

I. INTRODUCTION

Unsupervised learning combined with deep architecture

has unveiled part of the mystery of artificial intelligence. Such

learning techniques have boarder applications in areas like

visual recognition, natural language processing, audio

detection, and cognitive analysis. With growing

computational capabilities, deep learning framework like

convolutional deep belief network [1] can bring more

contribution to cognitive science. Recently, researchers begin

to take the next step, trying to develop model that can handle

time dependent learning tasks. Traditionally, recurrent neural

network (RNN) has shown its efficiency in time-dependent

recognition problems. For instance, RNN is widely used as an

elegant framework to manipulate audio model [2], which is

based on time-related inputs. Recent researches also

combined RNN with the power of convolutional restricted

Boltzmann machine (CRBM), such as gated auto-coder and

factorized CRBM [3], [4].

Manuscript received October 16, 2016; revised January 26, 2017.

Zizhuang Wang is with the Xiaogan Senior High School, China (e-mail:

1012125144@qq.com).

Later, more attention has been driven to a special form of

time-based model, in which a restricted Boltzmann machine is

built to learn feature transformations that describe relations

between time-related input maps. In the model, which is

similar to conventional RBM [5], [6], a hidden stack of layers

is constructed to describe conditional probabilistic

distributions over inputs. The difference from traditional

model is that the hidden layers take into account of several

input maps at different time moment. That is, the hidden

layers are able to extract features from a combination of

several time-related maps. By doing so, we can extract

features that are explained by hidden layers to represent

correlation between inputs maps, in other words, to describe a

matrix transformation from one map to another. Previous

works [7]-[10] noted that multiplicative interaction is an

effective way to correlate input maps. We use this method in

our model to combine related inputs. With the learned hidden

features, or transformation, our machine can predict later

inputs based on conditional distributions that are learned and

carried by the hidden layers of RBM. Also, with the power of

high-order temporal dependencies that is describe by [10], we

can learn features that are even more abstract. In other words,

we can learn the features of transformations of input maps.

This can be achieved with more hidden layers to be

constructed and through learning efficiency brought by deep

learning architecture.

There are limitations in higher order temporal model. Since

conventional multiplicative interaction only takes into

account of two related maps, it lacks the ability to correlate

more input maps (input maps sequence for instance) and

therefore can only learn features from two related inputs.

Theoretically, we can learn temporal dependence among

inputs no matter how far they are through high-order training

process. Thus, combining only two input maps through

multiplicative interaction seems to be achievable and efficient.

In practice, however, this will cause the number of layers and

parameters that are needed to be learned to explode.

Moreover, in some cases in which we may have a large

amount of similar or strongly correlated input maps sequence,

it is wise to combine them all together and to use only one

stack of hidden layers to describe their correlation, saving a

lot of space for parameters and time for learning. To do this,

we define the term “relational order” as the number of maps

that one stack of hidden layers learn features from, in other

words, the number of maps that we correlate with each other

using multiplicative interactions. Finally, we developed a

Temporal-Related

Convolutional-Restricted-Boltzmann-Machine Capable of

Learning Relational Order via Reinforcement Learning

Procedure

Zizhuang Wang

International Journal of Machine Learning and Computing, Vol. 7, No. 1, February 2017

1doi: 10.18178/ijmlc.2017.7.1.610



Abstract—Recent works on recurrent neural network and

deep learning architecture have shown the power of deep

learning in modeling time dependent input sequences. Specific

learning structure such as Higher-order boltzmann machine,

gradient-based learning manifold, and Recurrent “grammar

cell” reveal their ability to learn feature transformation between

related input maps, and perform well in time-related learning &

prediction tasks in higher order cases. In this article, we extend

the conventional convolutional-Restricted-Boltzmann-Machine

to learn highly abstract features among abitrary number of time

related input maps by constructing a layer of multiplicative

units, which capture the relations among inputs. In some cases,

we only care about how one map transforms into another, so the

multiplicative unit takes features from only this two maps. In

other cases, however, more than two maps are strongly related,

so it is reasonable to make multiplicative unit learn relations

among more input maps, in other words, to find the optimal

relational-order(number of related input maps that the

multiplicative unit extracts features from) of each unit. In order

to enable our machine to learn relational order, we developed a

reinforcement-learning method whose optimality is proven to

train the network.

Index Terms—Artificial neural network,

convolutional-restricted-boltzmann-machine, reinforcement

learning, deep learning, temporal-related, relational-order.

reinforcement-learning [11] based method to learn the

relational order at each time by minimizing reconstruction

error. We then proved that it satisfies the sub-problem

structure of dynamic programming [12]-[14]. Therefore, by

finding the optimized reconstruction error at each group of

related input maps, we get the globally optimal solution of the

entire input sequence.

