
 

Abstract—Autonomous driving requires continuous and 

reliable centimeter level positioning accuracy for acceptable 

lane level navigational performance. Centimeter level 

positioning accuracy cannot be achieved using a conventional 

DGPS/DR. To deal with the above problem this paper proposes 

the novel and effective bias/shift estimation of DGPS/DR. On 

this paper, a surveyed precise map is used that is consisting of 

waypoints with centimeter level positioning accuracy for the 

lateral and longitudinal directions. The time history of 

DGPS/DR waypoints are compared with the closest set of 

waypoints from surveyed precise map. Both a straight line 

fitting method and a sliding curve method have been used in 

order to match the shape of the DGPS/DR trajectory with 

surveyed precise map. For lateral and longitudinal DGPS/DR 

bias estimation, we have adopted a disturbance observer. 

Finally, experiments were conducted to prove the feasibility of 

the proposed algorithm for the shift estimation of DGPS/DR. 

This paper also compares the experimental results of GPS/DR 

with the ones using RTK GPS/DR during autonomous driving. 

 
Index Terms—RTKt, DGPS bias, Map based DGPS bias 

estimation, DGPS based autonomous driving. 

 

I. INTRODUCTION  

In the recent time promising demonstrations of self-

driving car in real conditions have been carried out using 

market available sensors [1]. For most of the self-driving car 

demonstrations a custom made or informative digital map of 

the route to be followed by professional map making 

companies has been used. For implementing the reliable and 

continuous navigation capability, a vehicle satellite 

positioning system is augmented with other sensors such 

inertial measurement unit, odometer and exteroceptive 

sensors such as camera and LIDAR [2], [3]. Differential 

correction obtained by using GPS pseudo-range code 

(DGPS) can achieve an accuracy within 1-5m, on the other 

hand, the usage of GPS carrier phase information such as 

real time kinematics (RTK) GPS can achieve centimeter 

level positioning accuracy.  

In case of loss of GPS signal due to environmental causes 

leads to the degradation of positioning accuracy [4], [5]. In 

such scenario the bias or the shift in the position should be 

estimated online and compensated for safety reasons.  

Map matching algorithms have been used extensively in 

prior works to match the position from the positioning 

system to one on the road network in the map. Usually, the 

time history of the trajectory is matched with the shape of 
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the road network. Map matching technique generally 

include geometrical analysis such as point to point matching, 

point to arc matching and curve to curve matching, 

probability theory, extended Kalman filter, and hidden 

Markov model [6], [7]. In order to reduce localization error, 

[8]-[10] proposed the method that uses lane detection 

method to improve the GPS/DR error estimation. However, 

in case of no lane visual information such method is 

susceptible of noise addition. Various authors [4], [5] 

proposed the use of enhanced map-matching algorithm for 

urban environments, using topological information of digital 

map, as well as historical information of the route followed 

by a fuzzy rule for real time application.  

Autonomous driving requires continuous and reliable 

centimeter level positioning accuracy for acceptable lane 

level navigational performance. Map matching algorithm 

augmented with exteroceptive sensors such as camera and 

LIDAR can be used to derive DGPS/DR lateral bias, but 

longitudinal bias is difficult to estimate [1]. In order to 

overcome the limitation of map matching algorithm, as well 

as dependency of lane information and visible feature for 

exteroceptive sensors for bias estimation we propose the use 

of surveyed precise map built by using RTK GPS with 

centimeter level positioning accuracy. The surveyed precise 

map consists of waypoints at 10 cm distance interval. In 

order to predict the DGPS/DR lateral and longitudinal bias 

we use the time history of position trajectory. 

This paper has been divided into five sections. The first 

section briefly introduces the objective of the paper 

followed by the brief literature survey and a brief 

introduction of the paper. Second section defines the 

terminology used and, mathematical formulation of 

disturbance observer for bias estimation. Third section deals 

with the formulation of straight line fit algorithm and curve 

to curve matching. Fourth section explains the experimental 

results. Finally, last section is for conclusion. 

 

II. MAP-MATCHING ALGORITHM 

A. Problem Definition 

Two coordinated system, earth fixed coordinate system 

𝑋𝑌  and body fixed coordinated system 𝑥𝑦  has been used 

(Fig. 1) for defining the variables and control application. 

