
  


 

Abstract—Two-hidden layer feedforward neural networks 

(TLFNs) have been shown to outperform single-hidden-layer 

neural networks (SLFNs) for function approximation in many 

cases. However, their added complexity makes them more 

difficult to find. Given a constant number of hidden nodes nh, 

this paper investigates how their allocation between the first 

and second hidden layers (nh = n1 + n2) affects the likelihood of 

finding the best generaliser. The experiments were carried out 

over a total of ten public domain datasets with nh = 8 and 16. 

The findings were that the heuristic n1 = 0.5nh + 1 has an 

average probability of at least 0.85 of finding a network with a 

generalisation error within 0.18% of the best generaliser. 

Furthermore, the worst case over all data sets was within 0.23% 

for nh = 8, and within 0.15% for nh = 16. These findings could be 

used to reduce the complexity of the search for TLFNs from 

quadratic to linear, or alternatively for ‘topology mapping’ 

between TLFNs and SLFNs, given the same number of hidden 

nodes, to compare their performance. 

 
Index Terms—ANN, optimal node ratio, topology mapping, 

two-hidden-layer feedforward, function approximation.  

 

I. INTRODUCTION 

Since the introduction of fully interconnected feedforward 

neural networks into the automotive industry in 1993 [1], 

they have enjoyed increasing popularity and are still widely 

used to for function approximation to date, as in for example, 

[2]. The most popular training algorithm by far is the „trainlm‟ 

algorithm available in the Matlab neural network toolbox. 

This is an implementation of the Levenberg-Marquardt 

algorithm [3], which generally yields the best generalisation 

and fastest convergence for function approximation problems 

[4]. It is widely used for training both SLFNs [5]-[8] and 

TLFNs [9], [10], though the former is more common  in the 

literature. Unfortunately it is very memory hungry, and the 

training time rises exponentially with the number of weights. 

This makes it unsuitable for networks with more than a few 

hundred weights [4], and this is particularly problematic for 

networks with two hidden layers. Because of this, the 

complexity of an exhaustive search through two hidden 

layers is actually greater than O(n
2
). By way of illustration, 

whereas an exhaustive search through a single hidden layer 

with 1 to 32 neurons takes less than an hour, a search through 

two hidden layers takes approximately 48 hours. This for 30 
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networks of each topology on a Quad-core i7 4710HQ 

processor running at 2.5GHz. 

This study investigates whether there might be a faster 

route to take in the search for a TLFN rather than the 

conventional raster scan. For example only; taking the „short 

cut‟ route shown by the solid line in Fig. 1 would reduce the 

complexity of the search from quadratic to linear since only 8 

topologies are tested instead of 64. However, in order for this 

method to be useful there must be a high probability that it 

will find networks with only a small penalty in generalisation 

error compared to the longer raster route. Furthermore, this 

should still be the case regardless of the dataset. 

In the experiments, ten public domain datasets suitable for 

function approximation tasks are tested to find a „short cut‟ 

which works well for all. By suitable, it is meant that they 

have a single output. Although many examples in the 

literature have multiple outputs (e.g. [9] [10]), this should be 

avoided if possible since the validation error is calculated 

across all outputs. This means the training might stop 

prematurely due to the poor generalisation capability of a 

single output, perhaps resulting in sub-optimal generalisation 

of the other outputs. There is also mathematical evidence that 

reducing the number of outputs increases the storage capacity 

of the network [11]. If multiple outputs are required, it is 

better to split the network into several sub-networks each 

with a single output. These could run in parallel on hardware 

or multi-threaded software, and are likely to require fewer 

nodes each, especially for those where the functions are 

simpler, and/or for those which require fewer inputs. 

 

 
Fig. 1. TLFN raster search and „short cut‟ trajectory. 

