
  

 

 

 

I. INTRODUCTION 

Unsupervised learning combined with deep architecture 

has unveiled part of the mystery of artificial intelligence. Such 

learning techniques have boarder applications in areas like 

visual recognition, natural language processing, audio 

detection, and cognitive analysis. With growing 

computational capabilities, deep learning framework like 

convolutional deep belief network [1] can bring more 

contribution to cognitive science. Recently, researchers begin 

to take the next step, trying to develop model that can handle 

time dependent learning tasks. Traditionally, recurrent neural 

network (RNN) has shown its efficiency in time-dependent 

recognition problems. For instance, RNN is widely used as an 

elegant framework to manipulate audio model [2], which is 

based on time-related inputs. Recent researches also 

combined RNN with the power of convolutional restricted 

Boltzmann machine (CRBM), such as gated auto-coder and 

factorized CRBM [3], [4]. 
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Later, more attention has been driven to a special form of 

time-based model, in which a restricted Boltzmann machine is 

built to learn feature transformations that describe relations 

between time-related input maps. In the model, which is 

similar to conventional RBM [5], [6], a hidden stack of layers 

is constructed to describe conditional probabilistic 

distributions over inputs. The difference from traditional 

model is that the hidden layers take into account of several 

input maps at different time moment. That is, the hidden 

layers are able to extract features from a combination of 

several time-related maps. By doing so, we can extract 

features that are explained by hidden layers to represent 

correlation between inputs maps, in other words, to describe a 

matrix transformation from one map to another. Previous 

works [7]-[10] noted that multiplicative interaction is an 

effective way to correlate input maps. We use this method in 

our model to combine related inputs. With the learned hidden 

features, or transformation, our machine can predict later 

inputs based on conditional distributions that are learned and 

carried by the hidden layers of RBM. Also, with the power of 

high-order temporal dependencies that is describe by [10], we 

can learn features that are even more abstract. In other words, 

we can learn the features of transformations of input maps. 

This can be achieved with more hidden layers to be 

constructed and through learning efficiency brought by deep 

learning architecture. 

There are limitations in higher order temporal model. Since 

conventional multiplicative interaction only takes into 

account of two related maps, it lacks the ability to correlate 

more input maps (input maps sequence for instance) and 

therefore can only learn features from two related inputs. 

Theoretically, we can learn temporal dependence among 

inputs no matter how far they are through high-order training 

process. Thus, combining only two input maps through 

multiplicative interaction seems to be achievable and efficient. 

In practice, however, this will cause the number of layers and 

parameters that are needed to be learned to explode. 

Moreover, in some cases in which we may have a large 

amount of similar or strongly correlated input maps sequence, 

it is wise to combine them all together and to use only one 

stack of hidden layers to describe their correlation, saving a 

lot of space for parameters and time for learning. To do this, 

we define the term “relational order” as the number of maps 

that one stack of  hidden layers learn features from, in other 

words, the number of maps that we correlate with each other 

using multiplicative interactions. Finally, we developed a 
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reinforcement-learning [11] based method to learn the 

relational order at each time by minimizing reconstruction 

error. We then proved that it satisfies the sub-problem 

structure of dynamic programming [12]-[14]. Therefore, by 

finding the optimized reconstruction error at each group of 

related input maps, we get the globally optimal solution of the 

entire input sequence. 

 

II. RELATED WORK 

Traditional temporal-dependent RBM is widely used to 

model language processing, audio recognition and other 

time-evolutional learning tasks. In [15], [16], deep belief 

network has revealed advantages over Gaussian mixture 

models for automatic speech recognition. Recent works [17] 

in image recognition show that a convolutional network 

(CNN) can dramatically enhance the power of artificial neural 

network. Basically, CNN architecture includes hidden layers 

that are gained from convoluting high dimensional inputs with 

kernels, and a pooling layer to exclude noise in order to gain 

highly abstract features. By constructing a convolutional layer, 

CNN takes the advantage of local invariance and parameter 

sharing [18]. In image classification tasks, since the objects 

that need to be recognized from the image input may show up 

at different locations and angles, it is crucial to equip the 

model with the translational invariance property. By sharing 

parameters, on the other hand, we reduce parametric 

redundancy and therefore save a lot of space. Thus, instead of 

defining independent hidden units learning features in 

different parts of the input space, we make hidden units share 

the same combination of weights to extract features that may 

come up from different locations. These advantages make 

CNN extremely efficient. Therefore in this article, we 

developed a model based on convolutional deep neural 

network that takes temporal dependency into account. Such 

model combines the power of deep convolution and the 

capability of time-based model that can handle temporal 

related inputs. We showed its efficiency in tasks of learning 

matrix transformations of related inputs. 

