



Abstract—Automatic classification of virus samples into a

concept hierarchy has been attracting much attention from

malware research community. This would help anti-virus

experts to have an obvious and systematic view on the landscape

of virus samples, whose numbers have been rapidly increasing

recently. However, it is not a trivial work, since malwares

usually come in binary forms whose actions are complicated and

obfuscated. Therefore, the typical data mining approaches based

on feature extraction are not easily applied.

In this paper, we introduce an approach using Formal Concept

Analysis (FCA) to generate a malware hierarchy. Since virus

behaviours are often described effectively by temporal logic, we

extend formal paradigm of FCA by using Logical Concept

Analysis (LCA), where concepts are generalized by logic

formulas. We also enhance the basic LCA to Viral Logical

Concept Analysis (V-LCA), where abstraction techniques are

used to abstract formal concepts representing virus samples.

Our approach has been applied in a real dataset of virus and

promising experiment results have been acquired.

Index Terms—Computer virus, malicious software, malware

detection, formal concept analysis, logical concept analysis, viral

logical concept analysis, conceptual clustering.

I. INTRODUCTION

A. Computer Virus

Computer virus (from now we call virus), or malware, is a

segment of computer programs which executes actions to

harm to a computer system potentially. When infecting a file,

virus also copies a unique syntactic pattern, known as

signature, to the file. When a virus discovers this pattern from

a file, it recognizes that this file is infected and does not

replicate itself. Based on this characteristic, most of industry

anti-virus programs detect virus by scanning whether

signature appears or not. However, this method has difficulty

in dealing with advanced viruses such as polymorphic and

metamorphic virus [1], [2] because these viruses virtually

create different signature after each infection.

To solve this problem, recent studies have suggested a

method of virus detection based on determining hazardous

behavior instead of matching pattern [3], [5]. For example, let

us consider some code fragment as shown in Table I. There

Manuscript received April 27, 2017; revised August 13, 2017. This

research is funded by Vietnam National Foundation for Science and

Technology Development (NAFOSTED) under grant number

102.01-2015.16.

B. T. Nguyen, T. T. Quan, and H. M. Nguyen are with Ho Chi Minh City

University of Technology, Vietnam (e-mail: 551105019@stu.hcmut.edu.vn,

qttho@hcmut.edu.vn, 551307910@hcmut.edu.vn).

D. C. Tran is with Dong Nai University, Vietnam (e-mail:

congdoivc@gmail.com).

are 6 code fragments, referred as A, B, C, D, E and F.

Fragment A is in fact the well-known Avron virus. Its harmful

behaviors include pushing zero to the top of stack (by

assigning zero for register ebx and pushing it to the top of

stack), then the virus body will be executed to invoke

GetModuleFileNameA in order to get the name and path of

the victim file. Then the virus will proceed to replace the

original code in the victim by the malicious code of the virus

itself. Thus, each time the victim file is executed on a

computer, it will infect virus on the whole system. This

process will be ongoing and the number of infected computers

will increase rapidly. Hence, even though Avron has several

variants, which have different signatures, the behavior of

finding the name and path of the victim by means of

GetModuleFileNameA is still always remained.

Fragment B shows a variant of this virus, which uses ecx

instead of eax. Fragment C shows another variant of this virus,

in which XOR is executed to assign zero for ebx. Fragment F

shows a sophisticated variant, in which the assignment and

call stack instruction are replaced with instruction that

accesses stack via pointer and instruction that jumps to entry

address of function. Particularly, in variants C and F, the

viruses use obfuscation techniques of junk code, which insert

some instructions that do not make sense, such as inc a or dec

b, where a and b are two dumping variables
1
.

Meanwhile, there are no virus found in Fragment D and

Fragment E, but the instructions involved on those pieces of

code are also quite similar to the discussed virus samples.