 

II. RELATED WORK 

Two-hidden-layer feedforward neural networks have 

gained popularity ever since it was shown that they can 

outperform those with a single hidden layer [12]. Related 

literature concerning the allocation of nodes between hidden 

layers can be classified as mathematical proofs, empirical 

studies and anecdotal. These are discussed in the following 
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sections: 

A. Mathematical Proofs 

These are concerned with proving an upper bound for the 

total number of hidden neurons needed to exactly reproduce 

the training data, or to do so with negligible error. Using 

Akaike‟s information criteria, Tamura and Tateshi [13]  

proved that including the output neuron, the upper bound for 

SLFNs is Ns, and that for TLFNs this is Ns / 2 + 3 where Ns is 

the total number of training samples. This not only proves 

that the upper bound for TLFNs is lower than that for SLFNs 

for a given dataset, but suggests that this would be achieved 

using Ns / 2 neurons in the first hidden layer and two neurons 

in the second hidden layer. 

Inspired by the work in [13], Huang constructed a proof 

using a network consisting of different neural subnetworks 

each playing different roles [11]. He rigorously proved that 

the upper bound on the number of hidden nodes Nh  for 

TLFNs with sigmoid activation function is given by equation 

(1), where No is the number of outputs. These can learn at any 

Ns distinct samples with any degree of precision. Conversely, 

the storage capacity Ns samples of a TLFN with Nh hidden 

neurons is at least that defined in equation (2). 

 2 ( 2)h o sN N N                          (1) 
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This proves that reducing the number of outputs increases 

the storage capacity of a TLFN and that for the best storage 

capacity, function approximators should be constructed with 

a single output. Huang further specifies that the total number 

of hidden neurons Nh should be allocated between the first 

and second hidden layers (N1 and N2  respectively) 

according to equations (3) and (4). 

    1 2 2 2o s s oN N N N N   
               

 (3) 

  2 2o s oN N N N                               (4) 

For a single output, i.e. No=1, equations (1), (3) and (4) can 

be rewritten as (5), (6) and (7) respectively. 

 2 3h sN N   (5) 

 
1 3 2 3s sN N N    (6) 

 
2 13s hN N N N     (7) 

Substituting Nh – N1 from (7) into (6), and gathering terms 

leads to equation (8). 

 
13 3 2s hN N N    (8) 

Finally, by substituting √3Ns for Nh / 2 from equation (5) 

and rearranging, the ratio of nodes between the first hidden 

layer and the total number of hidden nodes is given by 

equation (9). So for a single output Huang‟s proof suggests 

that a TLFN should have a wide first hidden layer and a 

narrow second hidden layer with a ratio of 5:1 between them. 

 
1 5 6hN N                                   (9) 

However, this ratio relates to the upper bound on the 

number of nodes, and is merely a consequence of the way that 

Huang constructed the network for his proof. Another point 

to consider is that his work is concerned with exactly 

reproducing the training data (including any noise). So at this 

upper bound, any network would definitely be overfitting 

unless a suitable regularisation scheme such as weight decay 

or early stopping were deployed. The same can also be said 

for the work of Tamura and Tateshi [13]. This current work 

differs from both in that it is an empirical study and arrives at 

a different conclusion for the ten public domain datasets 

used. 

B. Empirical Studies 

In a novel study, Thomas et al. [14] compared every 

possible combination of hidden nodes in the first and second 

hidden layers for a given constant number of hidden nodes. 

Mathematically speaking, this is equivalent to all possible n1 

+ n2 = nh , where n1 and n2 are the number of hidden nodes in 

the first and second hidden layers respectively and the total 

number of hidden nodes (nh), is constant. This equation 

describes any of the backward diagonals in Fig. 1. This was 

repeated for all the different values of constant nh which is 

given by the set nh = {34, 20, 16, 14, 13, 12, 11, 10, 9, 8, 7, 6, 

5, 4, 3}. When the average generalisation errors were plotted 

centred on the forward diagonal n1 = n2, (alternatively n1 = 

0.5nh ) the result is an „isonode‟ map as shown in Fig. 2. Each 

solid contour line is referred to as the i
th

 isonode, where i = nh 

is the number of hidden nodes. Thus the first contour line in 

the set, and leftmost on the map is the 34
th

 isonode.  

Over two different datasets, it was concluded that the 

relationship which gives the lowest average generalisation 

error is given by: 

 
1 2 1int(0.5 1),h hn n n n n                     (10) 

Although the current study can be viewed as an extension 

of this work in as much as it shares the concept and basic 

method of data gathering, it is a new study which uses a 

completely different (probabilistic) approach. 

 

 
Fig. 2. Isonode map [14]. 