II. RELATED WORK

Traditional temporal-dependent RBM is widely used to

model language processing, audio recognition and other

time-evolutional learning tasks. In [15], [16], deep belief

network has revealed advantages over Gaussian mixture

models for automatic speech recognition. Recent works [17]

in image recognition show that a convolutional network

(CNN) can dramatically enhance the power of artificial neural

network. Basically, CNN architecture includes hidden layers

that are gained from convoluting high dimensional inputs with

kernels, and a pooling layer to exclude noise in order to gain

highly abstract features. By constructing a convolutional layer,

CNN takes the advantage of local invariance and parameter

sharing [18]. In image classification tasks, since the objects

that need to be recognized from the image input may show up

at different locations and angles, it is crucial to equip the

model with the translational invariance property. By sharing

parameters, on the other hand, we reduce parametric

redundancy and therefore save a lot of space. Thus, instead of

defining independent hidden units learning features in

different parts of the input space, we make hidden units share

the same combination of weights to extract features that may

come up from different locations. These advantages make

CNN extremely efficient. Therefore in this article, we

developed a model based on convolutional deep neural

network that takes temporal dependency into account. Such

model combines the power of deep convolution and the

capability of time-based model that can handle temporal

related inputs. We showed its efficiency in tasks of learning

matrix transformations of related inputs.

III. MODEL

Recently, convolutional Restricted Boltzmann Machine

has been used to extract features from high dimensional and

highly abstract dataset [1]. In case of image processing, we

extract features in the image by convoluting it with a 2d kernel

and then construct a 2d layer of RBM [1]. After updating the

kernels using CD-k algorithm, we are able to perform the task

of image recognition efficiently by sending the outputs to a

classical discriministic layer, or to generate an image map

sampling from the Joint distribution P(X,Z), where the latent

variable Z is described by hidden layers of C-RBM [5], [6].

Conventional recurrent network (RNN) has been proven to

be a useful model that can handle time dependent learning

tasks such as recognition and prediction for future outcomes

based on previous inputs. In order to combine the power of

deep learning and the ability to extract features from time

sequence, researchers have developed structures that

collaborate RBM with RNN. In [3], for example, stacks of

hidden units have been used to model time evolution features,

and then a hidden pooling layer computes the sum of these

hidden units by a sigmoid function, and finally update the

weights by minimizing the distance function between the real

visible inputs and the generative visible variables sampled

from conditional distribution of P (v|h). Such model provides

the basic architecture for audio recognition and other

time-evolved learning tasks.

However, unlike the model of deep audio recognition

framework, in which the input is a 1d time-related sequence

and the machine constructs a distribution over hidden layer to

capture time dependent features of sequenced audio signals,

the 2d C-RBM lacks the ability to grab relations between time

related sequences of images. Therefore In this article, we use

a different framework, which combines the structure of high

dimensional convolutional-neural-network with restricted

Boltzmann machine by constructing only one stack of hidden

variables. The idea is, instead of building stacks of hidden

layers, that the model constructs multiplicative units relating

the present input with the previous ones. In this model, hidden

variables are viewed as a layer that portrays correlation

among observations at different time t. For prediction, the

hidden layer generates future maps based on the learned

probabilistic distribution. In many cases

(Bi-Temporal-related model, Section 4), each multiplicative

unit takes account of two input maps. One major drawback of

this framework, therefore, is that the model only takes

correlated features among observations of specified length or

time range. However, in natural brain system, cognitive

processes are affected by wider range of inputs taken from

sensors. Therefore, in order to make machine capable of

learning optimal range of input maps that the multiplicative

unit takes features from, a reinforcement learning model is

specified over time range to help the machine take different

length of inputs sequences by solving the optimal value of the

reward function defined by the model.

IV. BI-TEMPORAL-RELATED MODEL

In Bi-related feature learning, machine extracts features

from two related input maps. In order to combine the pair of

two maps, a multiplicative unit is constructed to take the

matrix multiplication of these maps as an input, and then is

connected to a stack of hidden layers through k different

kernels. Each hidden layer is constructed by sampling from a

probabilistic distribution gained by convoluting the input with

k kernels separately. The parameters of the model include k

kernels and the biases associated with the hidden layers and

the multiplicative unit respectively.