B. Temporal Logic to Represent viral Behaviours

Since a virus sample can be morphed into multiple variants

as previously discussed, research community tends not to

represent virus by syntactic patterns. Instead, logic is then

proposed to capture viral behaviors. This means each virus

sample is represented by a logical formula. Temporal Logic

(TL) [6] is used commonly due to its capability of describing

correctly the execution sequence of virus behaviors. For

example, the code fragments in Table 1 can be represented by

a TL formula of

F(mov(ebx,0)∧Xpush(ebx)∧Xcall(GetModuleFileNameA), in

which the operator F is understood as Eventually, and the

operator X as Next. This logic formula can be interpreted as:

"in a binary code, if eventually there is an instruction

assigning 0 for register ebx, and then value of ebx is pushed

to stack and subsequently GetModuleFileNameA function is

called, this binary code is infected by Avron virus”. Likewise,

temporal logic formulas for other code fragments are also

presented, as depicted in Table I.

1 Detailed discussion on obfuscation technique is beyond the scope of

this paper.

Viral Logical Concept Analysis for Malware Conceptual

Hierarchy Generation

Nguyen Thien Binh, Tran Cong Doi, Quan Thanh Tho, and Nguyen Minh Hai

49

International Journal of Machine Learning and Computing, Vol. 7, No. 4, August 2017

doi: 10.18178/ijmlc.2017.7.4.619

C. Generate Virus Concept Hierarchy Using FCA-based

Approach

As the number of viruses is increasing rapidly, the demand

of automatic classification of malware becomes highly

desired. For example, an expert can classify the virus sample

in Table I as a concept hierarchy as described in Fig. 1. One

can observe that the code segments are organized into two

groups of Avon family malware and benign program. In the

rest of the paper, we will discuss on how to construct such a

hierarchy automatically from a set of code fragments.

Fig. 1. Concept hierarchy of viral fragments described in Table I.

To build such a hierarchy from a large dataset of viruses.

Formal Concept Analysis (FCA) [7] is a suitable technique,

because this method supports to construct a concept lattice

representing the hierarchical relationships among sets of

objects in dataset, each of which is represented by a set of

attributes. Moreover, FCA has strong support for conceptual

clustering, in which objects are grouped to form real-life

concepts.

However, since viruses represented by logical formulas, as

discussed, using FCA suffers from the difficulty that the set of

attributes used in FCA does not logically reflect the

behaviours captured by the logical formula. An extension of

FCA, known as Logical Concept Analysis (LCA), allows to

generalize each object in the hierarchy by a logical formula.

Thus, this approach seems suitable to represent each virus

sample by a formula.

In this paper, we propose an approach based on LCA in

order to generate concept hierarchy automatically from a

virus dataset. In particular, we extend LCA to Viral Logical

Concept Analysis (V-LCA), where abstraction techniques,

suggested by other works in malware research, are adopted

generalize new concepts from existing one, in order to form a

viral lattice. Finally, we perform conceptual clustering on this

logic viral lattice to obtain the final malware conceptual

hierarchy.

The rest of this paper is organized as follows. Section II

reviews some related works. In Section III and IV, we present

V-LCA and the conceptual clustering technique. Section V

discusses our experiments. Finally, Section VI concludes the

paper.

TABLE I: SOME CODE SEGMENTS ILLUSTRATING THE VIRAL BEHAVIORS

ID Sample Pattern Logic Formulas Meaning

A mov ebx,0

push ebx

call GetModuleFileNameA

F(mov(ebx,0)∧Xpush(ebx)∧

Xcall(GetModuleFileNameA)

Avron virus

B mov ecx,0

push ecx

call GetModuleFileNameA

F(mov(ecx,0∧Xpush(ecx)∧

Xcall(GetModuleFileNameA)

Avron variant

C xor ebx,ebx

push ebx

inc a

call GetModuleFileNameA

F(xor(ebx,ebx)∧Xpush(ebx)∧Xinc(a)∧

Xcall(GetModuleFileNameA)

Avron variant

with junk code

D mov ebx,0

push ebx

push 1

call GetModuleFileNameA

F(mov(ebx,0)∧Xpush(ebx)∧Xpush(1)∧

Xcall(GetModuleFileNameA))

Not a virus

E call GetModuleFileNameA

push ebx

mov ebx,0

F(mov(ebx,0)∧Xcall(GetModuleFileNameA)

∧Xpush(ebx))

Not a virus

F sub esp, 4

mov [esp], 0

dec b

jmp GetModuleFileNameA

F(sub(esp,4)∧Xmov([esp],a)∧Xdec(b)∧

Xjmp(GetModuleFileNameA))

Avron variant

with junk code

and stack

obfuscation

II. RELATED WORKS

A. Formal Concept Analysis

Formal Concept Analysis [7] is a data analysis technique

aiming at recognizing formal concepts of a formal context and

constructing a concept lattice accordingly.

