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Abstract—This paper presents supervised learning methods 

of neural networks called bilinear neural networks with time 

delay (BNN). A BNN system was proposed to analyze a weak 

nonlinear model. In this paper, we propose supervised learning 

methods of BNN systems using discrete data and continuous 

curves of the data obtained by curve fitting. We introduce a 

method for fitting a finite Fourier series to discrete data and 

show that the fitted curve can be created as the output from a 

BNN system. By using this fitting method, we propose a method 

for determining the optimal values for the coefficients of all 

connections for each neuron in BNN systems. 

 
Index Terms—Supervised learning methods, neural networks, 

nonlinear model, discrete data, discrete Fourier transform, 

Fourier series, curve fitting.  

 

I. INTRODUCTION 

Artificial neural networks (NN) are a mathematical model 

inspired by biological neural networks (cf. [1]). Many 

researchers have studied NNs to solve artificial intelligence 

problems. NNs can solve various problems through learning 

such as supervised learning methods, unsupervised learning 

methods, or reinforcement learning methods. However, since 

nonlinearity is realized by applying strong nonlinear functions 

such as sigmoid functions for neuron models, it is hard to 

analyze the values of neurons for a given NN model. 

On the other hand, a new type NN for analyzing a weak 

nonlinear model is proposed in [2]. In this paper, we refer to 

this as a bilinear neural network (BNN) system with time 

delay. A BNN is the model specialized for analyzing time 

series data, and has neurons, normal connections, and new 

connections, called bilinear connections, to realize weak 

nonlinearity. It is possible to represent simultaneous linear or 

nonlinear differential equations using BNNs. Moreover, as 

shown in [3], it is possible to analyze the output functions 

from all neurons in a given BNN system unlike the given NN 

model. As analysis for a weak nonlinear model, BNN systems 

are useful for human motion analysis. As one example of 

human motion, the walking motion is analyzed by using the 

acceleration data outputted from the accelerometer embedded 

in a mobile phone and BNN systems in [3]. BNN systems are 

currently adopted in the pedometers for humans; furthermore 

those are adopted in the pedometers for dogs [4]. 

When several physical data are given, it is essential to 

construct optimum differential equations, which express 

physical laws related to given physical data. In this paper, as a 
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method of constructing optimum differential equations, we 

propose new supervised learning methods of BNN systems 

using discrete data. 

We need physical input and output data for the supervised 

learning methods. Many different types of sensors are 

available for extracting physical data. For example, in mobile 

phones, accelerometers are embedded. As for other digital 

sensors, there are gyro sensors, magnetic-field sensors, 

microphones, temperature sensors, pressure sensors, and so 

on. Although acceleration, angular velocity, geomagnetism, 

sound, temperature and pressure are typical physical concepts 

in continuous time, physical data generated by these sensors 

are discrete data. Moreover, we cannot usually know the 

original continuous-time functions that describe these 

physical data. 

For applying discrete data to a continuous-time model, we 

use the curve-fitting in [5] to transform these discrete data into 

continuous-time functions. In the curve-fitting approach, the 

discrete data are fitted to a finite Fourier series. Moreover, the 

fitted curve can be obtained as an output from a BNN system. 

Therefore, the BNN system is used for the supervised learning 

methods that we propose. 

Supervised learning methods of BNN systems using 

discrete data are proposed in [5]. However, the supervised 

learning methods in [5] are only applied to a part of all BNN 

systems which only have normal connections. As one of the 

contributions of this paper, we extend the supervised learning 

methods of a part of all BNN systems which only have normal 

connections to supervised learning methods of all BNN 

systems which have bilinear connections in addition to normal 

connections. Though this contribution, it becomes possible to 

apply the learning methods to all BNN systems, which have 

normal and bilinear connections, for the first time. 

In this paper, we first propose supervised learning methods 

of BNN systems using discrete input and output data. As for 

one property of supervised learning methods that we propose, 

we prove that these supervised learning methods approximate 

supervised learning methods of BNN systems using 

continuous-time functions. We then consider supervised 

learning methods of BNN systems using discrete data with 

noise data.  

 

II. CURVE FITTING OF DISCRETE DATA 

A. Definition of the Fitted Curve for Discrete Data 

We fix a positive integer n , assume that the total number of 

discrete data points is an odd number 2 1n , and denote these 

discrete points by 0 1 2, , , ny y y . Then, the discrete Fourier 

transform (DFT) (cf. [6]) is defined by 
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and the inverse discrete Fourier transform (IDFT) is defined 

by 
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Suppose that 
0 1 2, , , ny y y  are real numbers. By 

expressing each DFT component as 1q q qY a b   , and 

choosing the first 1n  components from all DFT 

components, we obtain the fitted curve of 
0 2, , ny y  by  
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from [5]. When we define   as 2 1 / (2 1)n    , the 

fitted curve in (3) is equivalent to 
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Moreover, when we compute 
qY  in (1) for 2 , , 1q n   , 

we obtain q qY Y  and can change (4) to 
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The function ( )y t  is a finite Fourier series with period 

2 1n  and is therefore a smooth function whose derivatives 

in all orders exist and are continuous. Since each coefficient 

in ( )y t  is a real number, ( )y t  is also a real number if t is a 

real number. 