For map matching three definitions for set of waypoints 

representing section of the map 𝐶 (Fig. 1), set of waypoints 

representing the vehicle trajectory 𝑇 and finally full map 𝑀 

are defined as follows: 

Test Segment:  Test segment, 𝑇 =  𝑇𝑛1 , 𝑛1 = 1,2 …𝑛  is 

the time history of the position trajectory from DGPS/DR as 

shown in Fig. 1.  
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𝑇𝑛1 =  (𝑥, 𝑦, 𝜓, 𝜓, 𝑣, 𝑣 )                        (1) 

where  𝑥, 𝑦  is with respect to 𝑋𝑌, ψ vehicle heading , 𝜓,  

vehicle yaw rate, (𝑣, 𝑣)  represent the vehicle velocity and 

acceleration respectively.  


Fig. 1. Earth based coordinate system and body based coordinate system. 

 

Candidate Segment: Candidate segment, 𝐶 =
 𝐶𝑛2, 𝑛2 = 1,2 …𝑛2 is the set of waypoints closest to test 

segment 𝑇.  

Cn2 = (𝑥𝑛2 , y𝑛2, 𝜙)

𝜙 = 𝑎𝑡𝑎𝑛2(𝑥𝑛2, y𝑛2)

where (𝑥𝑛2 , y𝑛2) is waypoint in digital map with respect to 

𝑋𝑌 . Dynamic time wrapping method is used to find 𝐶 

corresponding to 𝑇  from 𝑀 . 

𝑇1 = 𝐶1 i.e.𝑑1 = min(𝑑1, 𝑑2 , 𝑑3) , where 𝑑𝑖 =  norm(Ti −
Ci   and 𝜓 − 𝜙 ≤ 90. 

Digital Map: A digital map, 𝑀 =  𝐷𝑛3 , 𝑛3 =
1,2 …𝑛3  is the set of the position waypoints collected using 

RTK enabled GPS for autonomous driving.  

𝐷𝑛3 = (𝑥𝑛3, y𝑛3, κ)

where (𝑥𝑛3 , 𝑦𝑛3) is waypoint in digital map with respect to 

𝑋𝑌, 𝜅 is path curvature at the corresponding waypoint. 

B. Disturbance Observer 

Disturbance observer is a useful tool to account for 

unmolded or undesired force acting on the system, widely 

used in the field of robotics and control application. In this 

study we use the principle of disturbance observer to 

estimate the DGPS/DR lateral and longitudinal bias, as the 

average or mean of point to point bias between 𝐶 and 𝑇 is 

not always good enough for compensating the DGPS/DR 

bias. For the disturbance observer formulation, we use state 

space model representation, as in (4). 
 

  𝑥 𝑘 + 1 =  𝐴𝑥 𝑘 + 𝐵 𝑢 𝑘 + 𝑑 𝑘                (4) 

 
      𝑑 𝑘 + 1 = 𝑑(𝑘)                                  (5) 

 

𝐴 =  
0 0
0 0

 , 𝐵 =  
1 0
0 1

 , 𝐿 =  
𝐿 0
0 𝐿

                  (6) 

 

In (4) 𝑥 𝑘 + 1  represents the absolute position derived 

from the DGPS/DR positioning system, 𝑢 𝑘  represents the 

closest point corresponding to 𝑥 𝑘 + 1  in the digital map 

and 𝑑 𝑘  represents the DGPS/DR lateral and longitudinal 

bias. Equation 5 represents the real system dynamics of the 

DGPS/DR bias. 

 

𝑑 (𝑘 + 1) = 𝑑 (𝑘) + 𝐿 ∗ (𝑑 𝑘 − 𝑑 (𝑘))               (7) 
 

           𝑒(𝑘 + 1) = 𝑒(𝑘)(1 − 𝐿𝐵)                        (8) 
 

Equation 7 represents the numerical estimation of (5), 

choosing appropriate 𝐿  (observer gain) can give good 

estimate of real bias. Subtracting (5) and (7) gives the error 

equation of estimated error 𝑒 𝑘 + 1  and real bias error 

𝑒 𝑘  1 − 𝐿𝐵  (8). As 𝐵  is identity matrix, 𝐿  should lies 

between 0-1 to reduce 𝑒(𝑘 + 1) to zero. 

Substituting 𝑑 𝑘  from (1) in (7) will give (9), rearranging 

(9) gives (10). 

 

𝑑  𝑘 + 1 = 𝑑 𝑘 + 𝐿𝐵(𝑥 𝑘 + 1 − 𝑢 𝑘 − 𝑑  𝑘 )       (9) 
  

𝑑  𝑘 + 1 =  1 − 𝐿𝐵 𝑑 𝑘 + 𝐿𝐵 𝑥 𝑘 + 1  − 𝐿𝐵𝑢 𝑘   (10) 

 

III. SECTION MATCHING ALGORITHM 

For matching the test segment with the digital map, two 

approaches are followed: 

A. Straight Line Fit 

In the case of straight line test segment 𝑇 as shown in Fig. 