 

Unlike the previous study, it uses relative generalisation 

errors which permits direct comparison between node 

combinations across the entirety of the datasets. This in turn 

allows probabilistic methods to be used by way of a 

frequency analysis of the data. Another major difference is 

five times as many datasets were used in the current study. 

C. Anecdotal 

In the absence of any other related work, it was decided to 

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

-17 -15 -13 -11 -9 -7 -5 -3 -1 1 3 5 7 9 11 13 15 17

A
ve

ra
ge

 g
e

n
e

ra
li

sa
ti

o
n

 e
rr

o
r 

Hidden layer 1 nodes offset ( n1 - 0.5nh )

n2 = 2n1 = 4

International Journal of Machine Learning and Computing, Vol. 6, No. 5, October 2016

242



  

examine what actual node combinations other researchers in 

the automotive field had selected on for their TLFN designs. 

This indirect evidence can only be considered anecdotal 

because in many cases there is no information at all about 

how these were designed, such as [15] [16]. Others have 

carried out some form of search but this is unspecified [17], 

whilst some use trial and error methods [18], [19]. Of those 

which actually perform a search, some are quadratic [9], [10], 

whilst other use a linear search with equal number of nodes in 

the first and second hidden layers  [20], [21]. Nonetheless it 

may be that the authors are basing their searches from past 

experience. It is impossible to tell. 

These choices are summarised in Table I, and the same 

data represented graphically in Fig. 3. Whatever the 

underlying reason, or reasoning, it is still interesting that the 

trend is for an equal number of nodes in the first and second 

hidden layers, with a slight bias towards more nodes in the 

first hidden layer. 

 
Fig. 3. Graphical representation of node selections. 

 
TABLE I. TLFN NODE SELECTIONS IN THE LITERATURE 

Authors n1 n2 n1 choice 

Akcayol and Cinar 2005 [22] 40 40 0.5nh + 0 

Hunicz et al. 2002 [16] 13 11 0.5nh + 1 

Asik et al. 1997 [15] 8 8 0.5nh + 0 

Czarnigowski et al. 2007 [17] 5 4 0.5nh + 1 

Deh Kiani et al. 2010 [18] 25 25 0.5nh + 0 

Janakiraman et al. 2006 [23] 10 20 0.5nh – 5 

Kurniawan et al. 2007 [19] 15 12 0.5nh – 1  

Nikzadfar and  

Shamekhi 2014 [24] 

10 

10 

10 

8 

0.5nh + 0 

0.5nh + 1 

Özgören et al. 2013 [25] 11 7 0.5nh + 2 

Roy et al. 2014 [10] 8 8 0.5nh + 0 

Taghavifar et al. 2014 [9] 19 17 0.5nh + 1 

Wu et al. 2004 [20] 8 8 0.5nh + 0 

Wu et al. 2005 [21] 10 10 0.5nh + 0 

III. EXPERIMENTAL METHOD 

A. Experimental Environment 

All experiments were carried out using Matlab R2014b 

with the „fitnet‟ function available in the neural network 

toolbox.  

B. Datasets 

The datasets used in these experiments were selected 

because of their availability in the public domain, and their 

suitability for a function approximation tasks. They were 

obtained from the following sources: 

 UCI Machine learning Repository [26]: Abalone, 

Airfoil Self-Noise, Concrete Compressive Strength, 

White Wine. 

 BU Function Approximation Repository [27]: 

Kinematics, Mortgage. 

 UP Regression Datasets [28]: Delta elevators. 

 Matlab: chemical_dataset, engine_dataset, 

simplefit_dataset. Further information about these 

can be found by typing „help‟ followed by the 

dataset name at the Matlab command line. 

C. Data Preparation 

In all cases, the data was split into three subsets: Training, 

Validation, and Test as summarised in Table II. The 

Validation set was used to stop the training process when the 

validation error starts to rise, and the Test set was used 

exclusively as an estimate of the generalisation error. Prior to 

this, the Engine dataset, which has two inputs and two 

outputs was reorganised into three inputs and a single output 

as in [14].  
 