To describe the probabilistic distribution learned by model

more explicitly, we redefine the traditional energy function of

RBM [5], [6] as

1 2 1 2 1, 1 1 2

, ,

(, ,) ()
h wN N

k k k

rs i r j s ij k

k i j r s k

E v v h W v v h c h bv v        (1)

where k is the index for hidden layers, n is the index for input

maps, W represents the kernel matrix, and Nh NW denotes the

dimensions(rows and cols) of the hidden layers and of kernel

matrix respectively. In [5], [6], the probabilistic model RBM

International Journal of Machine Learning and Computing, Vol. 7, No. 1, February 2017

2

based on energy above is defined by

























h

hvE

hvE

v

hvE

hvE

v

hvE

hvE

hvE

e

e

vP

hvP
vhP

e

e

Ze

Ze

hP

hvP
hvP

Z

e
hvP

),(

),(

),(

),(

),(

),(

),(

)(

),(
)|(

,
/

/

)(

),(
)|(

,),(

Then, we can derive the form of conditional distribution of

hidden layers over the combined input maps as

)))(((),|1(
2121 kij

kk

ij
cvvWsigmoidvvhP 

which defines the distribution of the ij
th

 element of the k
th

hidden layer conditioned on two input maps. To see this, we

let hxy
z
 denote the xy

th
 element of the z

th
 hidden layer, and h(-1)

denote the other elements. If we define

 

  



 

 











zk yxji

k
ijk

zk

N

yxji

N

sr

k
ijsjri

k
rs

z

N

sr

syrx
k

rs
z
xy

vbvhc

hvvWhvB

cvvWhA

h w

w

21

,,

,, ,

1,121

,

1,121

)())1(,(

,)()(

,

then it is easy to show that

)))(*((

)(

)|1(

21

0)())1(,(1)())1(,(

))1(,()(

zxy
z

z
xy

hAhvBhAhvB

hvBhA
z
xy

cvvWsigmoid

Asigmoid

eeee

ee
vhP

z
xy

z
xy

z
xy












where we used notation “*” to represent valid convolution, in

which the last term can be viewed as a convolutional kernel.

We can also write it in matrix form if we refine “sigmoid” as

an operation on each matrix’s element as

))((),|1(
2121 k

kk cvvWsigmoidvvhP 

Similarly, the conditional distribution of the multiplicative

unit is

 
k

k
k

bhWsigmoidhvvP)*()|1(
221

After concating it with the original one, we get the full

generative multiplicative-unit. We denote the original and the

generative multiplicative unit by OO, . Then, by

approximating the generative multiplicative unit as

2121 vvvvO  , we can use least squares to find the

approximated version of each generative input maps.

1 2(,)
T

T Tv lstsq v O (2)

2 1(,)v lstsq v O (3)

where we have used “lstsq()” as the notation of least square

method that solves the equation
(,)

Ax B

x lstsq A B




 the bar above

O means the generative version of multiplicative unit, and “T”

represents matrix transpose.

Ideally, we want to learn kernel and bias by maximizing the

log likelihood in gradient ascent fashion given the conditional

distributions above [5], [6]. The gradient of the log likelihood

for a CRBM based on energy model is

(,)(,)

,

,

ln()ln()
((|)

(,) (,)
(|) (,)

E v hE v h

v hh

h v h

ee
Ln P v

E v h E v h
P h v P v h



  

 

 


 
  

 
  

 



 

 (4)

Unfortunately, computing this gradient involves an

exponential number of terms. However, Hinton in [6]

described a novel way, namely the so called contrastive

divergence to approximate the gradient of (4), and then use

this approximated gradient to update parameters via gradient

ascent procedure. In contrastive divergence, for every

iteration of updates, the multiplicative unit is sampled over

hidden layers by m times. Take the k
th

 kernel matrix for

example, its gradient can be approximated as

(0) (0) (0) (0)

1 2 1 2

() () () ()

1 2 1 2

((|)
() (1| ,)

() (1| ,)

k

k

m m k m m

Ln P W v
v v P h v v

W

v v P h v v


  



  

 (5)

where the upper index over input layers means the original

input maps and those sampled by m times respectively. The

m-step CD procedure does converge as shown by Hinton [6].

Similarly, the gradients associated with bias can be written as

(0) (0) () ()

1 2 1 2

(0) (0) () ()

1 2 1 2

((|)
(1| ,) (1| ,)

((|)

k k m m

k

m m

Ln P v
P h v v P h v v

c

Ln P v
v v v v

b






   




 



 (6)

To see that the gradients we get have the matrix form we

want. We denote the dimension of multiplicative unit, kernel,

and hidden layers by NV, NW, NH. By the definition of

convolution, NH=NV-NW+1. According to (5), the gradient of

the kernel is gained by take the difference between two

convolutions, in which the hidden layer acts as a kernel.

