learning algorithms use the quantum way to achieve 

the classification or clustering analysis, most of them 

focused on such case as dividing all objects into two clusters. 

As for the case of dividing into any number of clusters, it 

still needs to be further studied. Thus, we propose a quantum 

hierarchical clustering algorithm based on the classical 

Quantum Hierarchical Clustering Algorithm Based on the 

Nearest Cluster Centroids Distance 

Fengbo Kong, Hong Lai, and Hailing Xiong 

International Journal of Machine Learning and Computing, Vol. 7, No. 5, October 2017

100doi: 10.18178/ijmlc.2017.7.5.628

mailto:kfb_wavelet@163.com


hierarchical clustering analysis. This algorithm has three 

improvements: (1) the qubit is applied to represent the data 

point in the space, (2) the distance between the points is 

calculated by introducing an auxiliary particle to construct 

the quantum entangled states, and (3) the minimum cluster 

centroids distance between clusters is used as the merging 

rule, instead of the minimum distance of two points between 

clusters. 

 

II. CLASSICAL HIERARCHICAL CLUSTERING ANALYSIS 

In the hierarchical clustering analysis, there are two 

fundamental types of hierarchical clustering analysis, 

agglomerative hierarchical clustering algorithm based on 

bottom-up merging and divisive hierarchical clustering 

algorithm with top-down splitting [26]. Strategies for the 

two types are as follow: 

 Agglomerative clustering: it is a bottom-up approach. 

Each object is its own initial cluster. As one move 

up the hierarchy, pairs of clusters are merged. Until 

all objects are in the same cluster, it ends. 

 Divisive clustering: it is a top-down approach. All 

objects start in one cluster. Then one cluster is split 

into two clusters recursively as one move down the 

hierarchy. Until all clusters only contain one object 

respectively, it ends. 

Both this algorithm are exactly reverse of each other. So 

in this paper, we focus on the quantization of the 

agglomerative hierarchical clustering algorithm in detail. 

The specific algorithm steps of the classic agglomerative 

hierarchical clustering are as follows: 
 

Input: n data points, the number of terminating clusters k; 
Output: k clusters; 

(1) Let each data point be an initial cluster, respectively; 

(2) Compute the similarity of clusters between pairs of clusters and 

find the nearest two clusters; 

(3) Merge the nearest two clusters to generate a new set of clusters; 

(4) Repeat the second and the third steps until the number of 

defined clusters k is reached. 

 

Fig. 1 describes the processing of an example about the 

agglomerative hierarchical clustering method and the 

divisive one. The data sets contain five objects {a, b, c, d, e}. 

a

b

c

d

e

Step 1 Step 2 Step 3 Step 4 Step 5

Step 5 Step 4 Step 3 Step 2 Step 1

a  b  c  d  e

AGNES

(Agglomerative)

DIANA

(divisive)

Fig. 1. Aggregation and divisive hierarchical clustering of data objects {a, 

b, c, d, e}. 

 

According to the number of clusters by user requirements, 

the data sets can be divided at different hierarchies. For 

example, the user requests the five objects to be divided into 

three clusters, then the aggregation hierarchical clustering 

algorithm just needs to work to the third step of the Fig. 1. 

The advantages of the algorithm have been listed in the 

above section, but the computational complexity still 

restricts its application scope in large volumes of data. Also, 

effect of the clustering is not ideal to a certain extent. 

 

III. QUANTUM HIERARCHICAL CLUSTERING ALGORITHMS  

With the increase of the data sets, the time and space 

complexity of the classical hierarchical clustering analysis 

mostly exponentially rise. Luckily, its time and space 

complexity can be greatly reduced by the combination of 

quantum computing and the classical algorithms. 

A. Quantum Representation of Data Points in the Space 

and the Distance 

The biggest difference between our algorithm and the 

classical hierarchical clustering is the representation of data 

points and the calculation of distance in the space. 

1) Quantum representation of the data points in the 

space 

Data points in space are vectors. Quantum states can be 

used to represent data points in space, such as data point 
ix , 

which can be represented by quantum state 
i i ix x x  , 

where 
ix  represents qubit. For example, when the vector is 

four dimensions, 
ix can be expressed as: 

0 1 2 300 01 10 11ix                           (1) 

where 00 , 01 , 10 , 11  are the calculation basis, 2

i
 

(i=0, 1, 2, 3) is the probability that the corresponding 

calculation basis is obtained after the measurement, all 

coefficients αi(i=0, 1, 2, 3) are satisfied the condition of 
3

2

0

1i

i




 . 