TABLE II: DATASET SUMMARY 

Dataset Name Inputs Samples  Training 
Val & Test 

(each) 

Abalone 8 4177 3341 418 

Airfoil Self-Noise 5 1503 1201 151 

Chemical 8 498 398 50 

Concrete 8 1030 824 103 

Delta Elevators 6 9517 7613 952 

Engine 3 1199 959 120 

Kinematics 8 8292 6652 820 

Mortgage 15 1049 839 105 

Simplefit 1 94 64 15 

White Wine 11 4898 3918 490 

 

For any given dataset, exactly the same subsets were used 

for every single network created in the experiments (220,000 

per dataset and thus 2.2 million in total). By eliminating any 

bias in the error surface that may have resulted from a 

different random split for each network, it was ensured that 

they were all competing on the same playing field. The only 

random element at play was thus the initial randomisation of 

the weights. This initial starting point determines which local 

minimum in the error surface the training might get stuck in 

and thus has a direct impact on the generalisation error. For 

complex error surfaces, it is extremely unlikely that the 

global minimum will be found. 

D. Training Algorithm 

In all cases, data preprocessing was „mapminmax‟ for both 

inputs and outputs, the transfer function was „tansig‟ and the 

error function for training was „mse‟. However, the 

generalisation error in the experiments was reported as the 

normalised root mean squared error (NRMSE), which is 

given by: 

 
 

2

1
1 ˆ

ˆ ˆ

n

i ii

y

max min s

y y
NRMSE

y y N








              (11) 

where Ns represents the number of samples, ŷi is the target 

value, and yi is the actual value. 
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The Levenberg-Marquardt training algorithm „trainlm‟ 

was deployed with early stopping for all experiments, using 

its default training parameters. Notably: 1000 epochs, 

training goal of 0, min. gradient of 10
-7

, and 6 validation 

failures. 

E. Method 

It was found in [14] that the difference in generalisation 

error between adjacent nodes about the axis of symmetry 

becomes less significant as nh is increased. This can be seen 

quite clearly in Fig. 2, where the 34
th

 isonode contour is 

almost flat. For this reason it was decided to experiment using 

only two values of nh, small (nh = 8) and medium (nh = 16) for 

this study. Referring to Fig. 4, for the 8
th

 isonode (nh = 8), the 

7 possible topologies are represented by squares, and the 

process is as follows: 

 

 
Fig. 4. Experimental topologies for 8th and 16th isonodes. 

 

 
Fig. 5. Raw data for a single run with error threshold ɛth. 

 

1. For each topology, find the median generalisation 

error from 100 networks resulting in the set, ɛ 

2. The best generalisation error is ɛmin = min(ɛ) 

3. Evaluate the set of relative errors εrel = ɛ – ɛmin. 

This is the raw data for a single run shown in Fig. 

5 

4. For all topologies such that εrel < ɛth, register a hit 

in in its column. In Fig. 5 this is columns 4, 5 and 

6 

5. Repeat for 100 runs for each of the 10 datasets 

6. The probability that a particular topology will 

yield a generalisation error less than the threshold 

is given by p(εrel < ɛth ) = k / r, where k is the 

number of hits for that topology, and r is the total 

number of runs 

7. The results are plotted on a „probability map‟, 

where each column has a probability between 0 

and 1. 
 

The process is identical for the 16
th

 isonode (nh = 16), but 

in this case the 15 topologies denoted by circles are 

considered. 

 

IV. RESULTS 

The results are presented as the average and worst case 

probability across the ten datasets for the 8
th

 and 16
th

 isonodes. 

The error threshold values (ɛth) were adjusted, in each case, 

until the peak worst case probability reached 0.5. At these 

values, even the worst performing dataset has a 50% chance 

of being less than the error threshold ɛth .This occurred when 

the value of ɛth was 0.18% and 0.13% for the 8
th

 and 16
th
 

isonodes respectively. In the probability maps shown in Figs. 

6 and 7, the x-axis represents the number of nodes in the first 

hidden layer n1 (the number of nodes in the second hidden 

layer n2 = nh – n1), and the y-axis shows the average and 

worst case probability that the relative error is less than ɛth, or 

in other words p(εrel < ɛth ). 
 

 
Fig. 6. Probability map for the 8th isonode, with ɛth = 0.18%. 

 

 
Fig. 7. Probability map for the 16th isonode, with ɛth = 0.13%. 

