
 

Abstract—Ms. Pac-Man has been a very popular arcade game 

since its release in 1982. The original game is based on a single 

maze structure which can make game play lose its attractiveness 

eventually. This paper aims to generate sets of various mazes 

through an evolutionary approach. A genetic algorithm was 

designed to create optimal mazes by specifying a fitness function 

to create different mazes which can allow the game to be 

finished by the player. Evolutionary approach was chosen due to 

its unique yet acceptable results. Results show that different 

maze structures are possible to obtain in addition to the classical 

design. 

 
Index Terms—Genetic algorithm, evolutionary maze 

generation, Ms. Pac-Man, artificial intelligence.   

 

I. INTRODUCTION 

Automated generation of game levels is an interesting and 

active research field [1-4] as well as finding solutions to 

mazes using various techniques [5]. Such mazes allows 

generation of different unpredictable game environments for 

arcade games like Ms. Pac-Man. 

Heuristic approaches such as genetic algorithms allow 

finding optimal maze structures through a number of 

iterations in which best candidates are chosen. Genetic 

algorithms, proposed by Alan Turing in 1950 by the idea of a 

learning machine which would parallel the principles of 

evolution [6], are heuristic search algorithms that mimics the 

natural process of evolution. These algorithms are mostly 

used to generate solutions to optimization and search 

problems. Although Turing was the one who proposed the 

idea of evolutionary machines, Nils Aall Baricelli simulated 

the idea on a computer in 1954 [7]. Alex Fraser, Australian 

Geneticist, published a series of papers on simulation of 

artificial selection of organisms using genetic algorithms[8]. 

Hans-Joachim Bremermann published a series of papers in 

the 60s that adopted a population solution to optimization 

problems, undergoing recombination, mutation and selection.  

Although Baricelli designed a genetic algorithm that plays 

a simple game [9], artificial evolution became a widely 

recognized optimization method as a result of the work of 

Ingo Rechenberg and Hans-Paul Schwefel in the 60s 

Rechenberg’s group was able to solve complex engineering 

problems using genetic algorithms [10]. 

Related to Ms. Pac-Man game, there are already different 

studies that try to improve the intelligence of the enemies and 

the main character such as evolving location evaluator [11] or 

 
Manuscript received January 22, 2016; revised July 1, 2016.  

The authors are with SAAT Lab in Computer Engineering Department, 

Ankara University, Turkey (e-mail: a.buraksafak@gmail.com, 

ebostanci@ankara.edu.tr, alisoylucicek@gmail.com).  

using tree search methods for safe locations [12]. More 

examples of adding the game with more sophisticated 

intelligence can be found in [13-17] including creation of map 

models or generation of an agent using Ant Colony 

Optimization. 

This paper explores the use of genetic algorithms for 

automated generation of mazes for this game. Original maze 

of the Pac-Man can be seen at the Maze.1. The main aim here 

is to generate mazes that allow the game to be completed.  

These different mazes can be played as sequential levels for 

the original game which consisted of a single level.  

The rest of the paper is structured as follows: Section II 

describes the approach for modelling this problem in order to 

find a solution using genetic algorithms. Section III presents 

the graphics library used in the work. Section IV results of 

automated maze generation followed by Section V where the 

paper is concluded. 

 

 
Maze.1. Original Maze of the Pac-Man Game. 

 

II. APPROACH 

Genetic algorithms mimic the process of natural selection, 

reproduction of fit members of a population and evolution. 

The following sections describe the design stages for the maze 

generation. 

A. Steps of Genetic Algorithms 

The algorithm used here can be described in a few simple 

steps: 

1) Producing new members by crossover 

2) Calculating the fitness of every member in the 

population 

Automated Maze Generation for Ms. Pac-Man Using 

Genetic Algorithms 

Aykut Burak Safak, Erkan Bostanci and Ali Emre Soylucicek 

International Journal of Machine Learning and Computing, Vol. 6, No. 4, August 2016

226doi: 10.18178/ijmlc.2016.6.4.602

mailto:a.buraksafak@gmail.com
mailto:ebostanci@ankara.edu.tr


3) Mutating some random members 

Describing the genes correctly and efficiently is one of the 

most important steps of the genetic algorithms since the 

structure is the piece of information that will evaluate to a 

solution to the problem. 

B. Genes 

Genes are the symbolization of an individual's solution to 

the problem, so describing them correctly is important for 

finding an optimal solution.  

Genes that are used in the project have the main 

information about the blocks constructing the maze. This 

main information is the position of a block in a two 

dimensional space, whether the block is horizontal or vertical 

and it’s size. Every maze in the population has 48 blocks in it 

and every block has four parameters, which constructs the 

gene for every member as a two dimensional array which has 

48x4 members. 