In order to construct concept lattice more efficient and

meaningful, many enhancements have been proposed. Zhang

(2013) [8] combined FCA, Chu space and Domain Theory to

analyze the dependency among the attributes. [9] proposed

using closure operator to analyze the dependency among the

attributes. Concept location method was proposed by [10]. In

work of [11], an algebraic structure was proposed to build the

concept hierarchy and ontology merging from concept lattice.

When using the FCA technique for conceptual clustering,

the challenge is the contextual implication of the attributes to

represent the concept [12]. [13] used the set of attributes to

make preference models, hence introducing the ceteris

paribus preferences. Using linguistic hedges have been

proposed by [14].

However, while the domain concepts are represented by the

complex logic behaviors such as the malicious actions of virus,

the concept representation requires techniques to analyze and

handle the relationship between the complex attributes, which

remains unresolved by existing works.

B. A Logical Generalization of Formal Concept Analysis

Since the number of formal concepts generated by FCA is

huge, many approaches were proposed to generalize a set of

50

International Journal of Machine Learning and Computing, Vol. 7, No. 4, August 2017

similar concept forms on the concept lattice to create a

generalized representation for similar concepts. Therefore,

the number of concepts on the lattice is reduced and the

concepts are also more comprehensible [15], [16].

One of the most common approaches on this direction is

logical generalization [17], which represents a set of similar

concepts by a logic formula. The advantage of this approach

is that logic formula can be further processed in an automatic

manner for more discovered knowledge. In [18], concepts of

FCA are extracted and generalized into logic description. At a

higher level, logical axioms are extracted by finite

interpretations on concept lattice [18].

However, to describe virus behavior, temporal logic is a

better choice because it can represent and verify a sequence of

execution actions as illustrated in motivating examples.

Moreover, the generalization of temporal logic formulas in

this case requires an abstract interpretation mechanism to

connect those temporal logic formulas following the

operational mechanism of machine code. Dealing with this

challenge is also a contribution of our papers.

III. VIRAL LOGIC CONCEPT ANALYSIS

A. Formal Concept Analysis

Definition 1 (Formal context). A formal context is a triple

K=(G, M, I) where G is a set of objects, M is a set of attributes,

and I is a set of binary relations between G and M, I  GM.

An object gG has an attribute mM is denoted as (g,m)I or

g I m.

Table II represents formal context made from code

fragments of Table I. Each code fragment now is considered

as an object, and machine code instructions used in those

fragments are the attributes on this context.

TABLE II: FORMAL CONTEXT CREATED FROM THE SEGMENT OF PROGRAMS

IN FIG. 1
 mov ebx push call moduleA ecx xor inc a sub esp [] dec b jmp 1 0 4

A x x x x x x

B x x x x x x

C x x x x x x x

D x x x x x x x

E x x x x x x

F x x x x x x x x x

Definition 2 (Derivation operator). In a context (G,M,I),

derivation operator is an operation that produces for a set of

objects AG the set of attributes which are shared by all these

objects and for a set of attributes BM the set of objects

which share all these attributes, and is denoted as follows:

AG, A’={mM|gA,(g,m)}

BM, B’={gG|mB,(g,m)}

Definition 3 (Formal concept). In a context (G, M, I), (A,

B) is a formal concept if and only if AG, BM, A=B’, and

B=A’. A is called the extent of the formal concept (A, B) and B

is called the intent of the formal concept (A,B).

Definition 4 (Concept relation). In a context (G,M,I),

(A1B1)  (A2, B2) if and only if A1  A2 or B2  B1. (A1B1) is

called the subconcept of the formal concept (A2, B2) or (A2, B2)

is called the superconcept of the formal concept (A1B1).

Definition 5 (Concept lattice). In a context (G,M,I), the

set of all formal concepts ordered by concept relations is

called the concept lattice.