 

 
Fig. 8. Average relative error map. 
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Fig. 9. Worst case relative error map. 

 
Both the average and worst case probabilities peak at n1 = 

5 and n1 = 9 for the 8
th

 and 16
th

 isonodes respectively. This is 

consistent with the previous findings of the Authors [14], 

which concluded that the best ratio of nodes was given by the 

heuristic n1 = int(0.5nh + 1). The probability maps of the 

individual datasets (not shown here), revealed that some were 

less susceptible to variations in the node ratio than others, 

about 50% of them having a fairly flat probability map. 

Examining the actual generalisation errors relative to the 

best generaliser (εrel), a similar picture emerged. Figs. 8 and 9 

show maps of the average and worst case εrel respectively, 

against the number of nodes in the first hidden layer. In these 

maps, the x-axis represents an offset from 0.5nh for ease of 

comparison – in other words n1 = 0.5nh + x. From these maps 

it can be seen that on average, at n1 = 0.5nh + 1, the relative 

generalisation error εrel is less than 0.1% for both the 8
th

 and 

16
th

 isonodes. Furthermore εrel  is at most 0.15%  and 0.23% 

for the 16
th

 and 8
th

 isonodes respectively. 

 

V. CONCLUSIONS 

Training feedforward neural networks using 

backpropagation algorithms is a very probabilistic affair. The 

initial random allocation of weights dictate the starting 

position on the error surface, and this in turn dictates the end 

point. With a perfect training algorithm, the endpoint would 

always be the global minimum, in which case it wouldn‟t 

matter what the initial weights were. Unfortunately, 

backpropagation algorithms are far from perfect and the 

endpoint will almost certainly be a local minimum. The 

consequence of this is that the final generalisation error will 

vary from training session to training session, and that any 

search for the „optimal‟ topology is more than likely to yield a 

different outcome on each occasion. In reality, therefore, 

there is no such thing as an optimal topology, only a 

probability that a particular topology will yield the optimal 

generalisation errors. 

The same constraints apply to this study, where it is 

concluded that although the heuristic n1 = int(0.5nh + 1) does 

not guarantee that the best generaliser will be found, there is a 

high probability that it will – at the very least within the 

context of the datasets tested here. The findings are that using 

this heuristic, even the worst performing dataset has a 

probability of 0.5 of finding a network within 0.18% (nh = 8) 

and 0.13% (nh = 16) of the best generaliser, but that on 

average these probabilities are much higher at 0.85 and 0.89 

respectively. Furthermore, in the worst case, the relative 

errors are within just 0.23% and 0.15% respectively, but 

typically less than 0.1% in both cases. 

 These findings are very significant, as they can be applied 

to reduce the complexity of a quadratic (raster) search 

through n1, n2 to a linear search through nh with very little 

penalty in the generalisation error. Such a search would 

follow the staircase trajectory shown in Fig. 10. Alternatively, 

only even values of nh could be considered, in which case the 

trajectory would be n2 = n1 – 2, shown as the shaded node 

allocations in Fig. 10. This latter trajectory would reduce a 

search through n
2
 nodes to one through n – 2  nodes. This is 

equivalent to a reduction in complexity from O(n
2
) to O(n). 

A further application of these findings is in providing an 

isonode topology „transform‟ or „mapping‟ between single 

and double hidden layer networks. In this context, given a 

particular number of hidden nodes, nh, equation (10) is used 

to map a single hidden layer topology on to an „equivalent‟ 

two hidden layer topology. Fig. 11 shows this topology 

mapping applied to the Airfoil Self-Noise dataset. It 

compares the average generalisation error of SLFN and 

TLFN networks with an equal number of hidden nodes. In 

this case, node for node, two hidden layers clearly perform 

better than a single hidden layer beyond nh = 5. 

 

 
Fig. 10. Proposed search trajectory. 

 

 
Fig. 11. Isonode topology mapping – Two hidden layers vs. one. 

 

VI. FURTHER WORK 

It is possible that the complexity could be further reduced 

to O(log2(n)) using the predictive method developed by the 

Authors in [29]. There are two possible approaches: 

1. Use the predictive method „as is‟ to find the optimal 

SLFN in O(log2(n)). Subsequently, apply an  

isonode topology mapping to generate an 

equivalent TLFN. 