2 (bottom left corner) by dotted line and corresponding 

candidate segment 𝐶  by dashed line, linear straight line 

equation is used to fit the 𝑇 and 𝐶. Hence, two linear straight 

line equation can be derived one defining 𝑇  i.e. (11) and 

other defining 𝐶 (12). The advantage of using straight line 

fit for lateral and longitudinal DGPS/DR bias is that any 

jump or outlier in the time history of DGPS/DR can be 

easily avoided. Straight line fit to the 𝑇  and 𝐶  can easily 

give both longitudinal as well as lateral bias. In case of map 

segment aligning perfectly with north axis or east axis 

straight line fit cannot give lateral and longitudinal 

DGPS/DR bias at the same time. In such condition two 

measurements are necessary to compute the DGPS/DR bias 

separately.  

 

 
Fig.  2 Time history of DGPS/DR and RTK-GPS/DR test segment 𝑇 (solid 

and dotted line), the corresponding candidate segment (dashed red lien) 𝐶 
and full digital map with blue solid line 

     𝐶(𝑦) = 𝑎 ∗ 𝐶(𝑥) + 𝐵                          (11) 
 

   𝑇(𝑦) = 𝑎 ∗ 𝑇(𝑥) + 𝐵′                          (12) 

In order to match 𝑇 with 𝐶  lateral and longitudinal bias 
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can be derived easily using (11) and (12). 𝐶 𝑦 , 𝑇(𝑦) 

and𝐶 𝑥 , 𝑇(𝑥) represent the RTK-GPS and DGPS latitude 

and longitude position respectively, 𝑎 represents the slope of 

the straight line and 𝐵, 𝐵′ finally represents the y-intercept. 

Adding the derived bias to 𝑇 gives exactly 𝐶. 

B. Curve to Curve Matching 

To overcome the limitation of straight line segment based 

lateral and longitudinal bias computation, curved section 

matching approach was used. The proposed method is 

similar to one used in map to map matching algorithm [11] 

i.e. dynamic time wrapping algorithm. Fig. 3 shows the plot 

of T and C (bottom left zoomed portion of Fig. 1).  

 

 
Fig. 3 Curved Test Section (solid black line), and the corresponding 

candidate segment (dashed red line). 

 

Point to point matching is used to identify the candidate 

node on 𝑀 , given a candidate node set of waypoints 

originating from the candidate node are used to define 𝐶 [7].  

 

      norm 𝐶𝑖+1 − 𝐶𝑖 = norm 𝑇𝑖+1 − 𝑇𝑖                (13) 

       

𝑑𝑖 =    𝑛𝑜𝑟𝑚(𝐶𝑖+𝑗−1 𝑥, 𝑦 − 𝑇𝑗 (𝑥, 𝑦))𝑙2
𝑗=1

𝑙1
𝑖=1        (14) 

 
Once the possible candidate segment waypoint has been 

found, the length of C i.e. 𝑙1 is chosen in such a way that it 

should enclose the test section 𝑇 (i.e. 𝑙1 > 𝑙2). For one to 

one-point matching in 𝑇 and 𝐶, it is made sure that distance 

between consecutive waypoint of T should be same as that 

of C  (13). 𝑇 is slided over the 𝐶  and sum of the total 

Euclidian distance calculated using (14) is stored in 𝑑𝑖 . 

Finally the index of the minmum(𝑑𝑖)  i.e. (𝑑𝑖 =
min(𝑑𝑖)) gives the starting index of the 𝐶  segment 

matching closely with 𝑇 i.e.  𝑇𝑚 (15). As mentioned above 

both 𝑇  and 𝑇𝑚  have equal number of sampled position 

points the lateral and longitudinal error can be written as 

simple average 𝑒𝑖   (16).  