Fig. 2 describes concept lattice generated from the formal

context depicted in Table II.

⊤

^

C8

C5

C1 C2 C3

C4

C7

{A,B ,C ,D ,E,F}

{A,C ,D ,E}

{F}

{B }

{C }

C9

C6

{A,B ,D ,E,F}
{A,B ,C ,D ,E}

{A,D ,E}

{A,B ,D ,E}

{D }

{m oduleA}

{m ov,push,
call,m oduleA,
ecx,0}

{push,call,m oduleA}

{ebx,push,
call,m oduleA}

{m ov,m oduleA}

{m ov,m oduleA,sub,
esp,[],dec,b,jm p,4}

{ebx,push,
call,m oduleA,
xor,inc,a}

{m ov,ebx,push,
call,m oduleA,
0}

{m ov,ebx,push,
call,m oduleA,
1,0}

{m ov,ebx,push,call,m oduleA,ecx,xor,inc,a,sub,esp,[],dec,b,jm p,1,0,4}

{}

Fig. 2. The concept lattice of virus is generated by FCA method.

As shown in Fig. 2, three sample programs A, D and E will

be grouped into a concept because they have the same

attributes. It is not reasonable because only A is a virus in

three programs. Moreover, the intent representation of each

concept is not precise enough to determine a virus set. For

example, in the C8 concept, its intent of {mov,ModuleA} is

too general since a normal program can also invoke those

instructions as illustrated in the segment programs of D and E.

B. Logical Concept Analysis

Based on the theory of FCA, [17] proposed the approach of

Logical Concept Analysis (LCA) as follows.

Definition 6 (Logic context). A logic context is a triple

(, ,i) where:

 is a finite set of objects,

 is a (possibly infinite) lattice of formulas, whose

supremum is and whose infimum is ; C denotes a

logic whose deduction relation is . and whose is

junctive and conjunctive operations are respectively

and ,

 i is a mapping from to that associates to each object a

formula that describes the object.

TABLE III: LOGIC FORMAL CONTEXT OF CODE FRAGMENTS ON TABLE I
Object i(O)

A F(mov(ebx,0)∧Xpush(ebx)∧Xcall(GetModuleFileNameA)

B F(mov(ecx,0∧Xpush(ecx)∧Xcall(GetModuleFileNameA)

C F(xor(ebx,ebx)∧Xpush(ebx)∧Xinc(a)∧Xcall(GetModuleFileNameA)

D F(mov(ebx,0)∧Xpush(ebx)∧Xpush(1)∧Xcall(GetModuleFileNameA))

E F(mov(ebx,0)∧Xcall(GetModuleFileNameA)∧Xpush(ebx))

F F(sub(esp,4)∧Xmov([esp],0)∧Xdec(b)∧Xjmp(GetModuleFileNameA))

Definition 7 (Logic concept). In a context (, ,i), a logic

concept is a pair c = (O,f) where O  . and f  , such that

(O)=f and (f) = O. The set of objects O is the concept extent

(written ext(c)), whereas formula f is its intent (written int(c)).

The main difference of LCA to standard FCA is that the

intent is now a formula of the logic C. The set of all concepts

51

International Journal of Machine Learning and Computing, Vol. 7, No. 4, August 2017

that can be built in a context (, ,i) is denoted by (, ,i) and

is partially ordered by defined as follows.

Definition 8 (Order). Let (O1,f1) and (O2,f2) be in

(, ,i),

(O1,f1) (O2,f2) O1  O2

This order is compatible with order on intents.

Proposition 1. (O1,f1) (O2,f2) (f1 f2)

From the order stated in Proposition 1, one will get the

corresponding logic. Fig. 3 describes logic lattice generated

from logic context in Table III.

However, in order to do so, one needs a method to build

generalized concept C’=(O’,f’) from a set of concepts

{C1=(O1,f1),..,Cn=(On,fn))} such that Ci  C’ (∀i). For

example, in the lattice of Fig. 3, two concepts C1 and C2 are

generalized into concept C5. This is implemented by a special

operation of , known as widening operator, such that f’ = f1

fn and f’ fi. ∀i.