2. Alternatively, the predictive method could be 

adapted to use the relationship in equation (10) 

directly. It was tentatively shown in [14] that the 

isonode topology mapping could well be suitable 

for use in such a predictive approach. 
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It is believed at this stage that the former approach would 

probably be the faster of the two. However, it is suspected 

that the latter would yield better results. Pending the results of 

further experimentation, either approach would reduce the 

complexity of finding TLFNs from O(n
2
) to O(log2(n)). This 

significant reduction in complexity could potentially find 

„optimal‟ TLFNs in a matter of minutes rather than days. 

ACKNOWLEDGMENT 

We thank Prof. Martin T. Hagan of Oklahoma State 

University for kindly donating the Engine dataset used in this 

paper to Matlab. Thanks also to Prof. I-Cheng Yeh for 

permission to use his Concrete Compressive Strength dataset 

[30], as well as the other donors of the various datasets used 

in this study. A. J. Thomas would also like to thank Chris 

Thomas for his support. 

REFERENCES 

[1] M. W. Scaife, S. J. Charlton, and C. Mobley, “A neural network for 

fault recognition,” SAE International, Warrendale, PA, SAE Technical 

Paper 930861, Mar. 1993. 
[2] H. Taghavifar, H. Taghavifar, A. Mardani, A. Mohebbi, S. Khalilarya, 

and S. Jafarmadar, “Appraisal of artificial neural networks to the 

emission analysis and prediction of CO2, soot, and NOx of n-heptane 
fueled engine,” J. Clean. Prod., vol. 112, Part 2, pp. 1729–1739, Jan. 

2016. 

[3] J. J. Moré, “The Levenberg-Marquardt algorithm: Implementation and 
theory,” in Numerical Analysis, G. A. Watson, Ed. Springer Berlin 

Heidelberg, 1978, pp. 105–116. 

[4] H. Demuth and M. Beale, “Neural network toolbox user's guide. 
MATLAB Version 4,” 2001. 

[5] O. Özener, L. Yüksek, and M. Özkan, “Artificial neural network 

approach to predicting engine-out emissions and performance 
parameters of a turbo charged diesel engine,” Therm. Sci., vol. 17, no. 1, 

pp. 153–166, 2013. 

[6] A. H. Gadallah, E. A. Elshenawy, A. M. Elzahaby, H. A. El-Salmawy, 
and A. H. Bawady, “Application of neural networks for prediction and 

optimization of emissions and performance in a hydrogen fuelled direct 

injection engine equipped with in cylinder water injection,” SAE 
International, Warrendale, PA, 2009-01–2684, Nov. 2009. 

[7] B. Xiao, S. Wang, and R. G. Prucka, “A semi-physical artificial neural 

network for feed forward ignition timing control of multi-fuel SI 
engines,” SAE International, Warrendale, PA, 2013-01–0324, Apr. 

2013. 

[8] J. Rezaei, M. Shahbakhti, B. Bahri, and A. A. Aziz, “Performance 
prediction of HCCI engines with oxygenated fuels using artificial 

neural networks,” Appl. Energy, vol. 138, pp. 460–473, Jan. 2015. 

[9] H. Taghavifar, H. Taghavifar, A. Mardani, and A. Mohebbi, 
“Modeling the impact of in-cylinder combustion parameters of DI 

engines on soot and NOx emissions at rated EGR levels using ANN 
approach,” Energy Convers. Manag., vol. 87, pp. 1–9, Nov. 2014. 

[10] S. Roy, R. Banerjee, A. K. Das, and P. K. Bose, “Development of an 

ANN based system identification tool to estimate the 
performance-emission characteristics of a CRDI assisted CNG dual 

fuel diesel engine,” J. Nat. Gas Sci. Eng., vol. 21, pp. 147–158, Nov. 

2014. 
[11] G.-B. Huang, “Learning capability and storage capacity of 

two-hidden-layer feedforward networks,” IEEE Trans. Neural Netw., 

vol. 14, no. 2, pp. 274–281, Mar. 2003. 
[12] D. L. Chester, “Why two hidden layers are better than one,” in Proc. 

International Joint Conference on Neural Networks, 1990, vol. 1, pp. 

