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Abstract—A stroke is the result of cell death caused by poor 

blood flow or vascular obstruction in the brain, but it normally 

happens suddenly and is hard to prevent. In addition, strokes 

are one of the main causes of death, with many people dying 

from this disease every year. Hence, using the latest technology 

to predict strokes is an important concern. 

In this study, we built a classifier based on the simulation and 

practical data both in 50 data sets from Japanese patients. We 

used attribute selection (CfsSubsetEval evaluator and Greedy 

Stepwise method) and Decision Trees (Random Tree algorithm) 

to build the classifier with high accuracy. In the end, the result 

demonstrates that our method, using data that merges the 

simulation and practical data, can achieve high accuracy. 

 

Index Terms—Stroke prediction, random tree algorithm, 

WEKA, select attributes, machine learning.  

 

I. INTRODUCTION 

A stroke is the result of cell death caused by poor blood 

flow or vascular obstruction in the brain, but it normally 

happens suddenly and is hard to prevent. In Japan, stroke 

ranks third among all causes of death, following cancer and 

heart disease [1]. As of 2014, an average of 130,000 Japanese 

people die of stroke per year, and there are over one million 

Japanese people suffering from cerebrovascular diseases 

which are potential factors for stroke. Patients' annual medical 

expenses reached 1821 hundred million Japanese yen in 2014 

[2]. In addition, according to trends in Japan’s aging 

population, the population of Japan will reach 117 million in 

2030 [3]. This means that the number of stroke patients and 

their medical expenses will grow. For these reasons, the issue 

of predicting and treating stroke should not be ignored. 

At the same time, following the innovative technology 

developed in recent years, the predicted result with high 

 
 

Manuscript received May 25, 2017; revised August 7, 2017. This work 

was supported in part by the Japan Department of Industrial Administration 

at the Tokyo University of Science and Jikei University School of Medicine 

(JUSM).  

Y. C. Chen is now with the Tokyo University of Science, Noda City, 

278-8510 Japan (e-mail: 7416647@ed.tus.ac.jp). 

T. Suzuki is now with the Tokyo University of Science, Katsushika-ku, 

125-8585 Japan (e-mail: 4514704@ed.tus.ac.jp). 

M. Suzuki and H. Ohwada are now with the Department of Industrial 

Administration, Tokyo University of Science, Noda City, 278-8510 Japan 

(e-mail: m-suzuki@rs.tus.ac.jp, ohwada@rs.tus.ac.jp). 

H. Takao is now with the Department of Neurosurgery and Innovation for 

Medical Informaion Techology, Jikei University School of Medicine, Tokyo, 

105-8461 Japan (e-mail: takao@jikei.ac.jp). 

Y. Murayama is now with the Department of Neurosurgery, Jikei 

University School of Medicine, Tokyo, 105-8461 Japan (e-mail: 

ymurayama@jikei.ac.jp). 

accuracy has become possible. Machine learning is one of the 

popular technologies of recent years, as it helps researchers 

that can make decisions or predictions by building a model 

from sample inputs. Especially, using different algorithms can 

produce different performance results. We applied Machine 

learning technologies in our study and developed a classifier 

with high accuracy. We expect that the result will help a lot of 

doctors to issue objective diagnoses and will also help 

patients get the correct treatment earlier. In the near future, 

stroke prediction will lead to a decrease in the number of 

patients, a reduction in medical expenses, and will even 

benefit Japan itself and its aging society.  

Therefore, the objective of this study was to build a 

classifier for onset stroke prediction using simulation and 

practical data. Our classifier includes a total of 49 features 

using a Random Tree algorithm. Data were obtained for 46 

patients whose aneurysm did not rupture and six patients 

whose aneurysm did rupture. We processed the data into a 

form that WEKA software can understand then applied it to 

WEKA and built a classifier to predict a ruptured aneurysm. 

The result was a good performance classifier, so when doctors 

issue diagnoses based on the use of our classifier, they can 

successfully predict the onset of strokes.  