Therefore, by definition, the dimension of the gradient is

Ng=NV-(NV-NW+1)+1=NW. Similarly, it is easy to show that the

dimensions of bias’s gradients are equal to that of bias. Thus,

we verified that the gradients have the correct form.

Pseudocode of m-step constrastive divergence for training

bi-related C-RBM is provided in algorithm 1.

Algorithm 1: Bi-temporal-related CRBM using m-step

contrastive divergence

Initialize learning rate η = 0.2,

For t=0, 1, 2, 3 ...,T

for i = 0, 1, 2, 3, ..., m

Set multiplicative unit O(i) := Vt(i)×Vt+1(i)

For k = 0, 1, 2, 3, ..., K

H
k
 = Bernoulli(P(h

k
=1|O))

International Journal of Machine Learning and Computing, Vol. 7, No. 1, February 2017

3

If (i==0)

Gradient(0)k = O(i) * P(h
k
(t)=1|O(i))

If (i==m)

 Gradient(m)k=O(i) * P(h
k
(t)=1|O(i))

End for

Vt(i) = P(Vt(i)|h(t))

Vt+1(i) = P(Vt+1(i)|h(t))

End for

For k = 0, 1, 2, 3, ..., k

W
k
=W

k
 + η(Gradient(0)k - Gradient(m)k)

Ck = ck + (P(h
k
=1|O(0) - P(h

k
=1|O(m)))

End for

bt = bt + Vt(0) - Vt(m)

Bt+1 = bt+1 + Vt+1(0) - Vt+1(m)

End for

End for

In the algorithm, index k represents time, and the second

index i represents the step of CD. Fig. 1 below shows the

general structure of Bi-related model.

Fig. 1. Bi-temporal-related mode l.

V. TRI-TEMPORAL-RELATED MODEL

As we have discussed, bi-related model is sufficient to

handle temporal learning task with the advantage brought by

deep CRBM. However, in practice we need to extend

bi-multiplicative unit to learn correlation from more than two

maps. The reason for making that extension is that in many

image recognition problems, more that two maps are

correlated. Therefore, constructing hidden layers to extract

relation between only two maps is inefficient and

space-consuming. Also, in other cases where the rate at which

the frames are sent into the unit might be too fast for the model

to manipulate. For example, in cases where we may want to

predict the objects’ locations in a video based on features

captured by temporal CRBM from inputs that are gained by

cutting video input into pieces of frames, each of which

represents a input map, the model does not have enough time

to train network completely on two-related input maps before

next pair of related maps shows up. Therefore, we have no

options by to keep the rate of frames down. In other words, we

need to slow down the rate at which video input is cut by

frames into the model to give our machine more time to learn

features from any pair of maps. However, this is extremely

time-consuming.

In this section, we introduce a more general structure to

address these problems. Recall that we have defined the term

relational-order as the number of input maps that the hidden

layers capture features from, we want machine to break the

constrain of extracting features from limited number of maps

by combining more related maps together, boosting up

learning efficiency and reducing the unnecessary waste of

learning space for parameters and hidden layers that are

constructed during the training process. More specifically, in

a typical tri-relational model, each multiplicative units takes

account of three subsequent maps instead of two, and a stack

of hidden layers being constructed to learn correlation among

these three maps. Since the energy function and the

conditional distribution in bi-related model do not hold for

tr-related model, we need to slightly change the form of (1),

(2), (3) to

1 2 3 1 2 3 1, 1

, ,

1 2 3

(, , ,) ()
h wN N

k k k

rs i r j s ij k

k i j r s k

E v v v h W v v v h c h

bv v v

     



  (7)

1 2 3(() ,)
T

T Tv lstsq v v O (8)

2 1 3(, (,))
T

T Tv lstsq v lstsq v O (9)

3 1 2(,)v lstsq v v O (10)

Then we are able to train the model by Algorithm 1 with

m-step contrastive divergence, in which for each step, input

maps are sampled over conditional distributions (8)-(10). Fig.

2 shows the structural difference between Bi-related and

Tri-related mode l.

Fig. 2. Bi-related mode l vs Tri-related mode l.

