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Abstract—As a fundamental task in computer vision, 

registration has been a solution for many application such as: 

world modeling, part inspection and manufacturing, object 

recognition, pose estimation, robotic navigation, and reverse 

engineering. Given two images and set ones as the model, the 

aim is to find the best possible spatial transformation matrix 

causing 3D reconstruction of original object. The paper 

presents a new hybrid algorithm which improves both speed 

and convergence guarantee in comparison recently proposed 

methods of registering structured pointcloud surfaces by using 

a fast error calculation ray-casting based closest point method 

integrated with a new developed global optimization method 

Improve Self Adaptive Differential Evolution (ISADE). 

Ray-casting based 𝑳𝟐  error calculation method enables the 

algorithm to find the local minima error while ISADE exploit 

the searching boundary to find the global minima. The new 

algorithm is evaluated to show the significant improvement in 

quality and robustness to state-of-the-art methods.  

 
Index Terms—3D registration, ISADE, hybrid global 

registration, Ray-casting. 

 

I. INTRODUCTION 

The introduction of commercial depth sensing devices 

such as Microsoft Kinect, Asus Xtion, etc. has shifted 

robotics, computer vision research areas from 2D based 

imaging and laser scanning toward 3D based depth scenes of 

environment processing. As a physical object or scenario 

cannot be completely captured with a single image, different 

images from different time and positions need to be aligned 

into a more completed view of the scenario; the process of 

alignment is called registration. Registration algorithms 

estimate the movement of the camera through calculating the 

transformation that optimally maps two point clouds. Various 

applications such as 3D object scanning, 3D mapping, and 

3D localization use registration algorithms as backbone 

algorithms. According to how many views or images of the 

objects are processed at the same time, registration strategies 

are divided into multi-view registration (for all views case) 

and pair-wise registration (for two views case). Our paper 

focuses on the pair-wise registration of constructed range 

images taken by 3D cameras. As a consequence, starting 

from two views, i.e., the model and the data, the objective of 

our registration process is to find the best homogeneous 

transformation that, when applied to the data, aligns it with 

the model in a common coordinate system. 
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Iterative Closest Point (ICP) [1] and its variants such as 

non-linear ICP, generalized ICP and non-rigid ICP have been 

always indispensable tools in registration tasks. ICP's 

concept and implementation are easy to understand. ICP uses 

𝐿2 errors estimated from pair-wise point-clouds to derive a 

transformation which draws them closer to each other. 

Registration process finishes after many iterations of 

minimizing error and results in a homogeneous 

transformation. 

However, ICP-class algorithms alone cannot solve 

problems for general registration tasks since they require a 

further assumption in which an initial near-optimal pose 

transformation is necessary for right convergences. 

Otherwise, the registration process would likely converge to 

local optimal solutions instead of the global optimal or near 

global optimal one. This result cannot be overcome merely 

by iteration procedure. In some mesh and point-cloud editor 

software such as Meshlab [2] registering tool for range data is 

available. It requires manually data pre-alignment from users 

before ICP comes into use. 

To overcome the shortage of ICP-class methods, in general, 

registration processes are generally divided into two steps: 

coarse transformation or initialization and fine 

transformation. If two point-clouds are close enough, the first 

step could be omitted. Otherwise, the problem remains a big 

challenge for researchers. Coarse transformation, 

pre-alignment estimation or initialization solving has two 

approaches: local and global. Local methods use local 

descriptors (or signatures) such as PFH [3] and SIFT [4] 

which encode local shape variation in neighborhood points. If 

points with those descriptors appear in both registering 

point-clouds, initialization movement could be estimated by 

using sample consensus algorithms such as RANSAC [5]. 

The problem of local approaches is that those signatures are 

not always guarantied to appear on both registering 

point-clouds. On the other hand, global approaches take 

every point into account such as Go-ICP [6] and SAICP [7] 

The biggest problem of those methods is computation cost in 

finding the corresponding points in point-clouds. If there are 

big numbers of point in point-clouds, the computation cost is 

going large. However, thanks to new algorithms especially 

heuristic optimal searching methods as well as the increasing 

in computer speed especially with parallel computing with 

multi-core CPU processor and Graphic Computation Unit 

(GPU) [8] it is possible to find solutions of global approaches 

of registration problem. After estimating coarse 

transformation, ICP algorithm is an efficient tool to find the 

fine transformation. 

This paper proposes a new global registration method for 
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3D constructed images without good initialization. It is called 

Global Hybrid Registration for 3D Constructed Surface 

Using Ray-casting and ISADE [9]. As other global 

registration methods, our method requires no local 

descriptors on works directly on raw scan surfaces. The 

method uses ray-casting based method for local minima 

searching together with ISADE as a search engine to find the 

global minima without using fine registration. Our method 

rapidly produces results at high rate convergence of the 

global optimization solution. 