The operation will be implemented depending on the

domain on which LCA is applied. In the next section, we will

discuss how to implement such operations for temporal logic

representing virus behaviors.

C. Viral Logic Concept Analysis

In this section, we present Viral Logical Concept Analysis

(V-LCA), an extension of LCA to produce a malware lattice

from dataset of virus programs. The main idea of V-LCA is to

use temporal logic to capture intents of concepts. Since

temporal logic allows representing the execution order of

execution of the operations, it is very suitable to represent

virus behaviors. Then, we apply viral abstractions to

implement the widening operator previously discussed. Viral

abstraction represents a set of temporal formula representing

variants of the same virus samples by a new generalized

formula.

⊤

^

Avron Fam ily

C6

C5

C1
C2

C3

C4

C7

{A,B ,C ,E}

Expicit Stack-C ontrolled C lass

Explicit R egister-valued C lass

Avron-Sam ple 1

Junk C ode O bfuscation C lass

Avron-Sam ple 4
Avron-Sam ple 3

Avron-Sam ple 2

{A,B ,C }

{A,B }

{A}
{B }

{C }
{E}

{C ,E}

F({0}m Ù
invoke(G etM oduleFileN am eA))

$mF({0}m Ù
U invoke(G etM oduleFileN am eA))

F(sub(esp,4)Ù
Xm ov([esp],a)Ù
Xdec(b)Ù
Xjm p(G etM oduleFileN am eA))

F(xor(ebx,ebx)Ù
Xpush(ebx)Ù
Xcall(G etM oduleFileN am eA))

F(m ov(ecx,0)Ù
Xpush(ecx)Ù
Xcall(G etM oduleFileN am eA))

F(m ov(ebx,0)Ù
Xpush(ebx)Ù
Xcall(G etM oduleFileN am eA))

$rF(m ov(r,0)ÙXpush(r)Ù
Xcall(G etM oduleFileN am eA))

$rF((r,0)Ùpush(r)Ù
Fcall(G etM oduleFileN am eA))

false

{}

Fig. 3. The concept lattice generated by V-LCA.

Definition 9 (Viral Logic Formal Context). A viral logic

formal context is a triple (, ,i) where:

 is a finite set of objects, each of which represents a virus

instance or a set of virus instances,

 is lattice of temporal formulas, whose supremum is

 and whose infimum is ,

 i is a mapping from to that associates to each object a

formula that describes virus(es) behaviors.

In order to generate a viral lattice, one needed widening

operator to generate super concepts from subconcepts. As

discussed, we use viral abstractions to implement this

widening operator, as shown in Table IV.

Example 1. Given two formulas of EF((mov

ebx,0)∧AF(push ebx)∧AXcall(GetModuleFileNameA)) and

EF((mov ecx,0)∧AF(push ecx)∧
AXcall(GetModuleFileNameA)), they are almost the same but

only using two different registers of ebx and ecx. The viral

abstraction CTPL will generate new generalized formula

𝑟EF(mov(r,0)∧AFpush(r)∧AXcall(GetModuleFileNameA))

where r stands for an arbitrary register.

Example 2. Given the formulas of EF((mov

ebx,0)∧AF(push ebx)∧AX call(GetModuleFileNameA)),

EF((mov ecx,0)∧AF(push

ecx)∧AXcall(GetModuleFileNameA)),

EF(xor(ebx,ebx)∧AFpush(ebx)∧AFinc(a)∧AXcall(GetModul

eFileNameA) and

∃rEF(mov(r,0)∧AFpush(r)∧AXcall(GetModuleFileNameA)

), all formulas are in fact doing the same thing of pushing 0 the

top stack. All of them are viral abstracted by SCTPL\X to

generate new formula

∃mEF(call(GetModuleFileNameA)∧{0}mΓ∗) where the

notation of {0}mΓ∗ implies the value of top stack Γ
*
is m and

value of m is 0.