2) Quantum representation of the distance between two 

data points 

According to the above description, we could get the 

distance between the two points of the quantum expression 

of D: 

  

2

   

i j i j

i i j j i i j j

D x x x x

x x x x x x x x

   

  

               (2) 

The core idea of the quantum algorithm is to use the 

coherence of the quantum state, so that the result of the 

satisfying condition is enhanced while the result of the 

conditional dissatisfaction is weakened. Thus, the result of 

the satisfying condition occurs at a high probability after the 

measurement. Quantum entanglement reflects the coherence, 

the probability and the spatial nonlocalization of quantum 

states. Therefore, an auxiliary qubit is added to construct the 

quantum entangled state between the two data points. 

Through the measurement of the entangled state, we obtain 

the relation among the probability, the Euclidean distance 

and the inner product. Then we could get the distance of the 
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two data points. The detailed computing steps of distance D 

are described in the next subsection. 

B. Algorithms Description 

In the subsection, we describe the concrete steps of the 

quantum hierarchical clustering algorithm as follows. There 

is a data set X that contains N d-dimensional data, where 

d=2
n
. 

 

Input: N quantum states of n qubits, user-specified cluster numbers 

k (k is much smaller than n); 
Output: k quantum superposition states (i.e., k clusters) 
(1) Each point as an initial cluster, that is, each quantum state as an 
initial cluster, and the initial cluster centroids is itself for each 
point. So, let t=0, where t denotes the times of merger, 
(2) Calculate the distances of cluster centroids between pairs of 
clusters. According to the minimum cluster centroids distance rule, 
the two nearest clusters are merged into the same cluster. Then, 
t=t+1 , 
(3) Calculate the cluster centroids of the clusters after 

reclassification and update them. 
rc is the cluster centroids of the 

cluster r, 

1

1 rn

r r r i i

ir

c c c x x
n 

  
,where nr is the number of data 

points in the cluster r, xi is the data point in the cluster r, 

(4) It ends until t satisfies t=n-k. Otherwise, repeat the second and 
the third steps. 

 

In the second step of the quantum hierarchical clustering 

algorithm, the operation of calculating the distance D as 

follows: 

(1) The way of calculating the distance between two 

points is to add an auxiliary qubit between the two points 

ix and
jx . They formed an entangled state: 

 
1

= 0 1
2

i janc anc
x x                          (3) 

Constructing the entangled state of (3) could be obtained 

by querying QRAM. The QRAM consists of an address 

register and an output register. The address register contains 

an address of the superposition of 
jj a

p j (where j has not 

any relationship with the j of xj ). The output register 

contains the information superimposed state 
j jj da

p j D  
associated with the address register. For example, the 

QRAM output register and the address register are 

considered as a function f and the input of the function f 

respectively. When the address is 
 

1
0 + 1

2

and the data 

is
d

D = i jx x , the output is 
 

0 1 1
, 0 1

2 2 2
i jf x x

 
  

 

, 

i.e., the required entangled state. 

(2) Take a projective measurement of  to observe if the 

measurement results on  : 

 
22

= 0 1i j i jx x x x                     (4) 

In order to generate  , we carry out unitary 

transformation e
-iHt 

for state  
1

0 - 1 0
2

 , where 

 H= 0 0i j j xx x x   . The result of the 

transformation as follows: 

  
   

   

1
cos 0 cos 1 0

2

sin 0 sin 1 1
2

i j

i j

x t x t S

i
x t x t

 

  



Select an appropriate t, which meets the condition of 

1i jx t x t， . Then (5) is computed, we obtain 
 

by the 

probability of  
2 2

21

2
i jx x t . Repeat a projective 

measurement on  , we obtain   with the probability of p: 

 p p M M     

      


Then, according to M   , (6) can be rewritten as 

follows: 

 

   

 

22

22

22

0 1 0 1
    

2

0 1 0 1
          

2

  
  

2

i j i j

i j

i j i j

i j

i i j j i i j j

i j

p p

x x x x

x x

x x x x

x x

x x x x x x x x

x x

     

 




 



 






   
 

Combined (2) with (7), the distance between 
ix  and 

jx  

is obtained as follows: 

 22
2 i jD p x x  

         
 

Expand (7): 

 

 

22

22
  

2

i i j i j i j j i j

i j

p p

x x x x x x x x x x

x x



  




           (9) 

From (9), we obtain the inner product expression between 

ix and 
jx  as follows: 

    
22

1 2i j j i i j i jx x x x p x x x x           (10) 

In the third step of the quantum hierarchical clustering 

algorithm, the cluster centroids of each cluster are calculated. 