VI. HIGHER-TEMPORAL-RELATED MODEL BASED ON

REINFORCEMENT LEARNING PROCEDURE

We then extend Tr-temporal-related CRBM to

higher-temporal-related CRBM with relational-order higher

than three. Assume we are now using N-relational-order

CRBM, we write conditional distributions of each input maps

as

1 2 3 1 2 3 1, 1

, ,

1 2 3

(, , , ,) ()
h wN N

k k

N rs N i r j s ij

k i j r s

N
k

k N

k n

E v v v v h W v v v v h

c h bv v v v

    

 



 

(11)

1 2 3(() ,)
T

T T

Nv lstsq v v v O (12)

2 1 3 4(, (() ,))
T

T T

Nv lstsq v lstsq v v v O (13)

3 1 2 4 5(, (() ,))
T

T T

Nv lstsq v v lstsq v v v O (14)

1 2 1(,)N Nv lstsq v v v O (15)

International Journal of Machine Learning and Computing, Vol. 7, No. 1, February 2017

4

Then we use algorithm 1 to train the model by constructing

a multiplicative unit O that learns features from N maps.

Algorithm 2: Higher order temporal CRBM

Initialize learning rate η = 0.2,

For t = 1, 1+N, 1+2N, ...

for i = 0, 1, 2, 3, ..., m

Set multiplicative unit O(i) := Vt(i)×Vt+1(i)...×Vt+N(i)

For k = 0, 1, 2, 3, ..., K

H
k
 (t)= Bernoulli(P(h

k
(t)=1|O))

If (i==0)

 Gradient(0)k=O(i) P(h
k
(t)=1|O(i))

If (i==m)

Gradient(m)k=O(i)*P (h
k
(t)=1|O(i))

End for

Vt(i) = P(Vt(i)|h(t))

Vt+1(i) = P(Vt+1(i)|h(t))

...

VN(i) = P(VN(i)|h(t)) Through equation (12) - (15)

End for

For k = 0, 1, 2, 3, ..., k

W
k
= W

k
 + η(Gradient(0)k - Gradient(m)k)

Ck = ck + (P(h
k
(t)=1|O(0) - P(h

k
(t)=1|O(m))

End for

bt = bt + Vt(0) - Vt(m)

bt+1 = bt+1 + Vt+1(0) - Vt+1(m)

...

bN = bN + VN(0) - VN(m)

In the algorithm, index k represents time, and the second

index i represents the step of CD.

As we have discussed in Section 3, one major problem

faced by specific relational-order CRBM is the lack of

generality. Once the relational-order is determined, the model

is constrained to learn features from specific number of maps

during training process. However, in many cases, sequences

of input maps and their correlations are not the same. For

example, in some input sequences, the number of strongly

related maps might be three, but it may change to six later on.

Therefore, it is reasonable to make relational order evolve

through time. To do this, we first proved that the

sub-sequence of a given sequence of input maps satisfies the

sub-problem structure in dynamic programming. Then we

develop a reinforcement learning procedure to learn the

relational-order of each multiplicative unit by minimizing the

reconstruction error of the whole sequence of inputs

recursively through dynamic programming method that

minimizes the reconstruction error of each sub-sequence input

maps. Finally, we proved that the optimality is hold by this

method.

We first denote a Markov decision process as (S, A, r),

where “S” is the state-space, “A” is the action-space, and “r”

represents the reward function [11], [13]. R (s, a) is defined as

the reward returned by taking action from state s. The task is

to learn a policy  that maps from the current state to an

action. One obvious approach to determine the overall value

of a policy is to evaluate the cumulative reward through that

policy over time. More formally, cumulative reward

following a policy  from a given state s is defined as,






 
0

1 10,)(
i

i

i

t crcsV  , where c is a constant that

determines the relative value versus immediate reward. More

specifically, the importance of reward received at i time step

is decreased exponentially by a factor c
i
. Based on definitions

above, the best policy we want the model to learn is the policy

that gives the biggest cumulative reward. That is,

* arg max ()tV s



  (16).

With that, the model can take the best action following the

optimal policy defined above. Alternatively, we can base on

cumulative reward function to choose “a” among actions as

well. In that case, we redefine the best policy as

* *arg max{ (,) (')} arg max{ (,)}
a a

r s a cV s Q s a    (17)

where s’ denotes the state after taking action a, and function Q

is defined as the largest cumulative reward after taking action

a at state s. By writing the relation between reward function

and Q function more explicitly as

)',(max)(
'

* asQsV
a



it is easy to see that Q can be defined as

'
(,) (,) max (', ')

a
Q s a r s a c Q s a  (18)

This recursive form of Q value function provides a basis for

the algorithm that iteratively approximates value of Q

efficiently [11]. [11], [13] shows that the Q value gained by

recursive method does converge to the optimal value.

