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Abstract—Automatic classification of virus samples into a 

concept hierarchy has been attracting much attention from 

malware research community. This would help anti-virus 

experts to have an obvious and systematic view on the landscape 

of virus samples, whose numbers have been rapidly increasing 

recently. However, it is not a trivial work, since malwares 

usually come in binary forms whose actions are complicated and 

obfuscated. Therefore, the typical data mining approaches based 

on feature extraction are not easily applied. 

In this paper, we introduce an approach using Formal Concept 

Analysis (FCA) to generate a malware hierarchy. Since virus 

behaviours are often described effectively by temporal logic, we 

extend formal paradigm of FCA by using Logical Concept 

Analysis (LCA), where concepts are generalized by logic 

formulas. We also enhance the basic LCA to Viral Logical 

Concept Analysis (V-LCA), where abstraction techniques are 

used to abstract formal concepts representing virus samples. 

Our approach has been applied in a real dataset of virus and 

promising experiment results have been acquired. 

 
Index Terms—Computer virus, malicious software, malware 

detection, formal concept analysis, logical concept analysis, viral 

logical concept analysis, conceptual clustering.  

 

I. INTRODUCTION 

A. Computer Virus 

Computer virus (from now we call virus), or malware, is a 

segment of computer programs which executes actions to 

harm to a computer system potentially. When infecting a file, 

virus also copies a unique syntactic pattern, known as 

signature, to the file. When a virus discovers this pattern from 

a file, it recognizes that this file is infected and does not 

replicate itself. Based on this characteristic, most of industry 

anti-virus programs detect virus by scanning whether 

signature appears or not. However, this method has difficulty 

in dealing with advanced viruses such as polymorphic and 

metamorphic virus [1], [2] because these viruses virtually 

create different signature after each infection. 

To solve this problem, recent studies have suggested a 

method of virus detection based on determining hazardous 

behavior instead of matching pattern [3], [5]. For example, let 

us consider some code fragment as shown in Table I. There 
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are 6 code fragments, referred as A, B, C, D, E and F. 

Fragment A is in fact the well-known Avron virus. Its harmful 

behaviors include pushing zero to the top of stack (by 

assigning zero for register ebx and pushing it to the top of 

stack), then the virus body will be executed to invoke 

GetModuleFileNameA in order to get the name and path of 

the victim file. Then the virus will proceed to replace the 

original code in the victim by the malicious code of the virus 

itself. Thus, each time the victim file is executed on a 

computer, it will infect virus on the whole system. This 

process will be ongoing and the number of infected computers 

will increase rapidly. Hence, even though Avron has several 

variants, which have different signatures, the behavior of 

finding the name and path of the victim by means of 

GetModuleFileNameA is still always remained. 

Fragment B shows a variant of this virus, which uses ecx 

instead of eax. Fragment C shows another variant of this virus, 

in which XOR is executed to assign zero for ebx. Fragment F 

shows a sophisticated variant, in which the assignment and 

call stack instruction are replaced with instruction that 

accesses stack via pointer and instruction that jumps to entry 

address of function. Particularly, in variants C and F, the 

viruses use obfuscation techniques of junk code, which insert 

some instructions that do not make sense, such as inc a or dec 

b, where a and b are two dumping variables
1
. 

Meanwhile, there are no virus found in Fragment D and 

Fragment E, but the instructions involved on those pieces of 

code are also quite similar to the discussed virus samples. 

B. Temporal Logic to Represent viral Behaviours 

Since a virus sample can be morphed into multiple variants 

as previously discussed, research community tends not to 

represent virus by syntactic patterns. Instead, logic is then 

proposed to capture viral behaviors. This means each virus 

sample is represented by a logical formula. Temporal Logic 

(TL) [6] is used commonly due to its capability of describing 

correctly the execution sequence of virus behaviors. For 

example, the code fragments in Table 1 can be represented by 

a TL formula of 

F(mov(ebx,0)∧Xpush(ebx)∧Xcall(GetModuleFileNameA), in 

which the operator F is understood as Eventually, and the 

operator X as Next. This logic formula can be interpreted as: 

"in a binary code, if eventually there is an instruction 

assigning 0 for register ebx, and then value of ebx is pushed 

to stack and subsequently GetModuleFileNameA function is 

called, this binary code is infected by Avron virus”. Likewise, 

temporal logic formulas for other code fragments are also 

presented, as depicted in Table I. 