TABLE IV: VIRAL ABSTRACTION

No Viral

Abstraction

Description Example

1. CTPL [3] When two temporal

logic formulas are

only different in

terms of register

usage, they can be

abstracted by a new

formula where the

register is

represented by a

variable

Two formulas EF((mov ebx,0)∧AF(push

ebx)∧AX call(GetModuleFileNameA))

and EF((mov ecx,0)∧AF(push

ecx)∧AXcall(GetModuleFileNameA))

will be abstracted as

EF(mov(r,0)∧AFpush(r)∧AXcall(GetMod

uleFileNameA))

2. SCTPL [4] Abstraction of the

action of pushing a

value into top of

stack

Two formulas EF((mov ebx,0)∧AF(push

ebx)∧AX call(GetModuleFileNameA)),

EF((mov ecx,0)∧AF(push ecx)∧AX

call(GetModuleFileNameA)) and

EF(mov(r,0)∧
AFpush(r)∧AXcall(GetModuleFileName

A)) will be abstracted as ∃rEF(mov(r,0)∧
AX(call(GetModuleFileNameA)∧rΓ*)),

showing that the value of top stack is

currently r

3. SCTPL\X

[5]

Actions that change

contents of stack will

be abstracted by an

expression directly

modifying stack

contents

The formulas EF((mov ebx,0)∧AF(push

ebx)∧AX call(GetModuleFileNameA)),

EF((mov ecx,0)∧AF(push ecx)∧AX

call(GetModuleFileNameA)),

∃rEF(mov(r,0)∧
AFpush(r)∧AXcall(GetModuleFileName

A)), and

∃rEF(mov(r,0)∧AX(call(GetModuleFile

NameA)∧rΓ∗)) will be abstracted as

∃mEF(call(GetModuleFileNameA)∧{0}

mΓ∗), showing that the stack top is storing

m, whose value is 0

IV. LLCC: LOGIC-BASED LATTICE CONCEPTUAL

CLUSTERING ALGORITHM

In previous section, we present using V-LCA to generate the

viral lattice, where the formal concepts are organized as a

hierarchical structure. However, since the number of the logic

concept is quite large when applied in practice, we propose

using conceptual clustering to cluster similar formal concepts.

As a result, we have a concept hierarchy of malware as

depicted in Fig. 1. Aiming at generating a concept hierarchy,

most of conceptual clustering methods are based on the

method hierarchical agglomerative clustering (HAC), such a

COBWEB [19]. The order approach is based on FCA result,

52

International Journal of Machine Learning and Computing, Vol. 7, No. 4, August 2017

such as FOGA [20]. However, those algorithms always suffer

from the performance problem due to the high complexity of

N
2
. In our case, the formal concepts generated V-LCA are

represented by logic formulas and ordered by a partial order.

We propose an enhanced conceptual clustering algorithm

known as Logic-based Lattice Conceptual Clustering

Algorithm (LLCC).

Details of the algorithm can be described as follows.

For each object o in the formal context

For each concept c on current concept lattice

Add o as a concept of the current lattice

If o c = o’ ≠ ε (empty) then

If o’has the same featured formula then add o to c

Else introducing new concept c’

In order to construct the final featured concept lattice from

a given featured formal context, obviously one needs to

consider “grouping” objects into concepts. To do so, we

introduce the object-joining operator on two featured

concepts C1 = (A1,I1,1) and C2 = (A2,I2,2) is defined as

follows: C1 C2 = {C
*
,I

*
,*

 = 1 2} where ⊎ is widening

operator two formulas 1 and 2, C
*
 ={x | x and

*
(x)}

and I

*
 = {i | }

In Definition 9, ⊎ is widening operator two formulas 1

and 2. The simplest widening operator is the operator ,

which is the disjunction operator in the case of propositional

logic, and is more commonly known as least common

subsumer operator when processing concepts on the

concept lattice. However, for temporal logic representing

virus behavior, widening operator include viral abstraction as

previously discussed. Hence, a concept of the form A B can

be further widened as an abstract concept C if existing a viral

abstraction, which can abstract both A and B to C.