The following lemma shows that the fitted curve defined 

above passes through all the discrete data points and that the 

curve fitting is the bijection from the set of discrete data to the 

set of finite Fourier series. Define the vector of discrete data 

as 0 1 2( , , )ny y y y , and the fitted curve of y  as ( )yf t . In 

addition, when a finite Fourier series with real coefficients 
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is given, define the vector of discrete data obtained by 

sampling ( )u t  as  ( (0), , (2 ))u u u n . We then obtain the 

following lemma from [5]: 

 Lemma 1: 

1. For any discrete data 0 2, , ny y , the data satisfy 

yf y , where ( (0), , (2 ))y y yf f f n . 

2. Any finite Fourier series ( )u t  in (6) satisfies 

( ) ( )uf t u t . 

B. BNN System to Output a Fitted Curve 

We briefly introduce a BNN system (cf. [2]–[5]). When 

neurons in a BNN system are denoted by Nxxx ,,, 21  , 

each neuron ix  has the following equation 
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and outputs the function ( )ix t . The parameter i  is called 

the delay scale, and 
ijC  and iklC  are constant coefficients of 

the connections. If 
ijC  is not zero, ix  has a normal 

connection, and if 
iklC  is not zero, ix  has a bilinear 

connection. The function ( )ig t  is given by an external input. 

The model of (7) is shown in Fig. 1. 

We introduce the BNN system to output the fitted curve 

proposed in [5]. Fig. 2 shows a BNN system for an oscillation. 

This BNN system outputs 
1( ) cos(2 / (2 1))x t q t n   with 

the initial value of 
1(0) 1x  , and 

2 ( ) sin(2 / (2 1))x t q t n   

with the initial value of 
2 (0) 0x  . 

The BNN system for curve fitting is shown in Fig. 3. When 

discrete data 
0 2, , ny y  are given, this system computes the 

values 
0 0 / (2 1)c a n  , 2 / (2 1)q qc a n   and 

2 / (2 1)q qd b n   using (1), saves the values and uses them 

as the coefficients of the connections in the system. This 

system has n  BNN systems for the oscillation. The functions 

produced from these BNN systems for the oscillation are 

multiplied by the Fourier coefficients, and are added in an 

additional neuron. The function obtained from the additional 

neuron becomes the fitted curve (3).  

III. SUPERVISED LEARNING METHODS OF BNN SYSTEMS 

A. Supervised Learning Methods of BNN Systems Using 

Discrete Data 

In this section, we propose a new supervised learning 

method of a BNN system with neurons Nxxx ,,, 21  using 

discrete data. Fig. 4 shows the new supervised learning 

methods of the BNN system. As shown in Fig. 4, we use the 

following input and output discrete data instead of external 

input continuous-time functions and output continuous-time 

functions from neurons. 

 
Fig. 1. Model of a neuron in a BNN system. 

 

We define external input vectors of 2 1n  discrete data 
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points as 
, , ,0 , ,1 , ,2( , , , )m i m i m i m i ng g g g , and output vectors of 

2 1n  discrete data points from neurons as 

),,,( 2,,1,,0,,, nimimimim xxxx 


 , where 1,2, ,i N , 

1,2, ,m r , and r  is the total number of external input and 

output vectors. 

 

 
Fig. 2. The BNN system for an oscillation. 

 

 
Fig. 3. The BNN system for the curve fitting composed of n  BNN systems 

for the oscillation. 

 

 
Fig. 4. The supervised learning method of a BNN system proposed in this 

paper when external inputs and outputs are discrete data. 

 

The vectors of discrete data ,m ig  and ,m ix  are transformed 

into the fitted curves , ( )m ig t  and , ( )m ix t  using the BNN 

system for curve fitting (BCF). Then, using  these fitted 

curves, all optimal values of 
ijC  and 

iklC  

( , , , 1,2, , , )i j k l N k l   that satisfy (7) are determined. In 

the next subsection, we show how to determine all optimal 

values of  ijC  and 
iklC  using ideas taken from the method for 

determining all optimal values proposed in [5]. 