 
1 Detailed discussion on obfuscation technique is beyond the scope of 

this paper. 
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C. Generate Virus Concept Hierarchy Using FCA-based 

Approach 

As the number of viruses is increasing rapidly, the demand 

of automatic classification of malware becomes highly 

desired. For example, an expert can classify the virus sample 

in Table I as a concept hierarchy as described in Fig. 1. One 

can observe that the code segments are organized into two 

groups of Avon family malware and benign program. In the 

rest of the paper, we will discuss on how to construct such a 

hierarchy automatically from a set of code fragments.  

 

 
Fig. 1. Concept hierarchy of viral fragments described in Table I.  

 

To build such a hierarchy from a large dataset of viruses. 

Formal Concept Analysis (FCA) [7] is a suitable technique, 

because this method supports to construct a concept lattice 

representing the hierarchical relationships among sets of 

objects in dataset, each of which is represented by a set of 

attributes. Moreover, FCA has strong support for conceptual 

clustering, in which objects are grouped to form real-life 

concepts. 

However, since viruses represented by logical formulas, as 

discussed, using FCA suffers from the difficulty that the set of 

attributes used in FCA does not logically reflect the 

behaviours captured by the logical formula. An extension of 

FCA, known as Logical Concept Analysis (LCA), allows to 

generalize each object in the hierarchy by a logical formula. 

Thus, this approach seems suitable to represent each virus 

sample by a formula.  

In this paper, we propose an approach based on LCA in 

order to generate concept hierarchy automatically from a 

virus dataset. In particular, we extend LCA to Viral Logical 

Concept Analysis (V-LCA), where abstraction techniques, 

suggested by other works in malware research, are adopted 

generalize new concepts from existing one, in order to form a 

viral lattice. Finally, we perform conceptual clustering on this 

logic viral lattice to obtain the final malware conceptual 

hierarchy. 

The rest of this paper is organized as follows. Section II 

reviews some related works. In Section III and IV, we present 

V-LCA and the conceptual clustering technique. Section V 

discusses our experiments. Finally, Section VI concludes the 

paper.  

 
TABLE I: SOME CODE SEGMENTS ILLUSTRATING THE VIRAL BEHAVIORS 

ID Sample Pattern Logic Formulas Meaning 

A mov ebx,0 

push ebx 

call GetModuleFileNameA 

F(mov(ebx,0)∧Xpush(ebx)∧ 

Xcall(GetModuleFileNameA) 

Avron virus 

B mov ecx,0 

push ecx 

call GetModuleFileNameA 

F(mov(ecx,0∧Xpush(ecx)∧ 

Xcall(GetModuleFileNameA) 

Avron variant 

C xor ebx,ebx 

push ebx 

inc a 

call GetModuleFileNameA 

F(xor(ebx,ebx)∧Xpush(ebx)∧Xinc(a)∧ 

Xcall(GetModuleFileNameA) 

Avron variant 

with junk code 

D mov ebx,0 

push ebx 

push 1 

call GetModuleFileNameA 

F(mov(ebx,0)∧Xpush(ebx)∧Xpush(1)∧ 

Xcall(GetModuleFileNameA)) 

Not a virus 

E call GetModuleFileNameA 

push ebx 

mov ebx,0 

F(mov(ebx,0)∧Xcall(GetModuleFileNameA) 

∧Xpush(ebx)) 

Not a virus 

F sub esp, 4 

mov [esp], 0 

dec b 

jmp GetModuleFileNameA 

F(sub(esp,4)∧Xmov([esp],a)∧Xdec(b)∧ 

Xjmp(GetModuleFileNameA)) 

Avron variant 

with junk code 

and stack 

obfuscation 

 

II. RELATED WORKS 

A. Formal Concept Analysis 

Formal Concept Analysis [7] is a data analysis technique 

aiming at recognizing formal concepts of a formal context and 

constructing a concept lattice accordingly. 

In order to construct concept lattice more efficient and 

meaningful, many enhancements have been proposed. Zhang 

(2013) [8] combined FCA, Chu space and Domain Theory to 

analyze the dependency among the attributes. [9] proposed 

using closure operator to analyze the dependency among the 

attributes. Concept location method was proposed by [10]. In 

work of [11], an algebraic structure was proposed to build the 

concept hierarchy and ontology merging from concept lattice. 

When using the FCA technique for conceptual clustering, 

the challenge is the contextual implication of the attributes to 

represent the concept [12]. [13] used the set of attributes to 

make preference models, hence introducing the ceteris 

paribus preferences. Using linguistic hedges have been 

proposed by [14]. 