 

III. MODEL 

Recently, convolutional Restricted Boltzmann Machine 

has been used to extract features from high dimensional and 

highly abstract dataset [1]. In case of image processing, we 

extract features in the image by convoluting it with a 2d kernel 

and then construct a 2d layer of RBM [1]. After updating the 

kernels using CD-k algorithm, we are able to perform the task 

of image recognition efficiently by sending the outputs to a 

classical discriministic layer, or to generate an image map 

sampling from the Joint distribution P(X,Z), where the latent 

variable Z is described by hidden layers of C-RBM [5], [6]. 

Conventional recurrent network (RNN) has been proven to 

be a useful model that can handle time dependent learning 

tasks such as recognition and prediction for future outcomes 

based on previous inputs. In order to combine the power of 

deep learning and the ability to extract features from time 

sequence, researchers have developed structures that 

collaborate RBM with RNN. In [3], for example, stacks of 

hidden units have been used to model time evolution features, 

and then a hidden pooling layer computes the sum of these 

hidden units by a sigmoid function, and finally update the 

weights by minimizing the distance function between the real 

visible inputs and the generative visible variables sampled 

from conditional distribution of P (v|h). Such model provides 

the basic architecture for audio recognition and other 

time-evolved learning tasks. 

However, unlike the model of deep audio recognition 

framework, in which the input is a 1d time-related sequence 

and the machine constructs a distribution over hidden layer to 

capture time dependent features of sequenced audio signals, 

the 2d C-RBM lacks the ability to grab relations between time 

related sequences of images. Therefore In this article, we use 

a different framework, which combines the structure of high 

dimensional convolutional-neural-network with restricted 

Boltzmann machine by constructing only one stack of hidden 

variables. The idea is, instead of building stacks of hidden 

layers, that the model constructs multiplicative units relating 

the present input with the previous ones. In this model, hidden 

variables are viewed as a layer that portrays correlation 

among observations at different time t. For prediction, the 

hidden layer generates future maps based on the learned 

probabilistic distribution. In many cases 

(Bi-Temporal-related model, Section 4), each multiplicative 

unit takes account of two input maps. One major drawback of 

this framework, therefore, is that the model only takes 

correlated features among observations of specified length or 

time range. However, in natural brain system, cognitive 

processes are affected by wider range of inputs taken from 

sensors. Therefore, in order to make machine capable of 

learning optimal range of input maps that the multiplicative 

unit takes features from, a reinforcement learning model is 

specified over time range to help the machine take different 

length of inputs sequences by solving the optimal value of the 

reward function defined by the model. 

 

IV. BI-TEMPORAL-RELATED MODEL 

In Bi-related feature learning, machine extracts features 

from two related input maps. In order to combine the pair of 

two maps, a multiplicative unit is constructed to take the 

matrix multiplication of these maps as an input, and then is 

connected to a stack of hidden layers through k different 

kernels. Each hidden layer is constructed by sampling from a 

probabilistic distribution gained by convoluting the input with 

k kernels separately. The parameters of the model include k 

kernels and the biases associated with the hidden layers and 

the multiplicative unit respectively. 

To describe the probabilistic distribution learned by model 

more explicitly, we redefine the traditional energy function of 

RBM [5], [6] as  

1 2 1 2 1, 1 1 2

, ,

( , , ) ( )
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rs i r j s ij k

k i j r s k

E v v h W v v h c h bv v        (1) 

where k is the index for hidden layers, n is the index for input 

maps, W represents the kernel matrix, and Nh NW denotes the 

dimensions( rows and cols) of the hidden layers and of kernel 

matrix respectively. In [5], [6], the probabilistic model RBM 
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based on energy above is defined by 
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Then, we can derive the form of conditional distribution of 

hidden layers over the combined input maps as 
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which defines the distribution of the ij
th

 element of the k
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hidden layer conditioned on two input maps. To see this, we 

let hxy
z
 denote the xy

th
 element of the z
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where we used notation “*” to represent valid convolution, in 

which the last term can be viewed as a convolutional kernel. 