 

II. MATERIALS AND METHODS 

This study used 50 data sets provided by the Jikei 

University School of Medicine (JUSM). These samples have 

49 attributes based on simulations of blood flow using 

computational fluid dynamics (CFD) data and medical history 

data (MH) data. Fig. 1 is a flow diagram of this study that 

considers the CFD data, MH data, and merged data (i.e., CFD 

data with MH data) together. We will provide a further 

explanation of these data below. 

 

 
Fig. 1. Flow Diagram of This Study. 
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In building a highly accurate classifier for stroke prediction, 

this work used Machine learning techniques, an attribute 

subset evaluator (CfsSubsetEval), a search method (Greedy 

Stepwise), and Decision Trees (i.e., a Random Tree 

algorithm), by WEKA.  

A. Stroke Prediction 

Stroke a major cause of death and serious long-term 

disability. A stroke can affect a person at any age, and it 

usually occurs suddenly. Actually, strokes can be prevented 

through therapeutic manipulation, and the modifiable risk 

factors are crucial [4]. Today there is much collected data 

regarding cases of various diseases in medical science [5]. 

However, a patient who suffers a stroke usually depends on 

the doctor’s medical knowledge for a diagnosis.  Therefore, as 

modern medicine and innovative technologies have been 

developed in recent years, they enable predicting strokes with 

high accuracy. For example, the development of simulated 

blood vessels provides us a different way of thinking about 

the causes of diseases. That is, the predicted result can help 

doctors to objectively diagnose, and doctors can provide the 

appropriate treatment to patients early. For these reasons, we 

were motivated to complete this study.  

B. Computational Fluid Dynamics Simulations of Blood 

Flow (CFD) Data 

As technology has progressed, image-based computational 

fluid dynamics has been widely used to obtain hemodynamic 

fields [6], [7]. Consequently, our cooperative research unit, 

JUSM, simulated the patients’ blood vessels as a 3D shape 

and collected the relevant information. The unit then 

identified seven physical blood-flow characteristics, 

including the pressure loss coefficient (PLC), the energy loss 

(EL), the exposure limit value (ELV), the maximum wall 

shear stress (WSS), the average WSS, the minimum WSS, 

and the oscillation index (OSI). Furthermore, this study 

considers the maximum, minimum, amplitude, and average of 

these physical quantities. In all, there are a total of 28 

attributes in the CFD data that were available for use in this 

study.  

C. Medical History (MH) Data 

The medical history (MH) data are related to stroke 

incidence and type and to survival and recurrence following 

the stroke [8]. Thus, in addition to using the CFD data, this 

study also considered patients’ MH data. There are two types 

of MH data. The first is categorical data. This contains the 

patient's gender and history of subarachnoid hemorrhage 

(SAH), smoking, blebs, diabetes mellitus (DM), hypertension 

(HT), hyperlipidemia, alcohol consumption, polycystic 

kidneys, cerebral infant, cerebral hemorrhage, past history 

and hormone replacement, as well as the patient's family 

history of SAH, unruptured aneurysm, and polycystic kidneys. 

The other type is continuous data, including the size of the 

aneurysm, the final age of consultation, the first length of the 

aneurysm, the maximum size of the aneurysm, and the first 

neck of the aneurysm. Overall, the MH data provides 21 

attributes. 

D. WEKA 

The Waikato Environment for Knowledge Analysis 

(WEKA) is a software package that collects Machine learning 

algorithms and data preprocessing tools [9]. It provides a 

unified workbench that allows researchers easy access to 

state-of-the-art techniques [10]. This study used the latest 

version of WEKA (3.8). Because of its various advantages, it 

is well-suited for developing new Machine learning schemes 

[11]. 

E. Attribute Selection 

Feature selection is normally done by searching the space 

of attribute subsets and evaluating each one. In WEKA, the 

user chooses an attribute subset evaluator and a search 

method to achieve the selection, which can be done using a 

full training set or by cross-validation [12]. In this study, we 

chose the CfsSubsetEval as our attribute subset evaluator and 

the Greedy Stepwise search method, using cross-validation to 

build our classifier. 