 

II. THREE DIMENSION REGISTRATION 

This part summary some approaches for global range image 

registration task up to date. SVD, PCA [10] are integrated 

together with ICP as classical methods and global searching 

algorithms are integrated with ICP as in the most current 

methods. 

A. ICP Algorithm 

SVD and PCA have been used to find coarse 

transformation together with ICP as the fine 

transformation-estimating tool. Original version of ICP 

algorithm relies on 𝐿2  errors to derive the transformation 

including rotation and translation. To register two 

point-clouds 𝑋 = {𝑥𝑖} , {𝑖 = 1, … , 𝑚}  (model point-cloud) 

and 𝑌 = {𝑦𝑗}  , {𝑗 = 1, … , 𝑛}  (data point-clouds), where 𝑥𝑖  

and 𝑥𝑗  ∈ 𝑅3 are point coordinates of points in point-cloud. 

ICP algorithm arms to find rotation ∈ 𝑆𝑂3  and translation 

∈ 𝑅3, which minimize 𝐿2 type error as in Equation 1. 
 

𝐸(𝑅, 𝑡) = ∑ 𝑒𝑖(𝑅, 𝑡)𝑛
𝑖=1 = ∑ |𝑅 ∗ 𝑦𝑖∗ + 𝑡 − 𝑥𝑖|𝑛

𝑖=1         (1) 
 

where 𝑅 and 𝑡 are rotation and translation matrix, 𝑦𝑖∗ is the 

corresponding point of 𝑥𝑖 denoted for its closest point in data 

point-cloud 𝑌. There are some ICP variants, which rely on 

different categories to define closest points. Point-to-point 

and Point-to-plane are two popular examples. Equation 2 is 

used to search for closest point by Point-to-point category. 
 

            𝑗∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑗∈{1,…,𝑛}

|𝑅 ∗ 𝑦𝑗 + 𝑡 − 𝑥𝑖|                      (2) 

 

The iteration process is as following to archives the final 

transformation: 

 Compute the closest model points for each data point as 

Equation 2. 

 Compute the transformation 𝑅 and 𝑡 based on the error 

from Equation 1. 

 Apply 𝑅 and 𝑡 to the data point-clouds. 

 Repeat step 1, 2, 3 until error as Equation 1 smaller then a 

set tolerant or the procedure reaches its max iteration. 

Step by step, ICP draws the data point-cloud closer to 

model point-cloud and the process stops at local minima. 

There are some variants of ICP algorithm based on different 

methods to calculate the transformation from error 𝐸(𝑅, 𝑡) 

and error itself as in LMICP [11] and SICP [12]. 

B. Global Hybrid Searching Algorithm 

ICP algorithms are superior for registering close or 

pre-aligned point-cloud data; otherwise, it often converges 

wrongly. Global searching algorithms are solution to solve 

this problem since they are able to find the global minima 

instead of local one. To make the task of global searching 

algorithm less difficult, ICP are often applied to flatten the 

searching space. Fig. 1 and Fig. 2 show how ICP works as a 

flattening tool of objective functions. By using ICP, a 

complex fitness function in black turns into simpler one in 

red color. And with such a much more flatten fitness function, 

global searching method find a global minima more 

effectively. 

 
Fig. 1. Global searching algorithm with ICP integrated. 

 

 
Fig. 2. Example of flatten objective function using ICP. 

 

The integration works well in case of point-cloud data with 

small point number. For large data case, ICP becomes slow 

and impossible for applying into real time applications. Our 

method integrates new global searching algorithm ISADE, 

which can handle complicated fitness functions without or 

few flattening process and fast error calculation method 

based on ray-casting corresponding searching algorithm 

which accelerates registration procedure. 

 

III. METHOD OVERVIEW 

A. Methodology Approach 

The biggest disadvantage of ICP based registration 

methods in calculating cost function is runtime. In 

KinectFusion [13] a real-time scene reconstruction algorithm, 

ICP is used as an only method for registering two continuous 

frames. The method requires a powerful Graphic Card to 

fasten calculations and reduce runtime. However, in global 

registration algorithms with thousand times of error function 

calculation more than ICP through many iterations and 

populations, to make the algorithm can run real-time, we 

need a faster error calculation method. 

The proposed algorithm takes the advantage of fast error 

calculating by using ray-casting based corresponding point 
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searching to apply for a new optimization algorithm ISADE 

with a purpose of getting a faster and global optimal 

convergence guaranty. 