B. Method for Determining All Optimal Values 

The fitted curve for img ,


 defined as (5) is 
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Since , ( )m ig t  and , ( )m ix t  are the sums of exponential 

functions, it is easier to compute derivatives of 
, ( )m ig t  and 

, ( )m ix t  compared with other functions. Moreover, since the 

results obtained by multiplying exponential functions are 

exponential functions, it becomes possible to transform the 

differential equation in (7) into simultaneous equations as 

shown below. By using 
, ( )m ig t  and 

, ( )m ix t , we compute the 

left-hand side and the right-hand side in (7). The left-hand 

side in (7) is 
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The right-hand side in (7) is 
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where we define the function ( )f   as 
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By comparing the coefficients of exponential functions in 

(10) with those in  (11), (7) is equivalent to the following 

equations: 
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where , 1, , 1,q n n n n     . For Ni ,,2,1  and 

1,2, ,m r , , ( )m ig t  and , ( )m ix t  satisfy (7), if and only if 

, ( )m ig t  and , ( )m ix t  satisfy (13) . For this reason, we only 

have to solve the simultaneous equations (13) to determine all 

optimal values of  ijC  and 
iklC . 

Since there is the possibility that the number of 

simultaneous equations is larger than the number of variables, 

we use the method of complex linear least squares (cf. [7]) to 

solve the simultaneous equations. By solving the normal 

equation for the method of complex linear least squares (cf. 

[5]), we can determine all optimal values of  ijC  and 
iklC . 

C. Approximation of Supervised Learning Methods of 

BNN Systems Using Smooth Functions 

As noted in the introduction, we usually cannot know the 

original continuous-time functions of discrete data. However, 

if we do know the continuous-time functions, then how is the 

supervised learning methods of BNN systems using 

continuous-time functions related to the methods proposed 

here? In this subsection, we show the relationship between the 
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supervised learning methods of BNN systems using smooth 

functions and our proposed methods. 

When continuous-time or discrete data on a long interval 

are given, it is common to obtain data on a specific finite 

interval by applying a window function to the original data 

and use those data. Then the values of data on extremal points 

in the finite interval are zero due to the window function, and 

those data are periodic. Therefore we treat periodic functions 

and data in this section. We also use the following theorem in 

[5] on the approximation of a smooth periodic function and its 

derivatives: 

Theorem 1 (cf.[5]): Let ( )y t  be a smooth periodic 

function on the interval [0,1] . Let w  be a positive integer. 

Then, for a sufficiently large number n , there exists a finite 

Fourier series on the interval [0,2 1]n  
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that satisfies 
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The following is the theorem on the approximation of the 

supervised learning methods of BNN systems using smooth 

functions.  

Theorem 2: Let ( )ix t  and ( )ig t  ( 1,2, , )i N  be 

smooth periodic functions on the interval [0,1] , and let ( )ix t  

and ( )ig t  be the finite Fourier series that satisfies (15). If 

( / (2 1))ix t n  and ( / (2 1))ig t n  satisfy (7), then ( )ix t  and 

( )ig t  also satisfy 
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when n is a sufficiently large number. Moreover, when n is 

increased, the right-hand side in (16) converges to the 

left-hand side in (16). 

The proof of this theorem is given in the Appendix. By this 

theorem, if ( / (2 1))ix t n  and ( / (2 1))ig t n  are solutions 

of (7), then the n th-order approximations ( )ix t  and ( )ig t  

become approximate solutions of (7). Since ( )ix t  and ( )ig t  

( 1,2, , )i N  are the fitted curves composed of 2 (2 1)N n  

discrete points (0), ,ix  (2 ), (0), , (2 )i i ix n g g n  

( 1,2, , )i N , we obtain the following corollary: 

Corollary 1: Let ( )ix t  and ( )ig t  ( 1,2, , )i N  be 

smooth periodic functions on the interval [0,1] . The proposed 

supervised learning methods, by fitted curves ( )ix t  and 

( )ig t  composed of 2 (2 1)N n  discrete points, are the 

approximations of the supervised learning methods by 

( / (2 1))ix t n  and ( / (2 1))ig t n . 

Since the fitted curves approach the original smooth 

functions by increasing the number of discrete points, 

Theorem 2 and Corollary 1 state that the optimal values of  

ijC  and 
iklC  determined by the fitted curves also approach 

the optimal values of 
ijC  and 

iklC  determined by the original 

smooth functions. 

 

IV. SUPERVISED LEARNING METHODS OF BNN SYSTEMS 

WITH NOISE DATA 

In this paper, we consider the supervised learning methods 

of BNN systems using discrete data with noise data, and give 

an example of the supervised learning methods.  