We can also write it in matrix form if we refine “sigmoid” as 

an operation on each matrix’s element as 

))((),|1(
2121 k

kk cvvWsigmoidvvhP   

Similarly, the conditional distribution of the multiplicative 

unit is  
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k
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After concating it with the original one, we get the full 

generative multiplicative-unit. We denote the original and the 

generative multiplicative unit by OO, . Then, by 

approximating the generative multiplicative unit as 

2121 vvvvO  , we can use least squares to find the 

approximated version of each generative input maps. 

1 2( , )
T

T Tv lstsq v O                        (2) 

2 1( , )v lstsq v O                             (3) 

where we have used “lstsq()” as the notation of least square 

method that solves the equation 
( , )

Ax B

x lstsq A B




 the bar above 

O means the generative version of multiplicative unit, and “T” 

represents matrix transpose.
 

Ideally, we want to learn kernel and bias by maximizing the 

log likelihood in gradient ascent fashion given the conditional 

distributions above [5], [6]. The gradient of the log likelihood 

for a CRBM based on energy model is 
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     (4)

 

Unfortunately, computing this gradient involves an 

exponential number of terms. However, Hinton in [6] 

described a novel way, namely the so called contrastive 

divergence to approximate the gradient of (4), and then use 

this approximated gradient to update parameters via gradient 

ascent procedure. In contrastive divergence, for every 

iteration of updates, the multiplicative unit is sampled over 

hidden layers by m times. Take the k
th

 kernel matrix for 

example, its gradient can be approximated as  
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     (5) 

where the upper index over input layers means the original 

input maps and those sampled by m times respectively. The 

m-step CD procedure does converge as shown by Hinton [6]. 

Similarly, the gradients associated with bias can be written as 
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    (6)

 

To see that the gradients we get have the matrix form we 

want. We denote the dimension of multiplicative unit, kernel, 

and hidden layers by NV, NW, NH. By the definition of 

convolution, NH=NV-NW+1. According to (5), the gradient of 

the kernel is gained by take the difference between two 

convolutions, in which the hidden layer acts as a kernel. 

Therefore, by definition, the dimension of the gradient is 

Ng=NV-(NV-NW+1)+1=NW. Similarly, it is easy to show that the 

dimensions of bias’s gradients are equal to that of bias. Thus, 

we verified that the gradients have the correct form. 

Pseudocode of m-step constrastive divergence for training 

bi-related C-RBM is provided in algorithm 1. 

 
Algorithm 1: Bi-temporal-related CRBM using m-step 

contrastive divergence 

 

Initialize learning rate η = 0.2,  
 

For t=0, 1, 2, 3 ...,T 

for i = 0, 1, 2, 3, ..., m 

Set multiplicative unit O(i) := Vt(i)×Vt+1(i) 

For k = 0, 1, 2, 3, ..., K 

H
k
 = Bernoulli(P(h

k
=1|O)) 
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If (i==0)     

Gradient(0)k = O(i) * P( h
k
(t)=1|O(i) ) 

If (i==m) 

    Gradient(m)k=O(i) * P( h
k
(t)=1|O(i) ) 

End for 

Vt(i) = P( Vt(i)|h(t) ) 

Vt+1(i) = P( Vt+1(i)|h(t) ) 

End for 

 

For k = 0, 1, 2, 3, ..., k 

W
k
=W

k
 + η(Gradient(0)k - Gradient(m)k)  

Ck = ck + ( P(h
k
=1|O(0) - P(h

k
=1|O(m)) ) 

End for 

 

bt = bt + Vt(0) - Vt(m) 

Bt+1 = bt+1 + Vt+1(0) - Vt+1(m) 

End for 

End for 

 
In the algorithm, index k represents time, and the second 

index i represents the step of CD. Fig. 1 below shows the 

general structure of Bi-related model. 

 

 

Fig. 1. Bi-temporal-related mode l. 