1) Attribute Subset Evaluator (CfsSubsetEval) 

CfsSubsetEval is an attribute subset evaluator that 

considers the predictive value of each attribute individually, 

along with the degree of redundancy among them. 

CfsSubsetEval evaluates the value of a subset of attributes by 

considering the individual predictive ability of each feature 

along with the degree of redundancy among them, preferring 

subsets of attributes that are highly correlated with the class 

while having low inter-correlation [9], [12]. 

For eliminating redundant and irrelevant attributes, 

CfsSubsetEval selects subsets of attributes that individually 

correlate well with the class while having little 

inter-correlation.  

Consequently, we use the symmetric uncertainty, 

calculated by Eq. (1), to measuring the correlation between 

two nominal attributes A  and B . 
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In Eq. (1), we use the entropy function from Eq. (2) to 

calculate H, where p represents the property in the entropy 

formula, Eq. (2). 
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In addition,  BAH ,  represents the joint entropy of A and 

B, which is calculated based on the joint probabilities of all 

combinations of values of A and B. According to Eq. (3), we 

could obtain the “goodness” of a set of attributes using 

correlation-based feature selection.  
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Within Eq. (3), C represents the class attribute and the 

indices i  and j range over all of the attributes in the set [9]. 

2) Search Method (Greedy Stepwise) 

The Greedy Stepwise is one of search methods that greedy 
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hill-climbing without backtracking and optionally generates a 

ranked list of attributes. This method searches “greedily” 

through the space of attribute subsets; it may progress forward 

from the empty set or backward from the full set. It does not 

backtrack but terminates as soon as adding or deleting the 

best-remaining attribute decreases the evaluation metric [9]. 

This search method identified the subset with the highest 

merit in terms of explaining the toxicity, determined by 

empirical changing of variables [13]. It considers both adding 

and removing features at each decision point, which allows 

retraction of an earlier decision without keeping explicit track 

of the search path. After attributes are generated, one can 

select the best or simply the first attribute that improves 

accuracy over the current set. In an alternative mode, the 

method ranks the attributes by traversing the space from 

empty to full (or vice versa) and recording the order in which 

attributes are selected [14]. 

F. Classifier Building 

The classify function in WEKAS provides numerous 

categories to choose, such as Bayesian Classifiers, Generating 

Rules, and Decision Trees. Decision Trees is one of the more 

popular classification categories, because Decision Trees 

represent a supervised approach to classification that utilizes 

a simple structure wherein non-terminal nodes represent tests 

on one or more attributes and terminal nodes reflect decision 

outcomes [15]. 

The Decision Trees category has many algorithms for the 

user to choosing by the user for their request. In this study, we 

used one of the Decision Tree algorithms called Random Tree 

with its maximum depth set to three by cross-validation, 

because Random Tree’s performance was found to be better 

than the C4.5 algorithms and CART (Classification and 

Regression Tree) algorithms in this study (see Table V in 

Appendix). 

Random Tree is a supervised classifier; each node is split 

using the best among a subset of predictors randomly chosen 

at that node. There are k random features at each node. “At 

random” in this context means that, within the set of trees, 

each tree has an equal chance of being sampled. A random 

tree is a tree drawn at random from a set of possible trees. 

Random trees can be generated efficiently, and a combination 

of a large set of random trees generally leads to accurate 

models. Random Tree models have been extensively 

developed in the field of Machine learning in recent years 

[16]. 

G. Accuracy Checking 

In this study, an error matrix (see Table I) is used to 

evaluate the predictive accuracy of the ruptured-unruptured 

model. It includes True Positives (TP), the number of patients 

for whom rupture was correctly predicted by the model; False 

Positives (FP), the number of patients in whom no rupture was 

found but the model predicted a rupture; False Negatives (FN), 

the number of patients in whom a rupture was found but the 

model predicted no rupture; and True Negatives (TN), the 

number of patients for whom the lack of a rupture was 

correctly predicted by the model. 