However, while the domain concepts are represented by the 

complex logic behaviors such as the malicious actions of virus, 

the concept representation requires techniques to analyze and 

handle the relationship between the complex attributes, which 

remains unresolved by existing works. 

B. A Logical Generalization of Formal Concept Analysis 

Since the number of formal concepts generated by FCA is 

huge, many approaches were proposed to generalize a set of 

50

International Journal of Machine Learning and Computing, Vol. 7, No. 4, August 2017



  

similar concept forms on the concept lattice to create a 

generalized representation for similar concepts. Therefore, 

the number of concepts on the lattice is reduced and the 

concepts are also more comprehensible [15], [16]. 

One of the most common approaches on this direction is 

logical generalization [17], which represents a set of similar 

concepts by a logic formula. The advantage of this approach 

is that logic formula can be further processed in an automatic 

manner for more discovered knowledge. In [18], concepts of 

FCA are extracted and generalized into logic description. At a 

higher level, logical axioms are extracted by finite 

interpretations on concept lattice [18]. 

However, to describe virus behavior, temporal logic is a 

better choice because it can represent and verify a sequence of 

execution actions as illustrated in motivating examples. 

Moreover, the generalization of temporal logic formulas in 

this case requires an abstract interpretation mechanism to 

connect those temporal logic formulas following the 

operational mechanism of machine code. Dealing with this 

challenge is also a contribution of our papers. 

 

III. VIRAL LOGIC CONCEPT ANALYSIS 

A. Formal Concept Analysis 

Definition 1 (Formal context). A formal context is a triple 

K=(G, M, I) where G is a set of objects, M is a set of attributes, 

and I is a set of binary relations between G and M, I  GM. 

An object gG has an attribute mM is denoted as (g,m)I or 

g I m. 

Table II represents formal context made from code 

fragments of Table I. Each code fragment now is considered 

as an object, and machine code instructions used in those 

fragments are the attributes on this context. 

 
TABLE II: FORMAL CONTEXT CREATED FROM THE SEGMENT OF PROGRAMS 

IN FIG.  1 
 mov ebx push call moduleA ecx xor inc a sub esp [] dec b jmp 1 0 4 

A x x x x x            x  

B x  x x x x           x  

C  x x x x  x x x          

D x x x x x           x x  

E x x x x x            x  

F x    x     x x x x x x   x 

 

Definition 2 (Derivation operator). In a context (G,M,I), 

derivation operator is an operation that produces for a set of 

objects AG the set of attributes which are shared by all these 

objects and for a set of attributes BM the set of objects 

which share all these attributes, and is denoted as follows: 

AG, A’={mM|gA,(g,m)} 

BM, B’={gG|mB,(g,m)} 

Definition 3 (Formal concept). In a context (G, M, I), (A, 

B) is a formal concept if and only if AG, BM, A=B’, and 

B=A’. A is called the extent of the formal concept (A, B) and B 

is called the intent of the formal concept (A,B). 

Definition 4 (Concept relation). In a context (G,M,I), 

(A1B1)  (A2, B2) if and only if  A1  A2 or B2  B1. (A1B1) is 

called the subconcept of the formal concept (A2, B2) or (A2, B2) 

is called the superconcept of the formal concept (A1B1). 

Definition 5 (Concept lattice). In a context (G,M,I), the 

set of all formal concepts ordered by concept relations is 

called the concept lattice. 

Fig. 2 describes concept lattice generated from the formal 

context depicted in Table II. 

⊤  

^ 

C8

C5

C1 C2 C3

C4

C7

{A,B ,C ,D ,E,F}

{A,C ,D ,E}

{F}

{B }

{C }

C9

C6

{A,B ,D ,E,F}
{A,B ,C ,D ,E}

{A,D ,E}

{A,B ,D ,E}

{D }

{m oduleA}

{m ov,push,
call,m oduleA,
ecx,0}

{push,call,m oduleA}

{ebx,push,
call,m oduleA}

{m ov,m oduleA}

{m ov,m oduleA,sub,
esp,[],dec,b,jm p,4}

{ebx,push,
call,m oduleA,
xor,inc,a}

{m ov,ebx,push,
call,m oduleA,
0}

{m ov,ebx,push,
call,m oduleA,
1,0}

{m ov,ebx,push,call,m oduleA,ecx,xor,inc,a,sub,esp,[],dec,b,jm p,1,0,4}

{}

 
Fig. 2. The concept lattice of virus is generated by FCA method. 