265–268. 
[13] S. Tamura and M. Tateishi, “Capabilities of a four-layered feedforward 

neural network: four layers versus three,” IEEE Trans. Neural Netw., 

vol. 8, no. 2, pp. 251–255, Mar. 1997. 
[14] A. J. Thomas, S. D. Walters, M. Petridis, S. M. Gheytass, and R. E. 

Morgan, “Accelerated optimal topology search for two-hidden-layer 

feedforward neural networks,” Engineering Applications of Neural 
Networks, vol. 629, pp. 253–266, Aberdeen: Springer International 

Publishing, 2016. 

[15] J. R. Asik, J. M. Peters, G. M. Meyer, and D. X. Tang, “Transient A/F 
estimation and control using a neural network,” SAE International, 

Warrendale, PA, 970619, Feb. 1997. 

[16] J. Hunicz, D. Mazurkiewicz, and A. Niewczas, “Flame spectrum 

analysis with the use of artificial neural networks,” SAE International, 

Warrendale, PA, 2002-01–1145, Mar. 2002. 
[17] J. Czarnigowski, M. Wendeker, P. Jakliński, P. Boulet, and F. Breaban, 

“Idle speed stabilization by neural network model-based control of 

ignition in SI engine,” SAE International, Warrendale, PA, 
2007-01–2080, Jul. 2007. 

[18] M. K. Deh Kiani, B. Ghobadian, T. Tavakoli, A. M. Nikbakht, and G. 

Najafi, “Application of artificial neural networks for the prediction of 
performance and exhaust emissions in SI engine using 

Ethanol-Gasoline blends,” Energy, vol. 35, no. 1, pp. 65–69, Jan. 2010. 

[19] W. H. Kurniawan, S. Abdullah, Z. M. Nopiah, and K. Sopian, “The 
application of artificial neural network in predicting and optimizing 

power and emissions in a compressed natural gas direct injection 

engine,” SAE International, Warrendale, PA, 2007-01–4264, Oct. 
2007. 

[20] B. Wu, Z. Filipi, D. Assanis, D. M. Kramer, G. L. Ohl, M. J. Prucka, 

and E. DiValentin, “Using artificial neural networks for representing 
the air flow rate through a 2.4 Liter VVT engine,” SAE International, 

Warrendale, PA, 2004-01–3054, Oct. 2004. 

[21] B. Wu, R. G. Prucka, Z. S. Filipi, D. M. Kramer, and G. L. Ohl, 
“Cam-phasing optimization using artificial neural networks as 

surrogate models-maximizing torque output,” SAE International, 

Warrendale, PA, 2005-01–3757, Oct. 2005. 
[22] A. M. Akcayol and C. Cinar, “Artificial neural network based 

modeling of heated catalytic converter performance,” Appl. Therm. 

Eng., vol. 25, no. 14–15, pp. 2341–2350, Oct. 2005. 
[23] V. M. Janakiraman, S. Suryanarayanan, G. L. N. Rao, and S. Sampath, 

“Estimation of engine emissions based on physical and chemical 

properties of biodiesels using artificial neural networks,” SAE 
International, Warrendale, PA, 2006-01–3533, Oct. 2006. 

[24] K. Nikzadfar and A. H. Shamekhi, “Investigating the relative 

contribution of operational parameters on performance and emissions 
of a common-rail diesel engine using neural network,” Fuel, vol. 125, 

pp. 116–128, Jun. 2014. 

[25] Y. Ö. Özgören, S. Çetinkaya, S. Sarıdemir, A. Çiçek, and F. Kara, 
“Predictive modeling of performance of a helium charged Stirling 

engine using an artificial neural network,” Energy Convers. Manag., 

vol. 67, pp. 357–368, Mar. 2013. 
[26] M. Lichman, “UCI machine learning repository,” University of 

California, School of Information and Computer Science, 2013.  
[27] H. Altay Guvenir and U. Uisal, “BU function approximation 

repository,” Bilkent University, 2000.  

[28] L. Torgo. UP regression datasets. University of Porto, Computer 
Science Department. [Online]. Available: 

http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html 

[29] A. J. Thomas, M. Petridis, S. D. Walters, S. M. Gheytassi, and R. E. 
Morgan, “On predicting the optimal number of hidden nodes,” in Proc. 