To measure the predictive accuracy, we calculated the data 

from the error matrix using the formulas in Table II. This table 

also gives the meaning for each rate in this study. 
 

TABLE I: THE ERROR MATRIX FOR EVALUATING THE PREDICTIVE 

ACCURACY OF THE RUPTURED-UNRUPTURED MODEL 

Error matrix 
Actual result 

Ruptured Unruptured 

Predicted 

result 

Ruptured 
True 

Positive 

False 

Positive 

Unruptured 
False 

Negative 

True 

Negative 

 

TABLE II: MEASURES OF PREDICTIVE ACCURACY CALCULATED FROM THE 

ERROR MATRIX (TABLE I) 

Measure Formula Meaning 

accuracy 
FNTNFPTP

TNTP



  The rate of actual ruptured samples 

was predicted correctly. 

precision 
FPTP

TP



 The rate of actual ruptured samples 

in the predicted result for ruptures. 

recall 
FNTP

TP



 The rate of actual ruptured samples 

that were predicted ruptured. 

F-measure recallprecision

recallprecision



××2
 

The harmonic mean of Precision 

and Recall. 

 

III. RESULTS 

A. Attribute Selecting 

 

TABLE III: THREE DATA SETS, WITH SELECTED ATTRIBUTES 

CFD data MH data Merged data 

WSSave_max Sex SAH 

WSSave_amp SAH Smoking 

- smoking Bleb 

- Bleb Hyperlipidemia 

- DM Alcohol consumption 

- Hyperlipidemia Cerebral hemorrhage 

- Alcohol consumption Family history _SAH 

- Cerebral hemorrhage WSSmin_ave 

- 

Family history 

_unruptured 

aneurysm 

WSSave_min 

 

To compare the performance of the three data sets (CFD 

data, MH data, and Merge data), an analysis was executed 

three times as the function of the attributes selected (the 

CfsSubsetEval evaluator with the Greedy Stepwise search 

method) and in WEKA. In this manner, we generated a table 

of the three data sets with selected attributes (see Table III). 

The CFD data is represented by two attributes, 

WSSave_max and WSSave_amp, from among 28 attributes. 

The two attributes represent the maximum WSS average and 

the amplitude of the WSS average. The MH data is 

represented by nine attributes from among 21 attributes, 

including the patient's sex, the history of SAH, smoking, bleb, 

DM, hyperlipidemia, alcohol consumption, cerebral 

hemorrhage, and the family history of unruptured aneurysm. 

The Merged data combines the CFD data and the MH data, 

and represents 9 of the 49 attributes, including the history of 

SAH, smoking, bleb, hyperlipidemia, alcohol consumption, 

cerebral hemorrhage, the family history of SAH, 

WSSmin_ave (the average WSS minimum), and 

WSSave_min (the minimum of the WSS average). 

B. Classifier Building 

We selected the attributes of the three data sets and 
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individually classified them using the Random Tree 

algorithm. 

 

 
Fig. 2. The visualize tree of classified CFD data. 

 

Fig. 2 is the tree drawn by classifying the patient’s 

aneurysm as ruptured with two attributes. According to this 

result, we assume that WSSave_max and WSSave_amp are 

the important factors. We also can determine that the 

aneurysm would have higher rupture probability under the 

conditions that 0.03>WSSave_max ≧ 0.02 and 

WSSave_amp<3.39 in the CFD data.  

 

 
Fig. 3. The visualize tree of classified MH data. 

 

The tree in Fig. 3 was generated by classifying the patient’s 

aneurysm as ruptured using nine attributes in the MH data. As 

this result, we assume that bleb and alcohol consumption are 

the important factors. This means that ruptured aneurysm 

samples appeared under the conditions that the patient has the 

history of bleb and alcohol consumption. 
 