 

As shown in Fig. 2, three sample programs A, D and E will 

be grouped into a concept because they have the same 

attributes. It is not reasonable because only A is a virus in 

three programs. Moreover, the intent representation of each 

concept is not precise enough to determine a virus set. For 

example, in the C8 concept, its intent of {mov,ModuleA} is 

too general since a normal program can also invoke those 

instructions as illustrated in the segment programs of D and E. 

B. Logical Concept Analysis 

Based on the theory of FCA, [17] proposed the approach of 

Logical Concept Analysis (LCA) as follows. 

Definition 6 (Logic context). A logic context is a triple 

( , ,i) where: 

  is a finite set of objects, 

  is a (possibly infinite) lattice of formulas, whose 

supremum is  and whose infimum is ; C denotes a 

logic whose deduction relation is . and whose is 

junctive and conjunctive operations are respectively  

and , 

 i is a mapping from  to  that associates to each object a 

formula that describes the object. 

TABLE III: LOGIC FORMAL CONTEXT OF CODE FRAGMENTS ON TABLE I 
Object i(O) 

A F(mov(ebx,0)∧Xpush(ebx)∧Xcall(GetModuleFileNameA) 

B F(mov(ecx,0∧Xpush(ecx)∧Xcall(GetModuleFileNameA) 

C F(xor(ebx,ebx)∧Xpush(ebx)∧Xinc(a)∧Xcall(GetModuleFileNameA) 

D F(mov(ebx,0)∧Xpush(ebx)∧Xpush(1)∧Xcall(GetModuleFileNameA)) 

E F(mov(ebx,0)∧Xcall(GetModuleFileNameA)∧Xpush(ebx)) 

F F(sub(esp,4)∧Xmov([esp],0)∧Xdec(b)∧Xjmp(GetModuleFileNameA)) 

 

Definition 7 (Logic concept). In a context ( , ,i), a logic 

concept is a pair c = (O,f) where O  . and f  , such that 

(O)=f and (f) = O. The set of objects O is the concept extent 

(written ext(c)), whereas formula f is its intent (written int(c)). 

The main difference of LCA to standard FCA is that the 

intent is now a formula of the logic C. The set of all concepts 
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that can be built in a context ( , ,i) is denoted by ( , ,i) and 

is partially ordered by  defined as follows. 

Definition 8 (Order ). Let (O1,f1) and (O2,f2) be in 

( , ,i), 

(O1,f1)  (O2,f2)  O1   O2 

This order is compatible with order on intents. 

Proposition 1. (O1,f1)  (O2,f2)  (f1  f2) 

From the order stated in Proposition 1, one will get the 

corresponding logic. Fig. 3 describes logic lattice generated 

from logic context in Table III.   

However, in order to do so, one needs a method to build 

generalized concept C’=(O’,f’) from a set of concepts 

{C1=(O1,f1),..,Cn=(On,fn))} such that Ci  C’ (∀i). For 

example, in the lattice of Fig. 3, two concepts C1 and C2 are 

generalized into concept C5. This is implemented by a special 

operation of , known as widening operator, such that f’ = f1 

fn and f’  fi. ∀i. 

The operation  will be implemented depending on the 

domain on which LCA is applied. In the next section, we will 

discuss how to implement such operations for temporal logic 

representing virus behaviors. 

C. Viral Logic Concept Analysis 

In this section, we present Viral Logical Concept Analysis 

(V-LCA), an extension of LCA to produce a malware lattice 

from dataset of virus programs. The main idea of V-LCA is to 

use temporal logic to capture intents of concepts. Since 

temporal logic allows representing the execution order of 

execution of the operations, it is very suitable to represent 

virus behaviors. Then, we apply viral abstractions to 

implement the widening operator previously discussed. Viral 

abstraction represents a set of temporal formula representing 

variants of the same virus samples by a new generalized 

formula. 

 

⊤  

^ 
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Xcall(G etM oduleFileN am eA))

$rF(m ov(r,0)ÙXpush(r)Ù
Xcall(G etM oduleFileN am eA))

$rF((r,0)Ùpush(r)Ù
Fcall(G etM oduleFileN am eA))

false

{}

 
Fig. 3. The concept lattice generated by V-LCA. 

  

Definition 9 (Viral Logic Formal Context). A viral logic 

formal context is a triple ( , ,i) where: 

  is a finite set of objects, each of which represents a virus 

instance or a set of virus instances, 

  is lattice of temporal formulas, whose supremum is 

 and whose infimum is ,  

 i is a mapping from  to  that associates to each object a 

formula that describes virus(es) behaviors. 