 

V. TRI-TEMPORAL-RELATED MODEL 

As we have discussed, bi-related model is sufficient to 

handle temporal learning task with the advantage brought by 

deep CRBM. However, in practice we need to extend 

bi-multiplicative unit to learn correlation from more than two 

maps. The reason for making that extension is that in many 

image recognition problems, more that two maps are 

correlated. Therefore, constructing hidden layers to extract 

relation between only two maps is inefficient and 

space-consuming. Also, in other cases where the rate at which 

the frames are sent into the unit might be too fast for the model 

to manipulate. For example, in cases where we may want to 

predict the objects’ locations in a video based on features 

captured by temporal CRBM from inputs that are gained by 

cutting video input into pieces of frames, each of which 

represents a input map, the model does not have enough time 

to train network completely on two-related input maps before 

next pair of related maps shows up. Therefore, we have no 

options by to keep the rate of frames down. In other words, we 

need to slow down the rate at which video input is cut by 

frames into the model to give our machine more time to learn 

features from any pair of maps. However, this is extremely 

time-consuming. 

In this section, we introduce a more general structure to 

address these problems. Recall that we have defined the term 

relational-order as the number of input maps that the hidden 

layers capture features from, we want machine to break the 

constrain of extracting features from limited number of maps 

by combining more related maps together, boosting up 

learning efficiency and reducing the unnecessary waste of 

learning space for parameters and hidden layers that are 

constructed during the training process. More specifically, in 

a typical tri-relational model, each multiplicative units takes 

account of three subsequent maps instead of two, and a stack 

of hidden layers being constructed to learn correlation among 

these three maps. Since the energy function and the 

conditional distribution in bi-related model do not hold for 

tr-related model, we need to slightly change the form of (1), 

(2), (3) to 

1 2 3 1 2 3 1, 1

, ,

1 2 3
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k k k

rs i r j s ij k

k i j r s k

E v v v h W v v v h c h
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     
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1 2 3(( ) , )
T

T Tv lstsq v v O                     (8) 

2 1 3( , ( , ) )
T

T Tv lstsq v lstsq v O                   (9) 

3 1 2( , )v lstsq v v O                      (10) 

Then we are able to train the model by Algorithm 1 with 

m-step contrastive divergence, in which for each step, input 

maps are sampled over conditional distributions (8)-(10). Fig. 

2 shows the structural difference between Bi-related and 

Tri-related mode l. 

 

 
Fig. 2. Bi-related mode l vs Tri-related mode l. 

 

VI. HIGHER-TEMPORAL-RELATED MODEL BASED ON 

REINFORCEMENT LEARNING PROCEDURE 

We then extend Tr-temporal-related CRBM to 

higher-temporal-related CRBM with relational-order higher 

than three. Assume we are now using N-relational-order 

CRBM, we write conditional distributions of each input maps 

as 

1 2 3 1 2 3 1, 1

, ,

1 2 3

( , , , , ) ( )
h wN N

k k

N rs N i r j s ij

k i j r s

N
k

k N

k n

E v v v v h W v v v v h

c h bv v v v

    

 



 

(11) 

1 2 3(( ) , )
T

T T

Nv lstsq v v v O                    (12) 

2 1 3 4( , (( ) , ) )
T

T T

Nv lstsq v lstsq v v v O         (13) 

3 1 2 4 5( , (( ) , ) )
T

T T

Nv lstsq v v lstsq v v v O          (14) 

 

1 2 1( , )N Nv lstsq v v v O                  (15) 
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Then we use algorithm 1 to train the model by constructing 

a multiplicative unit O that learns features from N maps. 

 

Algorithm 2: Higher order temporal CRBM 

 

Initialize learning rate η = 0.2, 

For t = 1, 1+N, 1+2N, ... 

for i = 0, 1, 2, 3, ..., m 

Set multiplicative unit O(i) := Vt(i)×Vt+1(i)...×Vt+N(i)

  

For k = 0, 1, 2, 3, ..., K 

H
k
 (t)= Bernoulli( P( h

k
(t)=1|O ) ) 

If (i==0)     

  Gradient(0)k=O(i) P( h
k
(t)=1|O(i) ) 

If (i==m) 

Gradient(m)k=O(i)*P (h
k
(t)=1|O(i)) 

End for 

Vt(i) = P( Vt(i)|h(t) ) 

Vt+1(i) = P( Vt+1(i)|h(t) ) 

... 

VN(i) = P( VN(i)|h(t) )   Through equation (12) - (15) 

 

End for 

 

For k = 0, 1, 2, 3, ..., k 

W
k 
= W

k
 + η(Gradient(0)k - Gradient(m)k)  

Ck = ck + (P(h
k
(t)=1|O(0) - P(h

k
(t)=1|O(m)) 

End for 

 

bt = bt + Vt(0) - Vt(m) 

bt+1 = bt+1 + Vt+1(0) - Vt+1(m) 

... 

bN = bN + VN(0) - VN(m) 

 
 

In the algorithm, index k represents time, and the second 

index i represents the step of CD. 