 
Fig. 4. The visualize tree of classified Merge data. 

 

Fig. 4 is the tree drawn by classifying the patient’s 

aneurysm as ruptured using nine attributes. With this result, 

we assume that the history of smoking and WSSmin_ave are 

the important factors, and we can determine that the aneurysm 

has a higher rupture probability under the conditions that the 

patient did not smoke in the past and  0.03>WSSmin_ave≧

0.02. 
 

 
Fig. 5. The visualize tree of classified Merge data. 

 

In addition, we compared the result between the Merge data 

after selection and the original Merge data. The tree in Fig. 5 

was generated by classifying the patient’s aneurysm as 

ruptured using 49 attributes in the MH data. With this result, 

we assume that WSSmin_max, PLC_ave, and PLC_max are     

the important factors. This means that ruptured aneurysm 

samples appeared under the conditions of WSSmin_ave>0.13, 

PLC_ave<0.77, and PLC_max<0.93. 

C. Accuracy Checking 

We used the results in the previous paragraph for 

calculating the accuracy and generated Table IV, which 

summarizes the accuracy, precision, recall, and F-measure of 

the four data sets.  
 

TABLE IV: THE TABLE OF THE THREE DATA OF PREDICTIVE ACCURACY 

Data CFD data MH data Merge data 
Merge data 

(Unselected) 

TP 3 1 5 3 

FP 3 5 1 3 

FN 2 1 1 2 

TN 42 43 43 43 

Accuracy 90% 88% 96% 90.2% 

Precision 50% 16.7% 83.3% 50.0% 

Recall 60% 50% 83.3% 60.0% 

F-measure 54.5% 25% 83.3% 54.5% 

 

 
Fig. 6. Line graph comparing the predictive accuracy of the three data sets. 

 

Fig. 6 is a line graph showing the result of comparing the 

four data sets. The performance of the selected Merge data set 

has the highest accuracy, higher than the CFD data, the MH 

data, and the unselected Merge data. Furthermore, even the 

precision, recall, and F-measure of the selected Merge data 
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are better than those of the other three data sets. 
 

IV. CONCLUSION 

We referred to background knowledge and examples, built 

a classifier to predict ruptured aneurysms, and obtained a 

high-accuracy result that uses Machine learning technologies 

and combine the simulation and practical data.  This study not 

only successfully built a classifier with very good 

performance (accuracy 96%, precision 83.3%, recall 83.3%, 

F-measure: 83.3%) but also identified highly important 

attributes such as the history of smoking and WSSmin_ave. It 

showed that patients who were non-smoking in the past and 

for whom 0.03>WSSmin_ave≧0.02 have a high probability 

of experiencing a stroke. 

Future work includes investigating the stability of the 

classifier and its applicability to other patients. In this study, 

we selected 50 patients, but we need to consider a greater 

number of patients and to incorporate some new features 

based on experts' suggestions. In addition, we used CFD data 

in this study, and the simulation data provided the classifier 

with reference attributes. Future studies will consider the 

further use of the 3D simulating shape of blood flow and the 

use of picture recognition technology to make our stroke 

predictions even more accurate. 

We expect that this study and future research will allow 

more doctors to treat their patients as early as possible and 

will gradually build a complete system for forecasting strokes 

in one day, to help people live longer and indirectly reduce 

medical expenses. 

APPENDIX 

To decide which method would be used, we compared 

three different classification algorithms, C4.5, CART, and the 

Random Tree algorithm with selected Merge data (see Table 

V). 
 

TABLE V: PREDICTIVE ACCURACY OF THREE CLASSIFICATION ALGORITHMS 

Data C4.5 CART Random Tree 

TP 4 0 5 

FP 2 6 1 

FN 1 1 1 

TN 43 43 43 

Accuracy 94.0% 86.0% 96.0% 

Precision 66.7% 0.0% 83.3% 

Recall 80.0% 0.0% 83.3% 

F-measure 72.7% 0.0% 83.3% 
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