In order to generate a viral lattice, one needed widening 

operator to generate super concepts from subconcepts. As 

discussed, we use viral abstractions to implement this 

widening operator, as shown in Table IV. 

Example 1. Given two formulas of EF((mov 

ebx,0)∧AF(push ebx)∧AXcall(GetModuleFileNameA)) and 

EF((mov ecx,0)∧AF(push ecx)∧ 
AXcall(GetModuleFileNameA)), they are almost the same but 

only using two different registers of ebx and ecx. The viral 

abstraction CTPL will generate new generalized formula 

𝑟EF(mov(r,0)∧AFpush(r)∧AXcall(GetModuleFileNameA)) 

where r stands for an arbitrary register. 

Example 2. Given the formulas of EF((mov 

ebx,0)∧AF(push ebx)∧AX call(GetModuleFileNameA)), 

EF((mov ecx,0)∧AF(push 

ecx)∧AXcall(GetModuleFileNameA)), 

EF(xor(ebx,ebx)∧AFpush(ebx)∧AFinc(a)∧AXcall(GetModul

eFileNameA) and 

∃rEF(mov(r,0)∧AFpush(r)∧AXcall(GetModuleFileNameA)

), all formulas are in fact doing the same thing of pushing 0 the 

top stack. All of them are viral abstracted by SCTPL\X to 

generate new formula 

∃mEF(call(GetModuleFileNameA)∧{0}mΓ∗ ) where the 

notation of {0}mΓ∗ implies the value of top stack Γ
* 
is m and 

value of m is 0. 

 
TABLE IV: VIRAL ABSTRACTION 

No Viral 

Abstraction 

Description Example 

1. CTPL [3] When two temporal 

logic formulas are 

only different in 

terms of register 

usage, they can be 

abstracted by a new 

formula where the 

register is 

represented by a 

variable 

Two formulas EF((mov ebx,0)∧AF(push 

ebx)∧AX call(GetModuleFileNameA)) 

and EF((mov ecx,0)∧AF(push 

ecx)∧AXcall(GetModuleFileNameA)) 

will be abstracted as  

EF(mov(r,0)∧AFpush(r)∧AXcall(GetMod

uleFileNameA))  

2. SCTPL [4] Abstraction of the 

action of pushing a 

value into top of 

stack 

Two formulas EF((mov ebx,0)∧AF(push 

ebx)∧AX call(GetModuleFileNameA)), 

EF((mov ecx,0)∧AF(push ecx)∧AX 

call(GetModuleFileNameA)) and  

EF(mov(r,0)∧ 
AFpush(r)∧AXcall(GetModuleFileName

A)) will be abstracted as ∃rEF(mov(r,0)∧ 
AX(call(GetModuleFileNameA)∧rΓ*)), 

showing that the value of top stack is 

currently r 

3. SCTPL\X 

[5] 

Actions that change 

contents of stack will 

be abstracted by an 

expression directly 

modifying stack 

contents 

The formulas EF((mov ebx,0)∧AF(push 

ebx)∧AX call(GetModuleFileNameA)), 

EF((mov ecx,0)∧AF(push ecx)∧AX 

call(GetModuleFileNameA)), 

∃rEF(mov(r,0)∧ 
AFpush(r)∧AXcall(GetModuleFileName

A)), and 

∃rEF(mov(r,0)∧AX(call(GetModuleFile

NameA)∧rΓ∗ )) will be abstracted as 

∃mEF(call(GetModuleFileNameA)∧{0}

mΓ∗ ), showing that the stack top is storing 

m, whose value is 0 

 

IV. LLCC: LOGIC-BASED LATTICE CONCEPTUAL 

CLUSTERING ALGORITHM 

In previous section, we present using V-LCA to generate the 

viral lattice, where the formal concepts are organized as a 

hierarchical structure. However, since the number of the logic 

concept is quite large when applied in practice, we propose 

using conceptual clustering to cluster similar formal concepts. 

As a result, we have a concept hierarchy of malware as 

depicted in Fig. 1. Aiming at generating a concept hierarchy, 

most of conceptual clustering methods are based on the 

method hierarchical agglomerative clustering (HAC), such a 

COBWEB [19]. The order approach is based on FCA result, 
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such as FOGA [20]. However, those algorithms always suffer 

from the performance problem due to the high complexity of 

N
2
. In our case, the formal concepts generated V-LCA are 

represented by logic formulas and ordered by a partial order. 