B. Ray-Casting Closest Point Method 

ICP-class algorithms often use kd-tree [14] structure to 

speed up the process of finding 𝑗∗  in Equation 2. The 

complexity of kd-tree searching closest algorithm is 

𝑂(𝑙𝑜𝑔(𝑛)) where n is number of searching point set. Fig. 3 

shows an example of corresponding points of the data 

point-cloud in the model one. 

 

 
Fig. 3. Kd-tree closest point in original ICP. 

 

 
Fig. 4. Ray-casting method for searching corresponding points. 

 

Since depth image or point cloud data are often obtained 

from 3D range camera in which the data could be consider as 

an 2D gray image 𝐺where value of each pixel show the depth 

of the point. 
 

𝑧𝑖,𝑗 = 𝐺[𝑖, 𝑗]                                     (3) 
 

where 𝑧𝑖,𝑗 is depth of image at pixel i, j.  

Equations 4 is to  convert from depth image and real 3D 

depth data {𝑥, 𝑦, 𝑧}. 

 

    𝑥𝑖,𝑗 = (𝑖 − 𝑐𝑥)𝐺 [𝑖, 𝑗] 𝑓𝑥⁄        (4a) 

 

𝑦𝑖,𝑗 = (𝑗 − 𝑐𝑦)𝐺 [𝑖, 𝑗] 𝑓𝑦⁄                           (4b) 

 

    𝑧𝑖,𝑗 = 𝐺[𝑖, 𝑗]                                      (4c) 

 
where 𝑓𝑥, 𝑓𝑦 , 𝑐𝑥, 𝑐𝑦  are intrinsics of the depth camera. In 

conversion, pixel position and structured expression of a 

point {𝑥, 𝑦, 𝑧} can be calculated as Equation 5. 

 

      𝐺[𝑖, 𝑗] = 𝑧𝑖,𝑗          (5a) 

 

  𝑖 = 𝑟𝑜𝑢𝑛𝑑(𝑐𝑥 + 𝑥𝑖,𝑗 ∗ 𝑓𝑥 𝐺⁄ [𝑖, 𝑗])     (5b) 

 

  𝑗 = 𝑟𝑜𝑢𝑛𝑑(𝑐𝑦 + 𝑦𝑖,𝑗 ∗ 𝑓𝑦 𝐺⁄ [𝑖, 𝑗])     (5c) 

Those equations are to calculate 𝑖, 𝑗 of data points which 

are also 𝑖, 𝑗 of corresponding point in model point-clouds. 

The idea of the method is showed as Fig. 4, which reminds 

the ray-casting process in computer vision. 

C. Objective Function 

The fitness function need to provide an error score that is 

minimized when the best transformation matrix are applied. 

The paper uses fitness function as Equation 6. 

 

  𝐹(𝑅, 𝑡) = 𝑓(𝑛)
1

𝑛2
∑ (𝑅 ∗ 𝑦𝑗 + 𝑡 − 𝑥𝑖)

2𝑁
𝑖=1              (6) 

 

where 𝑓(𝑛) is a function of inlier point number, n. N is the 

number of points in the data point-cloud. 

The error function should be smaller in bigger number of 

inlier point. Since that, searching algorithm would get rid of 

the case in which cost function is small for only small inlier 

points. Function 𝑓(𝑛) is calculated as in Equation 7. 

 

    𝑓(𝑛) = {
∞      𝑖𝑓      

𝑛

𝑁
< 0.1

1 −
𝑛

𝑁
         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}                          (7) 

Instead of using ICP with iteration steps with meeting the 

condition of maximum iteration steps or error become 

smaller then a set error to flatten the cost function, the 

algorithm only do smothering by calculating transformation 

matrix to minimize error function with one step using SVD 

method. Equation 6 without 𝐹(𝑅, 𝑡)  can be rewrite as 

Equation 8 to find the one step better rotation and translation 

in term of cost from initial transformation matrix.  

 𝐹(∆𝑅, ∆𝑡) = 𝐹(𝑅 + ∆𝑅, 𝑡 + ∆𝑡)        (8) 

 

where 𝑅, 𝑡 are initial rotation and translation matrix, ∆𝑅 and 

∆𝑡 are smothering or fine matrix. 

D. Translation Computing 

We can find the optimal translation by taking derivative of 

𝐹 with respect to ∆𝑡 and search for its roots. 