Example 3. When one performs C5 = C1 C2 as illustrated

in Fig. 3, firstly the least common subsumer

F(mov(ebx,0)∧Xpush(ebx)∧Xcall(GetModuleFileNameA))

F(mov(ecx,0)∧Xpush(ecx)∧Xcall(GetModuleFileNameA)) is

performed. Then, since existing the formula

F(mov(r,0)∧Xpush(r)∧Xcall(GetModuleFileNameA)) can be

abstracted from both

F(mov(ebx,0)∧Xpush(ebx)∧Xcall(GetModuleFileNameA))

and

F(mov(ecx,0)∧Xpush(ecx)∧Xcall(GetModuleFileNameA)),

we obtain the final result of (C5)=f(C1)⊎f(C2)=

F(mov(r,0)∧Xpush(r)∧Xcall(GetModuleFileNameA)).

TABLE V: PERFORMANCE RESULTS BASED ON AUP

150 200 250 500 1000 1500 2000 2500 3000

HAC-based 0.78 0.74066667 0.69871111 0.662 0.63053333 0.60693333 0.56235556 0.53613333 0.49942222

FCA-based 0.83 0.79066667 0.75133333 0.7172444 0.67791111 0.6412 0.60711111 0.57826667 0.5389333

V-LCA 0.976 0.94453333 0.91568889 0.8816 0.84226667 0.80293333 0.77671111 0.74524444 0.74

V. EXPERIMENTS

A. Dataset and Malware Hierarchy

We performed experiments by generating malware concept

hierarchy from a dataset of 3000 virus samples downloaded

from VXHeaven
2
. From this dataset, we constructed the

concept hierarchy using baseline method of traditional

FCA-based conceptual clustering and our proposed

V-LCA-based conceptual clustering. The constructed

Malware Hierarchy is illustrated as Fig. 4.

Fig. 4. The Malware Hierarchy.

B. Performance Evaluation

We used Mean Average Precision (MAP) [21] that is

defined as the mean of the precision value at each point (or

node) in a hierarchical structure where a relevant item appears,

2 http://vxheaven.org/

divided by the total number of retrieved item. Typically, MAP

implies the goodness of a concept hierarchical structure. If the

structure is reasonable enough, when a node (i.e. a cluster) is

retrieved against a query, all of objects belonging to this

cluster should be relevant to the query, yielding good MAP

acquired.

VI. CONCLUSION

In this paper, we extend the traditional FCA (Formal

Concept Analysis) technique into V-LCA (Viral Logical

Concept Analysis) technique, in which each object and formal

concept is featured by a logic formula. This formalism allows

us to capture and present precisely behaviors of virus when

constructing a concept hierarchy of malware. As results, we

successfully generated a Malware Hierarchy from the dataset

of 3000 real virus samples. Experiment results show that the

concept hierarchy developed by our proposed V-LCA gained

better quality than the traditional FCA.

REFERENCES

[1] M. Igor, “Silicon implants,” Virus Bulletin, pp. 8-10, 1997.

[2] P. Szor, “Advanced code evolution techniques and computer virus

generator kits,” The Art of Computer Virus Research and Defense,

2005.

[3] J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith, “Detecting

malicious code by model checking,” in Proc. International

Conference on Detection of Intrusions and Malware, and

Vulnerability Assessment, Springer Berlin Heidelberg, 2005, pp.

174-187.

53

International Journal of Machine Learning and Computing, Vol. 7, No. 4, August 2017

[4] F. Song and T. Touili, “Efficient malware detection using

model-checking,” in Proc. International Symposium on Formal

Methods, Springer Berlin Heidelberg, 2012, pp. 418-433.

[5] F. Song and T. Touili, “Pushdown model checking for malware

detection,” International Journal on Software Tools for Technology

Transfer 16, no. 2, 2014.

[6] M. Huth and M. Ryan, “Logic in Computer Science: Modelling and

reasoning about systems,” Cambridge University Press, 2004.

[7] B. Ganter and Rudolf Wille, “Formal concept analysis: mathematical

foundations,” Springer Science & Business Media, 2012.

[8] G. Zhang, “Chu spaces, concept lattices, and domains,” Electronic

Notes in Theoretical Computer Science 83, pp. 287-302, 2013.

[9] B. Ganter, “Two basic algorithms in concept analysis,” Springer,

2010.

[10] D. Poshyvanyk, M. Gethers and A. Marcus, “Concept location using

formal concept analysis and information retrieval,” ACM Transactions

on Software Engineering and Methodology (TOSEM), 2012.