To apply reinforcement-learning to our model, we view

each relational-order as a state in “S”. “A” contains three

actions, “+1”, 0”, and “-1” Here we assume that the

relational-order can only change by one each time for

simplicity). The goal is to minimize the average

reconstruction error,

))(*/
2

1
)(

2
)()0(

,

NfNvvNJ m
nn

N

n ji

（ ,

where the upper index (0) represents the original map, and (m)

represent the one reconstructed by m times through

contrastive divergence. The function of dominator N is to

normalize reconstruction error so J of each relational-order

has the same scale. Since we’d like to make model choose

higher-order so that it can model a sequence of inputs with

fewer number of multiplicative units and thereby reduce the

number of parameters, we multiply N with an monotone

increasing function f with respect to relational-order N. When

N increase, f(N) will also increase, and therefore if

reconstruction error of each input maps do not change by

much, the J value would decrease. We than define the reward

function as JR  , so maximizing the reward is the same as

minimizing the reconstruction error. In general procedure, we

initialize all Q value to one, and choose the first relational

order according to a Gaussian distribution. After taking an

International Journal of Machine Learning and Computing, Vol. 7, No. 1, February 2017

5

action based on a probabilistic distribution defined as

'

exp (,)
(|)

(, ')
a

Q s a
P a s

Q s a



, update the current Q(s,a) by (18),

where a’ denotes the action taken at the next state s’. Note that

if the current state is two, then the model can only take the

action “+1” or “0”. Along this procedure, the model stores a

table of Q value representing the reward at each

relational-order state. Based on this table, the model can

choose the relational-order itself that has the least

reconstruction error at each training step by taking actions

according to the distribution P(a|s). Also, we see that this

brings the advantage of short-term memory, since the

previously accumulative rewards added to Q will influence

the state of the current training step. This also confirms the

previous assumption that the relational-orders of nearby

multiplicative units are also correlated. If the relational-order

of current unit is 4, then that of the next unit would probably

be around 4, instead of changing to 30 suddenly.

Reinforcement--learning procedure canhelp each

multiplicative unit find its optimal relation-order along which

minimizes the reconstruction error of the input maps. But,

would minimizing the reconstruction error of each

sub-sequences minimizes the reconstruction error of the

whole sequence of input maps? We now show it indeed is.

Assume that we have a sequence of input maps with length

T. And we construct N multiplicative units, each of which has

its relational-order n1,n2,,, nN. JT is defined as

nNnnT JJJJ  21

which is the reconstruction error of the whole sequence.

According to dynamic programming, we have

1min() min(min)T T nNJ J J  (19).

We now prove it is sufficient by giving

)minmin(

min

1

1

1

21

nNT

nNT

nNT

nNnnT

JJ

JJ

JJ

JJJJ

















Therefore, (19) does give the optimal reconstruction error.

Then, using (19), we see that

1

2 (1)

1 2

min() min(min)

min() min

min min min

T T nN

T n N nN

n n nN

J J J

J J J

J J J



 

 

  

   

 (20)

This confirms the statement before that the optimal of J of

the whole sequence can be gained by finding the optimal J of

each sub-sequence. This is the core of dynamic programming,

and in artificial intelligence it is called reinforcement learning,

which is what we have introduced earlier. Thus, we use our

reinforcement-learning procedure to train the

high-temporal-related model at each learning epoch. Below is

the pseudo code.

Algorithm 3: Higher-related model

Initialize all Q(s,a) and r(s,a) to one

Initialize all weights and bias by gaussian distribution with

mean 0 and variance 1.

Set initial relational order s to arbitrary number that is greater

than 1.

For epoch e = 0, 1, ,,, E

For t = 0, 1, 2, ...,T

 Run algorithm 2 with relational-order n=S(t)

 Choose “a” according to P(a|S(t))

 If “a” is “-1” & S > 2

 Update state, S(t+1) := S(t)-1

 If “a” is “0”

 Update state, S(t+1) := S(t)

 If “a” is “+1”

 Update state, S(t+1) := S(t)+1

 Run algorithm 2 with relational-order N= S(e)

Set r(S(t), a) = -JN (set the reward at state S taking action

a to the minus of reconstruction error)

Update the value of Q(S(t), a) by equation (18)

End for

End for

VII. EXPERIMENTS

This section focus on experiments that demonstrate the

performance of temporal-related CRBM in practice. We will

use the famous

MINIST-dataset(http://yann.lecun.com/exdb/mnist/). At each

training process, we give the model a sequence of digit input

maps. And than we apply TD-CRBM to learn the matrix

transformations among the maps. Finally, we use the matrix

transformations we learned to produce generative maps of

each digit inputs and then measure the reconstruction error to

show model performance.