 
   𝑇𝑚 =  𝐶𝑖+𝑖𝑚𝑖𝑛 , 𝑖 = 𝑖 + 𝑖𝑚𝑖𝑛: 𝑖 + 𝑖𝑚𝑖𝑛 + 𝑙2          (15)                                 

 

           𝑒𝑖 =
 (𝐶𝑖𝑚𝑖𝑛 +𝑗−1 𝑥 ,𝑦 −𝑇𝑗 (𝑥 ,𝑦))𝑙2

𝑗=1

𝑙2
                     (16) 

 

IV. DGPS/DR BIAS ESTIMATION EXPERIMENTAL RESULT 

To prove the DGPS/DR bias estimation methods as 

proposed in section-III, data collection was done using the 

test vehicle (Toyota Estima Hybrid) within the campus of 

Toyota Technological Institute, Nagoya Japan. The test 

vehicle is equipped with a satellite based positioning system 

(GPS) augmented with dead reckoning sensor system 

provided by APPLANIX 610(A Trimble Company). The 

GPS is capable of using GPS carrier phase information 

(GPS-RTK) for differential position correction. The 

positioning system GPS/DR has the option to choose 

between GPS differential correction (i.e. GPS pseudo range 

code or GPS carrier phase information). All the experiments 

such as data collection for map building or autonomous 

driving GPS/DR sensor system operates at 200 Hz 

frequency. To begin with, position data to build the map was 

collected by manual driving. The collected position data was 

processed offline to remove any jumps in GPS/DR position, 

steady state position data (i.e. when the test vehicle was idle 

or not moving). After smoothing the position data was 

resampled and interpolated to make sure that 𝑛𝑜𝑟𝑚 𝐷𝑖+1 −

𝐷𝑖 = 10cm. All the software package for recording as well 

as autonomous control was written in ROS (Robot operating 

system). Three set of experiment were performed to prove 

the efficiency of proposed algorithm.  

C. GPS-RTK/DR Based Autonomous Driving 

For the autonomous driving only steering control was 

performed, the speed of the test vehicle was controlled 

manually by the person seating behind the wheels. Firstly, 

autonomous driving experiment using RTK-GPS/DR was 

carried out. The digital map 𝐷  was used for autonomous 

driving (Fig. 2).  

After the experiment time history of RTK-GPS/DR 

controlled trajectory was processed offline in order to 

validated the proposed map based positioning system bias 

estimation algorithm. The curved section 𝑇, shown in Fig. 2 

(top right corner, solid black line) was selected for bias 

estimation. As per geometrical matching the closest 

candidate segment with respect to 𝑇on 𝐷 was computed (𝐶). 

The test segment 𝑇 was slided over 𝐶 to find the best match 

(14). Finally the indices of minimum 𝑑𝑖  (i.e.  𝑖𝑚𝑖𝑛) give 

the starting indices of matched segment 𝑇𝑚. Fig. 4 shows 

the plot of 𝑇 + 𝑑, 𝑇 + 𝑒 and 𝑇𝑚.  

The main objective of this experiment was to show the 

lateral and longitudinal error range during RTK-GPS/DR 

based autonomous driving. Due to some inaccuracy of the 

controller and path smoothing the test vehicle cannot follow 

the curve section accurately, but still follows the defined 

path 𝐷 within an error range of ±30𝑐𝑚 which is acceptable 

for lane level navigational performance. 

 

 
Fig. 4. Plot of  𝑇𝑚  (Red dash and dot line), 𝑇 + 𝑑(dotted purple line) and ),  

𝑇 + 𝑒 (solid black line). 

Fig. 5 shows the xy-plot of point to point lateral and 

longitudinal error between the 𝑇𝑚  and 𝑇 + 𝑑 (dashed orange 
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line), 𝑇𝑚  and  𝑇 + 𝑒  using average error (solid blue line). 

From Fig. 4 it can be concluded that lateral and longitudinal 

error between 𝑇𝑚  and 𝑇 + 𝑑 based on disturbance observer 

lies within ±10𝑐𝑚   which is accepted for autonomous 

driving. 

 

 
Fig. 5. XY plot of lateral and longitudinal error derived using point to point 

difference between the 𝑇𝑚  and shifted 𝑇 using average error (solid blue 
line), and disturbance observer error (dashed orange line). 

D. Straight Line Fit 

For the next experiment, position data was collected using 

DGPS/DR mode in manual driving mode. During this 

experiment GPS carrier phase information was not used 

only GPS pseudo-range information was used. The main 

objective of the experiment is to find the lateral and 

longitudinal DGPS/DR bias, compensating which can make 

the test vehicle follow the map accurately within the defined 

error limit. The straight line section shown in bottom left 

corner of Fig. 2 was selected as test segment 𝑇. Geometrical 

approach to find the closest point to define the candidate 

Section 𝐶  (Fig. 2) was used. The straight line fit as 

explained in Section III. B was used to estimate lateral and 

longitudinal shift. 