We define noise vectors of 2 1n  discrete data points as 

,0 ,2( , , )m m m nn n n  ( 1, , )m r . By expressing the DFT 

component for discrete points in 
mn  as 

,m qN , the fitted curve 

for 
mn  can be expressed as 

 

  .
12

1
,




n

nq

qt

qmm eN
n

tn                         (17) 

 

From the definition of the curve fitting in this paper, the 

frequency components of 
mn  are identical to the frequency 

components of ( )mn t . Hence we understand that the curve 

fitting never changes the frequency components of noise. 

Moreover the curve fitting is linear, and changes ,m i mg n  

and ,m i mx n  to , ( ) ( )m i mg t n t  and , ( ) ( )m i mx t n t  

respectively.  

We give one example of the proposed supervised learning 

methods of BNN systems using discrete data with noise data. 

Assume that 50n  , 2N  , 
1 2, 1   , and the fitted curves 

, ( )m ig t  and , ( )m ix t  for ,m ig  and ,m ix  satisfy 
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where 1, ,m r . When noise vectors ,m in  and ,m in with 

random numbers generated from the normal distribution with 

the mean 0  and the standard deviation   are added to ,m ig  

and ,m ix , we compute optimal values of ijC  and 
iklC  using 

, ,m i m ig n  and , ,m i m ix n . Assume 1r  . Then, Fig. 5 and 

Fig. 6 show the optimal values of ijC  and iklC  in the case 

where the standard deviation   is changed. We can confirm 

that the optimal values deviate from the proper values for 

0   when   is large. Next, we compute the optimal values 

in the case where r  is changed, and show the results in Fig. 7 

and Fig. 8. In Fig. 7 and Fig. 8, the value of   is 0.4. As 

shown in Fig. 7 and Fig. 8, we can confirm that the optimal 
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values approach the proper values for 0   by increasing 

the number for r. 

 

V. CONCLUSION 

We proposed supervised learning methods of BNN systems 

using discrete data. To transform discrete data into 

continuous-time functions, we introduced a curve-fitting 

method. The fitted curve is a smooth function that can be 

obtained as an output from a BNN system. Since the fitted 

curves can be expressed as the sum of exponential functions, 

it is easy to compute derivatives of the fitted curves compared 

with other smooth functions. Moreover, since the functions 

obtained by multiplying the fitted curves become the sum of 

exponential functions, it is possible to transform the 

differential equation for each neuron into simultaneous 

equations. By using these simultaneous equations, we 

proposed a method for determining the optimal values for the 

coefficients of all connections for each neuron in a BNN 

system. Moreover, we showed that the proposed supervised 

learning methods of BNN systems using discrete data become 

approximation to supervised learning methods of BNN 

systems using smooth functions. 

When we consider supervised learning methods using 

smooth functions, the problem is that it is generally difficult to 

compute their derivatives and multiplications. If we take 

several discrete points to approximate these functions, we can 

use the fitted curves of the discrete points instead of the 

smooth functions themselves. Although supervised learning 

methods by the fitted curves become the approximations of 

those by the smooth functions, it is much easier to compute 

derivatives and multiplications of the fitted curves. Moreover, 

by increasing the number of discrete points, the fitted curves 

approach the smooth functions, so the optimal values 

obtained using the fitted curves approach those using the 

smooth functions. 

 As the results of experiment, we considered supervised 

learning methods of BNN systems using discrete data with 

noise data, and gave simulation results for one example of 

these supervised learning methods. 

Currently, the BNN systems adopted in pedometers cannot 

be customized for each person. Therefore, we are developing 

a pedometer customized for each person by using the 

supervised learning methods of BNN systems and output data 

from an accelerometer embedded in a mobile phone which 

each person has. 

 

 
Fig. 5. The optimal values for ijC  in the case where the standard deviation 

is changed. 

 
Fig. 6. The optimal values for 

iklC  in the case where the standard deviation 

is changed. 

 

 
Fig. 7. The optimal values for 

ijC  in the case where r is changed. 

 

 
Fig. 8. The optimal values for 

iklC  in the case where r is changed. 

APPENDIX 

By uniform convergence of a Fourier series (cf. [8]), the 

periodic functions ( / (2 1))ix t n  and  ( / (2 1))ig t n  satisfy 
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Since the multiplication ( / (2 1)) ( / (2 1))i jx t n x t n    is a 

periodic function and hence a Fourier series, it satisfies 
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and we denote the finite Fourier series of (22) as ( )ijx t .  

From termwise differentiation of (20) (cf. [8]), we have 
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From (7), (20), (21), (22), and (23), the finite Fourier series 

( )ix t , ( )ig t , ( )ijx t  satisfy  
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dt
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Although ( )ijx t  is generally not ( ) ( )i jx t x t , ( ) ( )i jx t x t  

converges to ( )ijx t  when n is increased. Therefore if n is a 

sufficiently large number, we obtain (16). Moreover, when  n 

is increased, the right-hand side in (16) converges to the 

left-hand side in (16). 
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