As we have discussed in Section 3, one major problem 

faced by specific relational-order CRBM is the lack of 

generality. Once the relational-order is determined, the model 

is constrained to learn features from specific number of maps 

during training process. However, in many cases, sequences 

of input maps and their correlations are not the same. For 

example, in some input sequences, the number of strongly 

related maps might be three, but it may change to six later on. 

Therefore, it is reasonable to make relational order evolve 

through time. To do this, we first proved that the 

sub-sequence of a given sequence of input maps satisfies the 

sub-problem structure in dynamic programming. Then we 

develop a reinforcement learning procedure to learn the 

relational-order of each multiplicative unit by minimizing the 

reconstruction error of the whole sequence of inputs 

recursively through dynamic programming method that 

minimizes the reconstruction error of each sub-sequence input 

maps. Finally, we proved that the optimality is hold by this 

method.  

We first denote a Markov decision process as (S, A, r), 

where “S” is the state-space, “A” is the action-space, and “r” 

represents the reward function [11], [13]. R (s, a) is defined as 

the reward returned by taking action from state s. The task is 

to learn a policy   that maps from the current state to an 

action. One obvious approach to determine the overall value 

of a policy is to evaluate the cumulative reward through that 

policy over time. More formally, cumulative reward 

following a policy   from a given state s is defined as, 






 
0

1 10,)(
i

i

i

t crcsV  , where c is a constant that 

determines the relative value versus immediate reward. More 

specifically, the importance of reward received at i time step 

is decreased exponentially by a factor c
i
. Based on definitions 

above, the best policy we want the model to learn is the policy 

that gives the biggest cumulative reward. That is,  

* arg max ( )tV s



                 (16). 

With that, the model can take the best action following the 

optimal policy defined above. Alternatively, we can base on 

cumulative reward function to choose “a” among actions as 

well. In that case, we redefine the best policy as 

* *arg max{ ( , ) ( ')} arg max{ ( , )}
a a

r s a cV s Q s a    (17) 

where s’ denotes the state after taking action a, and function Q 

is defined as the largest cumulative reward after taking action 

a at state s. By writing the relation between reward function 

and Q function more explicitly as 

)',(max)(
'

* asQsV
a

  

it is easy to see that Q can be defined as 

'
( , ) ( , ) max ( ', ')

a
Q s a r s a c Q s a             (18) 

This recursive form of Q value function provides a basis for 

the algorithm that iteratively approximates value of Q 

efficiently [11]. [11], [13] shows that the Q value gained by 

recursive method does converge to the optimal value. 

To apply reinforcement-learning to our model, we view 

each relational-order as a state in “S”. “A” contains three 

actions, “+1”, 0”, and “-1” Here we assume that the 

relational-order can only change by one each time for 

simplicity). The goal is to minimize the average 

reconstruction error, 

))(*/
2

1
)(

2
)()0(

,

NfNvvNJ m
nn

N

n ji

（ , 

where the upper index (0) represents the original map, and (m) 

represent the one reconstructed by m times through 

contrastive divergence. The function of dominator N is to 

normalize reconstruction error so J of each relational-order 

has the same scale. Since we’d like to make model choose 

higher-order so that it can model a sequence of inputs with 

fewer number of multiplicative units and thereby reduce the 

number of parameters, we multiply N with an monotone 

increasing function f with respect to relational-order N. When 

N increase, f(N) will also increase, and therefore if 

reconstruction error of each input maps do not change by 

much, the J value would decrease. We than define the reward 

function as JR  , so maximizing the reward is the same as 

minimizing the reconstruction error. In general procedure, we 

initialize all Q value to one, and choose the first relational 

order according to a Gaussian distribution. After taking an 
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action based on a probabilistic distribution defined as 

'

exp ( , )
( | )

( , ')
a

Q s a
P a s

Q s a



, update the current Q(s,a) by (18), 

where a’ denotes the action taken at the next state s’. Note that 

if the current state is two, then the model can only take the 

action “+1” or “0”. Along this procedure, the model stores a 

table of Q value representing the reward at each 

relational-order state. Based on this table, the model can 

choose the relational-order itself that has the least 

reconstruction error at each training step by taking actions 

according to the distribution P(a|s). Also, we see that this 

brings the advantage of short-term memory, since the 

previously accumulative rewards added to Q will influence 

the state of the current training step. This also confirms the 

previous assumption that the relational-orders of nearby 

multiplicative units are also correlated. If the relational-order 

of current unit is 4, then that of the next unit would probably 

be around 4, instead of changing to 30 suddenly. 