We propose an enhanced conceptual clustering algorithm 

known as Logic-based Lattice Conceptual Clustering 

Algorithm (LLCC). 

Details of the algorithm can be described as follows. 

 

For each object o in the formal context 

For each concept c on current concept lattice 

Add o as a concept of the current lattice 

If o  c = o’ ≠  ε  (empty) then 

If o’has the same featured formula then add o to c 

Else introducing new concept c’ 

 

In order to construct the final featured concept lattice from 

a given featured formal context, obviously one needs to 

consider “grouping” objects into concepts. To do so, we 

introduce the object-joining operator  on two featured 

concepts C1 = (A1,I1,1) and C2 = (A2,I2,2) is defined as 

follows: C1  C2 = {C
*
,I

*
,*

 = 1  2} where ⊎ is widening 

operator two formulas 1 and 2, C
*
 ={x | x  and 

*
(x)}

 
and I

*
 = {i | }   

In Definition 9, ⊎ is widening operator two formulas 1 

and 2. The simplest widening operator is the operator , 

which is the disjunction operator in the case of propositional 

logic, and is more commonly known as least common 

subsumer operator  when processing concepts on the 

concept lattice. However, for temporal logic representing 

virus behavior, widening operator include viral abstraction as 

previously discussed. Hence, a concept of the form A  B can 

be further widened as an abstract concept C if existing a viral 

abstraction, which can abstract both A and B to C. 

Example 3. When one performs C5 = C1 C2 as illustrated 

in Fig. 3, firstly the least common subsumer 

F(mov(ebx,0)∧Xpush(ebx)∧Xcall(GetModuleFileNameA))  

F(mov(ecx,0)∧Xpush(ecx)∧Xcall(GetModuleFileNameA)) is 

performed. Then, since existing the formula  

F(mov(r,0)∧Xpush(r)∧Xcall(GetModuleFileNameA)) can be 

abstracted from both 

F(mov(ebx,0)∧Xpush(ebx)∧Xcall(GetModuleFileNameA)) 

and 

F(mov(ecx,0)∧Xpush(ecx)∧Xcall(GetModuleFileNameA)), 

we obtain the final result of (C5)=f(C1)⊎f(C2)= 

F(mov(r,0)∧Xpush(r)∧Xcall(GetModuleFileNameA)). 

 
TABLE V: PERFORMANCE RESULTS BASED ON AUP 

 
150 200 250 500 1000 1500 2000 2500 3000 

HAC-based 0.78 0.74066667 0.69871111 0.662 0.63053333 0.60693333 0.56235556 0.53613333 0.49942222 

FCA-based 0.83 0.79066667 0.75133333 0.7172444 0.67791111 0.6412 0.60711111 0.57826667 0.5389333 

V-LCA 0.976 0.94453333 0.91568889 0.8816 0.84226667 0.80293333 0.77671111 0.74524444 0.74 

 

V. EXPERIMENTS 

A. Dataset and Malware Hierarchy 

We performed experiments by generating malware concept 

hierarchy from a dataset of 3000 virus samples downloaded 

from VXHeaven
2
. From this dataset, we constructed the 

concept hierarchy using baseline method of traditional 

FCA-based conceptual clustering and our proposed 

V-LCA-based conceptual clustering. The constructed 

Malware Hierarchy is illustrated as Fig. 4. 

 

 
Fig. 4. The Malware Hierarchy. 

 

B. Performance Evaluation 

We used Mean Average Precision (MAP) [21] that is 

defined as the mean of the precision value at each point (or 

node) in a hierarchical structure where a relevant item appears, 

 
2 http://vxheaven.org/ 

divided by the total number of retrieved item. Typically, MAP 

implies the goodness of a concept hierarchical structure. If the 

structure is reasonable enough, when a node (i.e. a cluster) is 

retrieved against a query, all of objects belonging to this 

cluster should be relevant to the query, yielding good MAP 

acquired. 

 

VI. CONCLUSION 

In this paper, we extend the traditional FCA (Formal 

Concept Analysis) technique into V-LCA (Viral Logical 

Concept Analysis) technique, in which each object and formal 

concept is featured by a logic formula. This formalism allows 

us to capture and present precisely behaviors of virus when 

constructing a concept hierarchy of malware. As results, we 

successfully generated a Malware Hierarchy from the dataset 

of 3000 real virus samples. Experiment results show that the 

concept hierarchy developed by our proposed V-LCA gained 

better quality than the traditional FCA. 
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