A. Performance of Bi-Temporal-Related Model in

MINIST-Dataset

We first test model’s ability to capture simple

transformation such as shifts and rotation of a single digit. We

construct a bi-temporal model, which consists of a

multiplicative unit with relational-order 2, each of which

connects to a stack of K hidden layers. We then give the

model 10 sequences of input maps of length 100, each of

which consists of 100 digit maps of different angles towards

the axis. We train the model following algorithm 1 and store

each stack of hidden layers as feature maps that describe the

correlation between each pair of digit inputs. After each

training epoch is finished, we calculate the reconstruction

error between the generative digit inputs and the original ones.

We see that as the training epoch increases, the reconstruction

error drops out exponentially, which confirms the efficiency

International Journal of Machine Learning and Computing, Vol. 7, No. 1, February 2017

6

and ability of bi-related model. Fig. 3 shows the performance

of Bi-related model in the task of learning transformation

between pair of MINIST-digit maps.

B. Higher-Related with Q-learning VS Bi- & Tri-Related

As our discussion in previous sections, higher-related

model is more practical and can reduces the amount of

parameters that must be learned. In this section, we

implemented an experiment that shows different performance

of higher, tri, and bi-temporal-related models.

Again, we give each model 10 sequences of maps, each of

which consists of 100 digit maps of the same number digit.

We constraint on the amplitude of the transformation between

pair of inputs. More specifically, the rotation from the last

map do not exceed 20 degrees, and the shift of the centroid do

not exceed 2. We then use algorithm 1 to train bi-related

model, algorithm 2 with relational-order 3 to train tri-related

model, and algorithm 3 with initial order 5 to train

higher-related model.

Fig. 3 and 4 summarizes the results of the experiment, from

which we can evaluate the performance of three different

models.

Model \

Epoch
0 400 800 1000 1200 1400

Bi 99 99 99 99 99 99

Tri 50 50 50 50 50 50

Higher 25 14 13 12 16 14

Fig. 3. Performance of the three models when nearby inputs are highly

correlated.

We now throw away the constraint on transformation to see

how higher-related model behaves.

C. Results and Conclusion

We first analyze bi-related model. We see from Fig. 3 and

Fig. 4 that performances of bi-related model are the same in

each case. This is because 2rd relational-order multiplicative

unit is the most basic one. And the feature map learned by

each unit can well describe the relationship between pair of

input maps, no matter how much one map transform into

another.

Model \

Epoch
0 400 800 1000 1200 1400

Bi 99 99 99 99 99 99

Tri 50 50 50 50 50 50

Higher 25 68 76 81 88 91

Fig. 4. Performance of the three model when there is no constraint on

transformation.

In tri-related model, however, we see even though it has

roughly the same training epoch to that of bi-related, it does

not perform well when there is no constraint on the

transformation between each pair of maps. And the

reconstruction error is still above “170” even after 1400

training epochs. This is true because when there is no

limitation on transformation, the least number of highly

related maps is only two. Each multiplicative unit can only

learn features from two maps with one transformation. When

a 3rd relational-order unit is constructed to learn

transformation from three maps with two far different

transformations, the error goes up. For example, consider a

sequence of three maps, the first map rotates 90 degrees

clockwise into the second map, and the second rotates 120

degrees counterclockwise into map three. In this case,

bi-related model constructs two multi-units, each of which

learns the feature map of one rotation. The Tri-related model,

however, will not perform well because one multi-unit can not

learn two different transformations at the same learning

epoch.

We see that higher-order model with

reinforcement--learning procedure is more flexible. It can

choose the optimal relational-order for each multi-unit to give

the least reconstruction error. In Fig. 3, when each map is

highly related, higher-order model constructs multi-units with

relational-order higher than 5, thereby reducing the number of

parameters dramatically. Then in Fig. 4, when there is no

constraint on transformation, we see that even though its error

during early steps of training is far higher that those of other

two models, high-order model can adjust the relational-order

to the optimal that gives the least reconstruction error. After

International Journal of Machine Learning and Computing, Vol. 7, No. 1, February 2017

7

400 training epochs, it outperforms tri-related model. After

1400 training epochs, it reduces its reconstruction error to

roughly the same scale to that of bi-related model.