2015 International Conference on Computational Science and 

Computational Intelligence), 2015, pp. 565–570. 
[30] I.-C. Yeh, “Modeling of strength of high performance concrete using 

artificial neural networks,” Cem. Concr. Res., vol. 28, no. 12, pp. 

1797–1808, 1998. 
 

Alan J. Thomas was born in Beirut, Lebanon in 1958. 

He completed a BSc(Hons) in Electronic Engineering 
in 1981 and  a first class MComp in Computer Science 

in 2012 at the University of Brighton, UK. 
He worked as a cryptographic engineer, senior 

software engineer, and chief engineer designing the 

hardware and software for high speed encryption 

products, embedded systems and gate arrays. He is 
currently writing his PhD thesis at the University of 

Brighton, UK, where he is also a part-time lecturer.  

He is the author of two peer-reviewed papers: On Predicting the Optimal 
Number of Hidden Nodes (Las Vegas, Nevada: IEEE, 2015) and Accelerated 

Optimal Toplogy Search for Two-hidden-layer Feedforward Neural 

Networks (Aberdeen, Scotland: Springer, 2016). His research interests 
include: neural networks, genetic algorithms, neuroevolution, robotics and 

emissons prediction. 

 
Saeed Malekshahi Gheytassi is associate head of 

School (Academic affairs) at the School of Computing 

Engineering & Mathematics, University of Brighton, 
UK, where he is also a Principal Lecturer in Computer 

Science.  

His research interests include: computer systems 
architecture, application of artificial intelligence in 

robotics, and mobile communications. 

 
 

International Journal of Machine Learning and Computing, Vol. 6, No. 5, October 2016

246



  

Miltos Petridis is a professor of Computer Science 

and the Head of the Knowledge Engineering Group at 

the University of Brighton. His research and enterprise 
activities concentrate on applications of Artificial 

Intelligence, Machine Learning and Case-Based 

Reasoning on “Big Data” and structurally and   
semantically complex and uncertain data including 

Temporal, Spatial, Workflow and Social Networking 

application data.  
Professor Petridis is involved in collaborative research 

industrial projects in applied Data Mining and Business Intelligence. He is 

the author of over 100 peer-reviewed publications. 
 

 

Simon D. Walters was born in Redhill, Surrey, 
England, in 1968. Between 1990 and 2003 he   

completed BEng(Hons.) in electrical and electronic 

engineering, MEng in engineering and business 
management, a PhD in automotive electronic   

engineering, and an MBA in business management at 

the University of Brighton, UK, where he is currently 
Principal Lecturer. 

His previous positions include senior lecturer, 

senior research fellow, research fellow, electrical 
engineer and chief test engineer. He has contributed to more than 60 

technical publications, and his current research interests include: intelligent 

systems, high voltage technology, electrical power systems, materials for 
electrical and electronic systems, and automotive electronics.  

 Dr. Walters is a chartered engineer (CEng), and a member (MIET) of the 

Institution of Engineering and Technology. Following his MBA graduation, 
he was awarded the award for outstanding contribution to the MBA 

Programme. He is a member of several committees, and reviews technical 

publications for conferences and journals. 
 

 

Robert E. Morgan was born in Leeds, UK in 1969.  

He completed his first degree in Mechanical 

Engineering at Imperial College London in 1991 and 
PhD in 1994.   

He started career at Ricardo, working in engine 

research followed by time at Ceres Power and finally 
Highview Power Storage as Chief Technical Officer. 

He joined the University of Brighton in 2012 and is 

currently Assistant Head of the Advanced Engineering 
Center.  He has contributed to over 20 peer-reviewed 

publications, and is named in 10 patents. His main research interests are on 

high efficiency engines with waste heat recovery and energy storage. His 
research is funded by EPSRC, Innovate UK and industry. 

Dr Morgan is the current secretary of the UK”s Universities Internal 

Combustion Engine Group and Director of the Advanced Propulsion Center 
Internal Combustion Engine Thermal Efficiency spoke. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Author‟s formal 

photo 

rmal photo 

International Journal of Machine Learning and Computing, Vol. 6, No. 5, October 2016

247