Storing genes in an array makes it easier to crossover the 

genes and to make necessary calculations. These mazes are 

then can be easily rendered by the graphics system that is used 

in the game. 

C. Fitness of Individuals 

Calculating the fitness is the most important step and a very 

crucial to the algorithm. This step describes what the 

algorithm is looking for and what will be solution to the 

problem, so it is really important to describe and implement 

this function correctly. 

The fitness function used in the project was using the 

information about mazes; whether the maze is playable or not, 

whether the blocks have spread to the maze homogeneously 

or haven’t, total count of blocks (considering the area of 

them), ratio of horizontal and vertical blocks. 

First algorithm to determine if the maze is playable was to 

auto-play the game until it is finished, but this approach took 

too much time and was not reliable so the algorithm was 

reconstructed and redesigned to a much more effective and 

swift one. The algorithm used for this operation is as follows: 

1) Select one of the dots from the maze and push it to a 

stack and flag it as checked 

2) Pop a dot from the stack and check whether it have any 

neighbours (top, left, bottom, right) 

3) Push any unchecked neighbours of the dot to the stack 

4) Iterate second and third steps until there is no members 

in the stack 

5) If the iteration of second and third steps are equal to the 

count of the dots than it means the game is playable, else 

is not playable. 

Each fitness qualifications described above has different 

weight and effect on solution. The fitness of each member is 

calculated using the following: 
 

0.4 * is_finishable - 0.1 * 

intersected_block_ratio + 0.2 * 

homogeneity_factor + 0.2 

*  horizontal_vertical_ratio + 0.2 * 

block_size_ratio 
 

Each member on the formula is calculated as follows: 
 

is_finishable = 1 if the maze is finishable 

else 0, 

 

intersected_block_ratio = 

intersected_square_count / 

total_square_count, 

 

horizontal_vertical_ratio = 

horizontal_square_number / 

vertical_square_number 

 

block_size_ratio = (square_count - 150) / 

150, 
 

Fitness function was designed to calculate directly from the 

genes but this approach had some memory issues and was 

hard to calculate and read. These problems have been 

overcome by creating a maze map from the genes as given in 

Fig. 1. This binary structure of the maze can easily be 

modelled as a binary chromosome when read in row major 

order. 

 

 
Fig. 1. Maze map made out from genes. 

 

This map was designed to use 1’s for blocks and 0’s for the 

dot positions. It can be considered as a 20x20 tiled map of the 

real maze. This approach made the calculations much easier. 

D. Cross-over 

Crossover, in the genetic algorithms, is used for creating 

new candidate solutions from the existing ones. It is a 

simulation of natural crossover as the genetic algorithms are 

the simulation of nature. 

Crossover method used here is three point crossover 

method. Each selected candidate gene divided into four equal 

pieces to generate two new candidates as depicted in Fig. 2. 

 

 
Fig. 2. Three point crossover of two candidates. 

International Journal of Machine Learning and Computing, Vol. 6, No. 4, August 2016

227



E. Selection 

Supervised randomizing is used to select parent candidates 

to crossover. Supervised randomness is accomplished by 

selecting randomly while giving fit candidates more chance 

than the others in the reproduction process.  The main idea 

behind this is that expectation that fit parents are more likely 

to produce fitter siblings for the following generations. 

Roulette selection algorithm is used to apply this idea to the 

paper. Working principle of this algorithm is to select a 

random point from a wheel which was created considering the 

fitness of the candidates (Fig. 3). Here the likelihood of 

selection for reproduction of a fitter parent is higher than a 

parent with a lower fitness value. 

 

 
Fig. 3. Roulette selection for five candidates with different fitness values. 

F. Mutations 

Little piece of the candidates is mutated to create more 

diverse populations in genetic algorithms. The mutation ratio 

was selected as 0.05 and applied on random candidates’ 

random gene parts. 

 

III. SFML 

SFML (Simple Fast Multimedia Library) is a simple to 

understand yet efficient to use multimedia library mainly 

focused on two dimensional basic graphical programmes. 

SFML is a cross-platform development library designed for 

the simple multimedia applications. It’s written in C++ but 

have bindings for many other programming languages 

including Java, C, Python, Ruby, Rust, .Net etc. 

SFML is an easy to implement multimedia library and easy 

to use. These specifications made SFML a perfect candidate 

for the work. 

Considering the aim of the work the graphic library used 

doesn’t have to be a strong and complicated library but simple, 

efficient one. SFML met all these requirements. 

  

IV. RESULTS 

The genetic algorithm for creating different maze structure 

have been run many times for tuning the fitness criteria to 

create mazes that can actually be completed by the player. 