[11] L. Wang, X. Liu and J. Cao, “A new algebraic structure for formal

concept analysis,” Information Sciences, vol. 180, no. 24, pp.

4865-4876, 2010.

[12] V. Duquenne, “Contextual implications between attributes and some

representation properties for finite lattices,” Springer, 2013.

[13] S. Obiedkov, “Modeling preferences over attribute sets in formal

concept analysis,” Formal Concept Analysis, pp. 227-243, Springer,

2012.

[14] R. Belohlavek and V. Vychodi, “Formal concept analysis and

linguistic hedges,” International Journal of General Systems, vol. 41,

no. 5, pp. 503-532, 2012.

[15] L. Chaudron and N. Maille, “1st order logic formal concept analysis:

from logic programming to theory,” Computer and Information

Science, 1998.

[16] B. Ganter and R. Wille, Formal Concept Analysis – Mathematical

Foundations, Springer, 1999.

[17] S. Ferré and O. Ridoux, “A logical generalization of formal concept

analysis,” in Proc. 8th International Conference on Conceptual

Structures in Conceptual Structures: Logical, Linguistic, and

Computational Issues, 2000.

[18] D. Borchmann, F. Distel, and F. Kriegel, “Axiomatization of General

Concept Inclusions from Finite Interpretations,” LTCS-Report 15-13,

Chair for Automata Theory. Institute for Theoretical Computer

Science, Technische Universität Dresden, Dresden, Germany, 2015.

[19] A. Ketterlin, P. Gançarski, and J. Korczak, Conceptual Clustering in

Structured Databases: A Practical Approach, 1995.

[20] T. Quan, S. Hui, and T. Cao, “A fuzzy FCA-based approach to

conceptual clustering for automatic generation of concept hierarchy on

uncertainty data,” CLA, 2004.

[21] Y. Yue, T. Finley, F. Radlinski, and T. Joachims, “A support vector

method for optimizing average precision,” in Proc. the 30th Annual

International ACM SIGIR Conference on Research and Development

in Information Retrieval, 2007.

Nguyen Thien Binh is a Ph.D Student in the Faculty of

Computer Science and Engineering, Ho Chi Minh City

University of Technology (HCMUT), Vietnam. He

received his B.Eng. degree in Information Technology

from Post and Telecommunication Institute of

Technology, Ho Chi Minh City, Vietnam, in 2004 and

received his Master degree in 2010 from Bordeaux I

University, France. His current research areas include

formal methods, program analysis/verification, malware analysis.

Tran Cong Doi was born in Dong Nai Province, Viet

Nam, in 1981. He received the B.E degree in

electrical-electronics engineering and the M.E degree in

computer science from Bach Khoa University, Ho Chi

Minh City, Vietnam in 2009 and 2012. He has worked as

a lecturer at Dong Nai University since 2012. His current

research interests include: machine learning, formal

concept analysis, artificial intelligence, and

programming language.

Quan Thanh Tho is an associate professor in the

Faculty of Computer Science and Engineering, Ho Chi

Minh City University of Technology (HCMUT),

Vietnam. He received his B.Eng. degree in Information

Technology from HCMUT in 1998 and received Ph.D

degree in 2006 from Nanyang Technological

University, Singapore. His current research interests

include formal methods, program analysis/verification,

the Semantic Web, machine learning/data mining and intelligent systems.

Currently, he heads the Department of Software Engineering of the Faculty.

He is also serving as the chair of Computer Science Program (undergraduate

level).

Nguyen Minh Hai is a Ph.D student in the Faculty of

Computer Science and Engineering, Ho Chi Minh City

University of Technology (HCMUT), Vietnam. He

received his B.Eng. degree in Information Technology

from HCMUT in 2007 and received his Master degree in

2010 from Bordeaux I University, France. His current

research areas include formal methods, program

analysis/verification, malware analysis, security and

dynamic scheduling. Currently, he is the lecturer in the Faculty of

Information Technology, Industrial University of Ho Chi Minh city.

54

International Journal of Machine Learning and Computing, Vol. 7, No. 4, August 2017