VIII. CONCLUSION: LIMITATION AND FURTHER RESEARCH

In this article, we introduced a CRBM structure that models

temporal-dependent input sequences by constructing

multiplicative units and hidden layers to learn features of

correlation among related input maps. We then combined this

model with reinforcement--learning procedure. By doing so,

we made our model capable of learning the optimal

relational-order for each multiplicative unit to give the least

amount of errors. From the experiment, we see that the model

with reinforcement--learning procedure is more flexible on

choosing the relational-order. And it reconstructs the

generative maps with the same accuracy to that of bi-related

model in the long-term.

However, reinforcement--learning strategy increases the

complexity of computation and the amount of training time

dramatically. We see that it takes about 1400 training epochs

for the model to reduce its reconstruction error down to 100.

Its performance only catches up with that of bi-related model

in the long-term. Therefore, further researches to reduce the

training period are needed.

REFERENCES

[1] H. Lee, “Convolutional deep belief networks for scalable unsupervised

learning of hierarchical representations,” International Conference on

Machine Learning, pp. 609-616, 2009.

[2] H. Lee, P. T. Pham, L. Yan, and A. Y. Ng, “Unsupervised feature

learning for audio classification using convolutional deep belief

networks,” Advances in Neural Information Processing Systems, vol.

22, pp. 1096-1104, 2009.

[3] Y. Shi, W. Q. Zhang, J. Liu, and M. T. Johnson, “Rnn language model

with word clustering and class-based output layer,” Eurasip Journal

on Audio Speech and Music Processing, vol. 1, pp. 1-7, 2013.

[4] G. Taylor, “Factored conditional restricted boltzmann machines for

modeling motion style,” in Proc. International Conference on

Machine Learning, pp. 1025-1032, 2009.

[5] C. L. P. Chen, C. Y. Zhang, L. Chen, and M. Gan, “Fuzzy restricted

Boltzmann machine for the enhancement of deep learning,” in Proc.

IEEE Transactions on Fuzzy Systems, vol. 1, no. 1, p. 99, 2015.

[6] A. Fischer and C. Igel, “Training restricted Boltzmann machines: An

introduction,” Pattern Recognition, vol. 47, no. 1, pp. 25-39, 2014.

[7] Sejnowski and J. Terrence, “Higher-order Boltzmann machines,” in

Proc. Aip Conference 151 on Neural Networks for Computing, 1987,

vol. 151, no. 1, pp. 398-403.

[8] R. Memisevic and G. E. Hinton, “Learning to represent spatial

transformations with factored higher-order boltzmann machines,”

Neural Computation, vol. 22, no. 6, pp. 1473-1492, 1989.

[9] R. Memisevic, “Learning to relate images,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 35, no. 8,

pp.1829-1846, 2013.

[10] V. Michalski, R. Memisevic, and K. Konda, “Modeling deep temporal

dependencies with recurrent grammar cells,” Advances in Neural

Information Processing Systems, vol. 3, pp. 1925-1933, 2014.

[11] R. S. Sutton and A. G. Barto, “Reinforcement learning: An

introduction,” IEEE Transactions on Neural Networks, vol. 9, no. 5,

pp. 1054-1054, 2013.

[12] R. Howard, “Dynamic programming,” Management Science, vol. 12,

no. 5, pp. 317-348, 1966.

[13] M. Puterman, “Markov decision processes: Discrete stochastic

dynamic programming,” Technometrics, vol. 37, no. 3, pp.353-353,

1994.

[14] D. Bertsekas, “Dynamic programming and optimal control,” Athena

Scientific, 2000.

[15] T. N. Sainath, B. Kingsbury, B. Ramabhadran, and P. Fousek,

“Making deep belief networks effective for large vocabulary

continuous speech recognition,” Automatic Speech Recognition and

Understanding, pp. 30-35, 2011.

[16] Z. H. Ling, L. Deng, and D. Yu, “Modeling spectral envelopes using

restricted Boltzmann machines and deep belief networks for statistical

parametric speech synthesis,” IEEE Transactions on Audio Speech

and Language Processing, vol. 21, no. 10, pp. 2129-2139, 2013.

[17] N. Chumerin, Convolutional Neural Network, 2015.

[18] B. Alpaydin, Introduction to Machine Learning, p. 169, 2010.

Zizhuang Wang has finished all school courses with a

perfect GPA and won multiple school scientific

competitions at 11th grade. He started to focus on

researches of artificial intelligence and mathematics.

Wang’s major research interest lies in machine learning,

neural networks, bayesian inference, applied

mathematics, and quantum computation.

International Journal of Machine Learning and Computing, Vol. 7, No. 1, February 2017

8