Fig. 6 shows the plot of matched section 𝑇𝑚  (red dashed  

line), shifted test section 𝑇 + 𝑒 using straight line fit (dotted 

red line) and finally shifted 𝑇 + 𝑑  using the disturbance 

observer (dashed blue line). In straight line section straight 

line fit perform better than disturbance observer.  
 

 
Fig. 6. Plot of the matched section 𝑇𝑚  (dashed red line), 𝑇 + 𝑑 using the 

bias derived from disturbance observer (dashed blue line) and  𝑇 + 𝑒 (red 
dotted line). 

 

E. Curve Section Fit 

Similar approach as followed in straight line fit to find the 

candidate segment 𝐶  (i.e. geometrical matching) was 

followed for curve section also. 𝑇 and 𝐶 for this experiment 

has been shown in Fig. 2.  

For curved section straight line fit cannot be used to 

compute lateral and longitudinal bias estimate. Hence, 

curved to curve matching algorithm as explained in section-

III was used to derive the longitudinal and lateral DGPS/DR 

bias.  Test segment 𝑇  was slided (14) over the candidate 

segment 𝐶 to find the best matching segment. Finally, lateral 

and longitudinal error was derived using (16) and (4-10).  

Fig. 8 shows the plot of the lateral and longitudinal error 

between the matched segment 𝑇𝑚   and test segment 𝑇 (solid 

black line). From the error plot it can be concluded that 

lateral and longitudinal bias between 𝑇𝑚   and 𝑇 lies within 

60 cm to 100 cm. Fig. 7 also shows the lateral and 

longitudinal error between the 𝑇𝑚  and 𝑇 + 𝑒  using the 

average error based on (16) by dotted purple line and 𝑇𝑚  and 

𝑇 + 𝑑 (disturbance observer (4-10)) by dashed red line. 

From the Fig. 7 it can be concluded that estimation of 

lateral and longitudinal error based on disturbance observer 

does a better job than simple average lateral and longitudinal 

bias estimation.    

F. Autonomous Driving using GPS-RTK/DR and 

Compensated DGPS/DR 

Finally, autonomous driving experiment were conducted 

to prove the feasibility of the proposed algorithm in order to 

compute lateral and longitudinal bias. The map shown in Fig. 

2 was used for the experiment. At first GPS carrier phase 

information was used (GPS-RTK/DR) i.e. position accuracy 

was within 1-10cm. 
 

 
Fig. 7. XY plot of lateral and longitudinal error derived using point to point 

difference between the 𝑇𝑚  and 𝑇 (solid black line), point to point difference 

between the 𝑇𝑚  and 𝑇 + 𝑒  (dotted purple line), and 𝑇𝑚  and 𝑇 + 𝑑 (dashed 

red line). 

 

In case of DGPS/DR based autonomous driving, GPS 

carrier phase information was not used. For DGPS/DR 

based autonomous driving, at first the lateral and 

longitudinal bias is computed by manually following the 

map waypoint. The derived lateral and longitudinal bias by 

manual driving is used to compensate the positioning system 

during autonomous driving using DGPS/DR. Fig. 8 & Fig. 9 

shows the time history of lateral and heading error for 

autonomous driving using GPS-RTK/DR (dashed blue line) 

and compensated DGPS/DR (solid orange line).  From Fig. 

8 and Fig. 9 it can be concluded that error limit lies within 

the acceptable range and compensated DGPS/DR is capable 

of following the map waypoints within the desired error 

limit. The error plot in Fig. 8 and Fig. 9 does not 

superimpose over each other, because for autonomous 

driving only steering control is performed whereas speed is 

controlled manually.  
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Fig. 8. Lateral error plot for autonomous driving using Compensated 

DGPS/DR (solid orange line), GPS-RTK/DR (dashed blue line). 

 

 
Fig. 9. Heading error plot for autonomous driving using Compensated 

DGPS/DR (solid orange line), GPS-RTK/DR (dashed blue line). 

 

V. CONCLUSINON 

The paper proposes the use of straight line fit for the 

lateral and longitudinal bias of DGPS/DR positioning 

system. The straight line fit algorithm does not depend on 

the stop line information of the enhanced digital map. The 

paper also proposes the use of disturbance observer for the 

estimation of lateral and longitudinal error in case of curved 

section. The proposed disturbance observer performs better 

than the simple average error estimation. The autonomous 

driving experiment using compensated DGPS/DR showed 

similar performance as (GPS-RTK/DR). 
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