This was required since some of the maze produce by the 

algorithm included unreachable parts which would not allow 

the game to be finished. The details will be given in the 

following. 

Elimination of the unfit candidates has a major effect on the 

solution because it increases the chance of the fit candidates 

while decreasing the number of unfit values. The results for 

2000 generations are given in Fig. 4 for the case where 

elimination was not employed. Note that the maximum 

average fitness can go only up to 0.5. 

 

 
Fig. 4. Average fitness of 2000 generations without elimination factor. 

 

 
Fig. 5. Best candidate of 2000 generations without elimination factor. 

 

The result of these low fitness values have a reflection in 

the generated mazes as well as shown in Fig. 5. Red dots here 

represent reachable pellets while the white ones represent the 

unreachable pellets. Here, it would not be possible to finish 

the game since the player cannot reach all the pellets. 

Fig. 6 shows the average fitness value for 2000 generations 

when the algorithm was run on an initial set of randomly 

generated mazes. The nature of the algorithm follows an 

elitist approach which keeps the best-so-far individuals in the 

population so that these fit individuals would not be altered by 

any mutations. This allowed the overall fitness to go stagnant 

in some cases but never fall down the best results. 

Looking at Fig. 7, one can see the effect of elimination 

factor as the reachable dot positions. Every pellet can be 

reachable so this maze can be finished. One problem here is 

that there can be corridors with width greater than one, a 

problem we are working on to solve. 

It is important to reiterate that the average fitness for 2000 

generations can reach to 0.6 when the initial fitness values 

were starting with 0.16. When this was not included, the 

average fitness could only reach values around 0.25. 

Results have demonstrated that genetic algorithms give 

International Journal of Machine Learning and Computing, Vol. 6, No. 4, August 2016

228



more reliable and correct result each iteration of generation. 

Even though more iterations means more reliable results, 

randomness of genetic algorithms makes every solution 

unique. 

 

 
Fig. 6. Average fitness of 2000 generations with elimination factor. 

 

 
Fig. 7. Best candidate of 2000 generations with elimination factor. 

 

V. CONCLUSION 

Genetic algorithms are heuristic search algorithms for 

finding optimal solutions to the problems will ill-definitions 

questions by scientists. Inspired from the natural law of 

survival of the fittest, optimal solutions to such problems can 

be found through an incremental optimization process. This 

process has a significant amount of space for randomness 

which is used to avoid local optima. 

Automated maze generation is also a problem that has 

many different difficult parameters to satisfy. This paper 

presented a genetic algorithm design to tackle this problem. 

We presented a gene design for this problem and introduced 

parameters to consider when the fitness functions will be 

computed. 

Self maze constructing can give the user unique game 

environment every time. Uniqueness of every solution 

produced by the genetic algorithms made them perfect for the 

problem. This feature can make the game more challenging 

since this forces the user to change the game strategy at each 

different level. The ultimate aim is to enhance game play and 

make the game more interesting. 

It was shown that heuristic algorithms such as evolutionary 

computation can make use of a number of criteria to generate 

mazes in order to improve game level designs. With a clear 

and well-designed fitness function it is possible to obtain 

much better maze design in an autonomous fashion without 

requiring human design once the function is defined. It is also 

important to note the role of randomness in such algorithms. 

Avoiding local optima being one benefit, the second benefit is 

the ability to create unpredictable sequences of genes yielding 

very unlikely maze designs. 

Future work will investigate improving the fitness function 

employed here to create better maze structures. An approach 

for adding a more sophisticated artificial intelligence to the 

enemies are in our current research agenda. Adding a factor of 

randomness can make enemies less predictable and make the 

game more challenging. 

REFERENCES  

[1] D. Ashlock, C. Lee, and C. McGuinness, “Search-based procedural 

generation of maze-like levels,” IEEE Transactions on Computational 

Intelligence and AI in Games, vol. 3, no.3 , pp. 260-262, Sep. 2011.  
[2] Y. Okamoto and R. Uehara, “How to make a picturesque maze,” 

CCCG, pp. 137-140, 2009. 

[3] M. Foltin, “Automated maze generation and human interaction,” M.S. 

thesis, Masaryk University Faculty of Informatics, 2011. 

[4] J. Xu and C. S. Kaplan, “Image-guided maze construction,” ACM 

Transactions on Graphics (TOG), vol. 26, no. 3, pp. 29, August, 2007. 

[5] A. M. Reynolds, “Maze-solving by chemotaxis,” Physical Review E, 

vol. 81, no. 6, 2010. 

[6] A. M. Turing, “Computing machinery and intelligence,” Mind LIX, vol. 

238, pp. 433–460. 

[7] N. A. Barricelli, “Esempi numerici di processi di evoluzione,” 

Methodos, pp. 45–68, 1954. 