Reinforcement--learning procedure canhelp each 

multiplicative unit find its optimal relation-order along which 

minimizes the reconstruction error of the input maps. But, 

would minimizing the reconstruction error of each 

sub-sequences minimizes the reconstruction error of the 

whole sequence of input maps? We now show it indeed is.  

Assume that we have a sequence of input maps with length 

T. And we construct N multiplicative units, each of which has 

its relational-order n1,n2,,,  nN. JT is defined as 

nNnnT JJJJ  21  

which is the reconstruction error of the whole sequence. 

According to dynamic programming, we have 

1min( ) min( min )T T nNJ J J                (19). 

We now prove it is sufficient by giving 

)minmin(

min

1

1

1

21

nNT

nNT

nNT

nNnnT

JJ

JJ

JJ

JJJJ

















 

Therefore, (19) does give the optimal reconstruction error. 

Then, using (19), we see that  

1

2 ( 1)

1 2

min( ) min( min )

min( ) min

min min min

T T nN

T n N nN

n n nN

J J J

J J J

J J J



 

 

  

   

    (20) 

This confirms the statement before that the optimal of J of 

the whole sequence can be gained by finding the optimal J of 

each sub-sequence. This is the core of dynamic programming, 

and in artificial intelligence it is called reinforcement learning, 

which is what we have introduced earlier. Thus, we use our 

reinforcement-learning procedure to train the 

high-temporal-related model at each learning epoch. Below is 

the pseudo code. 

 

Algorithm 3: Higher-related model  

 

Initialize all Q(s,a) and r(s,a) to one 

 

Initialize all weights and bias by gaussian distribution with 

mean 0 and variance 1. 

 

Set initial relational order s to arbitrary number that is greater 

than 1. 

 

For epoch e = 0, 1, ,,, E 

For t = 0, 1, 2, ...,T 

  Run algorithm 2 with relational-order n=S(t) 

  Choose “a” according to P(a|S(t)) 

 

  If “a” is “-1” & S > 2 

      Update state, S(t+1) := S(t)-1 

  If “a” is “0” 

      Update state, S(t+1) := S(t) 

  If “a” is “+1” 

      Update state, S(t+1) := S(t)+1 

 

  Run algorithm 2 with relational-order N= S(e) 

 

Set r(S(t), a) = -JN (set the reward at state S taking action 

a to the minus of reconstruction error) 

 

Update the value of Q(S(t), a) by equation (18) 

End for 

End for 

 

VII. EXPERIMENTS 

This section focus on experiments that demonstrate the 

performance of temporal-related CRBM in practice. We will 

use the famous 

MINIST-dataset(http://yann.lecun.com/exdb/mnist/). At each 

training process, we give the model a sequence of digit input 

maps. And than we apply TD-CRBM to learn the matrix 

transformations among the maps. Finally, we use the matrix 

transformations we learned to produce generative maps of 

each digit inputs and then measure the reconstruction error to 

show model performance. 

A. Performance of Bi-Temporal-Related Model in 

MINIST-Dataset 

We first test model’s ability to capture simple 

transformation such as shifts and rotation of a single digit. We 

construct a bi-temporal model, which consists of a 

multiplicative unit with relational-order 2, each of which 

connects to a stack of K hidden layers. We then give the 

model 10 sequences of input maps of length 100, each of 

which consists of 100 digit maps of different angles towards 

the axis. We train the model following algorithm 1 and store 

each stack of hidden layers as feature maps that describe the 

correlation between each pair of digit inputs. After each 

training epoch is finished, we calculate the reconstruction 

error between the generative digit inputs and the original ones. 

We see that as the training epoch increases, the reconstruction 

error drops out exponentially, which confirms the efficiency 
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and ability of bi-related model. Fig. 3 shows the performance 

of Bi-related model in the task of learning transformation 

between pair of MINIST-digit maps. 