Assume that there are ni points in the i-th clusters, i.e., 

{x1,x2,…,xni}, we could calculate the cluster centroids: 

1 11 2

1

1 i

i ii

n
n nn

k k

ki i i

x x x xx x x
x x

n n n 

   
   

IV. ANALYSIS OF ALGORITHMS 

The quantum bit (qubit) is not yet clearly defined. 

Compared to the bits in the classic information, most 
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scholars are accustomed to the qubits as the basic unit of 

quantum information. In the classical information, the 

classical bits have two states of 0 and 1. A classical bit string 

consisting of 0 and 1 is encoded to express different 

classical information. In quantum information, the qubits are 

typically represented by two quantum states 0 and 1 , then 

encoded with qubits consisting of 0  and 1 . In the 

quantum world, a qubit, which continuously and randomly 

exists in any superposition state, is a vector in a two-

dimensional Hilbert space. The superposition state of a qubit 

can be expressed by the formula = 0 + 1  , where both α 

and β are complex number and satisfy the condition of 
2 2

+ =1  . The quantum superposition state is one of the 

key characteristics that make the quantum calculation 

different from the classical calculation. It is also the 

theoretical basis of quantum parallel computing [27]. For a 

register of n qubits, the quantum superposition states of n 

qubits can be represented by
2 1

0

=

n

n

x

c x




 
. Making 

calculation of this formula once is equivalent to making 

calculation of numbers at the same time, which makes the 

time complexity of the algorithm decrease substantially. In 

our algorithm, the time cost mainly depends on the distance 

calculation. The time complexity of the classical hierarchical 

clustering in calculating the distance between two d-

dimensional vectors is O(d). However, in the quantum world, 

only the time complexity of O(log2d) was required in the 

same data sets [28]. From the time spend of calculating the 

distance of two d-dimensional data, we could no 

exaggeration to say that our algorithm greatly reduces the 

time cost. To save time often means that the more storage 

space will be used [29]-[31]. But in the quantum world, it is 

not the case. 

For the space complexity, we take the information 

quantity expressed by two bits as an example to illustrate the 

space complexity analysis of our algorithm. In classic 

calculation, 00,01,10,11 are used to express four different 

messages respectively. The two bits of classic memory can 

only store one of the four states once, while the two qubits of 

quantum memory can store these four different states in the 

form of quantum superposition at the same time. It means 

that the storage capacity of the quantum computer increase 

exponentially, compared to the traditional computer on the 

condition of the same bits of the register. For example, for 

an n-qubit register, 2
n 
different numbers can be stored at the 

same time, and the 2
n
 different numbers are expressed in the 

same one quantum state. The space complexity of our 

algorithm mainly falls on the cost of the storage of data sets. 

Compared to the classic storage, 1/2
n
 the ability of the 

classic storage register is enough for our algorithm to store 

the same size of the data sets.  

Due to the quantum parallel computing, the time and 

space complexity of our algorithm decrease sharply. 

Quantum parallel computing reflects the most important 

advantage of quantum computing. The classic computer 

computing speed and information processing capabilities 

cannot be compared with the quantum computer. Thus, the 

quantum hierarchical clustering algorithm is superior to the 

classical one in the time and space complexity through the 

above analysis. The advantages of our algorithm are more 

obvious, especially on large data sets.  

 

V. CONCLUSION 

In this paper, we have elaborated the hierarchical 

clustering analysis based on quantum computations. Then 

we have proposed the quantum calculation method of the 

distance between two data points. Finally, we analyzed the 

time and space complexity of the proposed algorithm. It 

shows that the quantum hierarchical clustering algorithm 

could bring an exponential speed-up over classical 

algorithms. Moreover, considering the shortcoming that 

classical hierarchical clustering cannot revoke the merging 

operation of the previous step, we use the principle of the 

minimum cluster centroids distance replace the principle of 

the minimum data points distance. It makes effect of the 

clustering much better than the classical one. Of course, this 

alternative strategy is not perfect. But we will further study 

how to overcome the lack of the quantum hierarchical 

clustering algorithm well in the follow-up work. 
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