[8] A. Fraser and D. Burnell, Computer Models in Genetics, New York: 

McGraw-Hill, 1970. 

[9] N. A. Barricelli, “Numerical testing of evolution theories. Part II. 

Preliminary tests of performance, symbiogenesis and terrestrial life,” 

Acta Biotheoretica, vol. 16, pp. 99-126, 1963. 

[10] I. Rechenberg, Evolutionsstrategies, Stuttgart: Holzmann-Froboog, 

1973. 

[11] S. M. Lucas, “Evolving a neural network location evaluator to play Ms. 

Pac-Man,” CIG, 2005. 

[12] D. Robles and S. M. Lucas, “A simple tree search method for playing 

Ms. Pac-Man,” presented at IEEE Symposium on IEEE Computational 

Intelligence and Games, 2009. 

[13] J. DeNero and D. Klein, “Teaching introductory artificial intelligence 

with pac-man,” presented at the Symposium on Educational Advances 

in Artificial Intelligence, 2010. 

[14] N. Wirth and M. Gallagher, “An influence map model for playing Ms. 

Pac-Man,” presented at IEEE Symposium on Computational 

Intelligence and Games, 2008. 

[15] M. Emilio, “Pac-mAnt: Optimization based on ant colonies applied to 

developing an agent for Ms. Pac-Man,” presented at IEEE Symposium 

on Computational Intelligence and Games, 2010. 

[16] M. Gallagher, and M. Ledwich, “Evolving pac-man players: Can we 

learn from raw input?” presented at IEEE Symposium on 

Computational Intelligence and Games, 2007. 

[17] P. Rohlfshagen and S. M. Lucas, “Ms pac-man versus ghost team cec 

2011 competition,” presented at IEEE Congress on Evolutionary 

Computation, 2011. 
 

Aykut Burak Safak is a senior student in Ankara 

University Computer Science Department. He 

graduated from Bor Akin Gonen Anatolian High 

School. He completed two summer internships at 

TaleWorlds Entertainment. His work interests include 

computer graphics, artificial intelligence, genetic 

algorithms and fuzzy logic. He has been working in 

TaleWorlds Entertainment as a junior developer since 

2014. 

 He is focused on developing artificial intelligence 

in games. His studies also focus on the graphics programming in games. He 

created several games using Unity 3D and SFML and a simple game engine 

using Open-GL for the purpose of self-development yet haven’t published 

International Journal of Machine Learning and Computing, Vol. 6, No. 4, August 2016

229



any of them. 

 

Erkan Bostanci received a BSc degree in Computer 

Engineering Department from Ankara University, 

Turkey in 2007. Consequently, he joined the same 

department as a Research Assistant and completed 

his MSc on real-time battlefield simulation in 2009. 

He obtained his PhD from School of Computer 

Science and Electronic Engineering, University of 

Essex, United Kingdom in 2014 with his thesis on 

real-time user tracking for augmented reality. 

 He started working with the Gendarmarie Schools Command as a 

Planning Officer Designate in June, 2014 where he conducted the research 

for developing a vision-based system for analysing crime scenes. He has 

been promoted to Second Lieutenant in January, 2015. Having completed 

his military service, he currently continues his post in Ankara University as 

an Assistant Professor.  

 His research interests include different yet closely related aspects of 

computer science from image processing, computer vision and graphics to 

artificial intelligence and fuzzy logic as well as mathematical modelling and 

statistical analysis. He recently developed a vision-based user tracking 

system for various augmented reality applications for cultural heritage in 

particular. He setup the SAAT laboratory in the department for conducting 

research with the main aim for incorporating AI approaches for solving a 

wide range of real world problems. 

 Dr. Bostanci has been involved in technical committees for several 

conferences and acted as a reviewer for various journals. 

 

Ali Emre Soylucicek is currently a senior student at 

Ankara University, Computer Engineering 

Department, Turkey. He graduated from Golbasi 

Anatolian High School. He completed Erasmus+ 

exchange program in Poland – Krakow for one year as 

well as participating in Erasmus+ internship program 

in Krakow. He performed his internship at a game 

company called “Duckie Deck”. He is currently 

working part-time GelisimPark Inc. at 

Cyberpark-Bilkent. 

 He is focused on developing games as a programmer for both mobile and 

other platforms. He also conducted research about artificial intelligence 

implementations inside games. He improved himself by doing researches 

about Unity3D game engine.  He created variety of games on both iOS and 

Android games, also published them to the market. He is currently 

developing more games and doing research in game development and 

artificial intelligence implementations inside games. 

 

 

 

 

 

 

 

 

 

 

 

 

 

International Journal of Machine Learning and Computing, Vol. 6, No. 4, August 2016

230