B. Higher-Related with Q-learning VS Bi- & Tri-Related  

As our discussion in previous sections, higher-related 

model is more practical and can reduces the amount of 

parameters that must be learned. In this section, we 

implemented an experiment that shows different performance 

of higher, tri, and bi-temporal-related models. 

Again, we give each model 10 sequences of maps, each of 

which consists of 100 digit maps of the same number digit. 

We constraint on the amplitude of the transformation between 

pair of inputs. More specifically, the rotation from the last 

map do not exceed 20 degrees, and the shift of the centroid do 

not exceed 2. We then use algorithm 1 to train bi-related 

model, algorithm 2 with relational-order 3 to train tri-related 

model, and algorithm 3 with initial order 5 to train 

higher-related model.  

Fig. 3 and 4 summarizes the results of the experiment, from 

which we can evaluate the performance of three different 

models. 

 

 
 

Model \  

Epoch 
0 400 800 1000 1200 1400 

Bi 99 99 99 99 99 99 

Tri 50 50 50 50 50 50 

Higher 25 14 13 12 16 14 

 

 
Fig. 3. Performance of the three models when nearby inputs are highly 

correlated. 

 

We now throw away the constraint on transformation to see 

how higher-related model behaves. 

C. Results and Conclusion 

We first analyze bi-related model. We see from Fig. 3 and 

Fig. 4 that performances of bi-related model are the same in 

each case. This is because 2rd relational-order multiplicative 

unit is the most basic one. And the feature map learned by 

each unit can well describe the relationship between pair of 

input maps, no matter how much one map transform into 

another. 
 

 
 

Model \  

Epoch 
0 400 800 1000 1200 1400 

Bi 99 99 99 99 99 99 

Tri 50 50 50 50 50 50 

Higher 25 68 76 81 88 91 

 

 
Fig. 4. Performance of the three model when there is no constraint on 

transformation. 

 

In tri-related model, however, we see even though it has 

roughly the same training epoch to that of bi-related, it does 

not perform well when there is no constraint on the 

transformation between each pair of maps. And the 

reconstruction error is still above “170” even after 1400 

training epochs. This is true because when there is no 

limitation on transformation, the least number of highly 

related maps is only two. Each multiplicative unit can only 

learn features from two maps with one transformation. When 

a 3rd relational-order unit is constructed to learn 

transformation from three maps with two far different 

transformations, the error goes up. For example, consider a 

sequence of three maps, the first map rotates 90 degrees 

clockwise into the second map, and the second rotates 120 

degrees counterclockwise into map three. In this case, 

bi-related model constructs two multi-units, each of which 

learns the feature map of one rotation. The Tri-related model, 

however, will not perform well because one multi-unit can not 

learn two different transformations at the same learning 

epoch. 

We see that higher-order model with 

reinforcement--learning procedure is more flexible. It can 

choose the optimal relational-order for each multi-unit to give 

the least reconstruction error. In Fig. 3, when each map is 

highly related, higher-order model constructs multi-units with 

relational-order higher than 5, thereby reducing the number of 

parameters dramatically. Then in Fig. 4, when there is no 

constraint on transformation, we see that even though its error 

during early steps of training is far higher that those of other 

two models, high-order model can adjust the relational-order 

to the optimal that gives the least reconstruction error. After 
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400 training epochs, it outperforms tri-related model. After 

1400 training epochs, it reduces its reconstruction error to 

roughly the same scale to that of bi-related model. 

 

VIII. CONCLUSION: LIMITATION AND FURTHER RESEARCH 

In this article, we introduced a CRBM structure that models 

temporal-dependent input sequences by constructing 

multiplicative units and hidden layers to learn features of 

correlation among related input maps. We then combined this 

model with reinforcement--learning procedure. By doing so, 

we made our model capable of learning the optimal 

relational-order for each multiplicative unit to give the least 

amount of errors. From the experiment, we see that the model 

with reinforcement--learning procedure is more flexible on 

choosing the relational-order. And it reconstructs the 

generative maps with the same accuracy to that of bi-related 

model in the long-term. 

However, reinforcement--learning strategy increases the 

complexity of computation and the amount of training time 

dramatically. We see that it takes about 1400 training epochs 

for the model to reduce its reconstruction error down to 100. 

Its performance only catches up with that of bi-related model 

in the long-term. Therefore, further researches to reduce the 

training period are needed. 
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