0 =
𝜕𝐹

𝜕∆𝑡
=  ∑ 2(∆𝑅 ∗ y𝑗∗

′ + ∆𝑡 − 𝑥𝑖)

𝑁

𝑖=1

= 

2𝑡 ∗ 𝑛 + 2𝑅 (∑ y𝑗∗
′

𝑁

𝑖=1

) − 2 (∑ 𝑥𝑖

𝑁

𝑖=1

) 

                     (9) 

where 𝑦𝑗∗
′  is new coordinate of 𝑦𝑗∗  after rough 

transformation with 𝑅 and 𝑡. 

Denote 

𝑥̅ =
(∑ 𝑥𝑖

𝑁
𝑖=1 )

𝑛
   𝑎𝑛𝑑   𝑦̅ =

(∑ y𝑗∗
′𝑁

𝑖=1 )

𝑛
 

The final results for translation: 

 

       ∆𝑡 =  𝑥̅ −  ∆𝑅𝑦̅         (10) 

 

In other words, the translation of first movement draws two 

pointlouds close to each other so their weighted centroids 

coincide. 

E. Translation Computing 

Replacing ∆𝑡 from Equation 10, 𝐹(∆𝑅, ∆𝑡) is calculated as 

Equation 11. 
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𝐹(∆𝑅, ∆𝑡) = ∑(∆𝑅 ∗ y𝑗∗
′ + ∆𝑡 − 𝑥𝑖)

2
𝑁

𝑖=1

 

=  ∑(𝑅 ∗ y𝑗∗
′ + (𝑥̅ −  𝑅𝑦̅ ) − 𝑥𝑖)

2
𝑁

𝑖=1

 

=  ∑(𝑅 ∗ (y𝑗∗
′ − 𝑦̅ ) − (𝑥𝑖 − 𝑥̅))

2
𝑁

𝑖=1

 

Denote 𝑥𝑖
′ = 𝑥𝑖 − 𝑥̅  and 𝑦𝑗

′ = y𝑗∗
′ − 𝑦̅ , rotation matrix is 

presented as Equation 12. 

∆R = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑅

∑(𝑅 ∗ 𝑦𝑖
′ − 𝑥𝑖

′)2

𝑁

𝑖=1

 

                      (12) 

Using SVD method for least square problem, covariance 

matrix is calculated as Equation 13. 

 

         𝑆 = 𝑋𝑌𝑇           (13) 

 

Decomposing S matrix 𝑆 = 𝑈 ∑ 𝑉𝑇, then rotation matrix is 

calculated as in Equation 14. 

    ∆𝑅 = 𝑉 [

1 0
0 …

0 0
0 0

0 0
0 0

1 0
0 det (𝑉𝑈𝑇)

] 𝑈𝑇    (14) 

 

After having rotation matrix, translation matrix is 

recalculated as Equation 10. 

F. ISADE 

Differential evolution (DE) is an optimization technique 

originally proposed by Storn and Price [15]. It is categorized 

into evolution algorithm group, which is characterized by 

operators of mutation and crossover. In DE, two important 

coefficients, which play key rolls to decide the correction and 

speed of convergence, are scaling factor 𝐹 and crossover rate 

𝐶𝑟. Another important parameter in DE, population size NP 

remains a user-assigned value to cope with problem 

complexity. ISADE not only adaptively changes those three 

coefficients but also integrates different mutation schemes to 

take advantages of them. 

1) Adaptive learning strategies selection 

In their paper of ISADE, Tam Bui et al. randomly chose 

three mutation schemes, which are 𝐷𝐸 𝑏𝑒𝑠𝑡⁄ 1⁄ 𝑏𝑖𝑛⁄ , 

𝐷𝐸 𝑏𝑒𝑠𝑡⁄ 2⁄ 𝑏𝑖𝑛⁄  and 𝐷𝐸 𝑟𝑎𝑛𝑑⁄ 𝑏𝑒𝑠𝑡 1⁄ 𝑏𝑖𝑛⁄ . Among DE's 

schemes, 𝐷𝐸 𝑏𝑒𝑠𝑡⁄ 1⁄ 𝑏𝑖𝑛⁄  and 𝐷𝐸 𝑏𝑒𝑠𝑡⁄ 2⁄ 𝑏𝑖𝑛⁄  are known 

for good convergence property and 𝐷𝐸 𝑟𝑎𝑛𝑑⁄ 𝑏𝑒𝑠𝑡 1⁄ 𝑏𝑖𝑛⁄  is 

known for good diversity. The probability of applying those 

strategies are equal equally assigned at with values 𝑝1 =
𝑝2 = 𝑝3 = 1 3⁄ . Equations 8 show the formula of chosen 

schemes. 

𝐷𝐸 𝑏𝑒𝑠𝑡⁄ 1⁄ : 𝑉𝑖,𝑗
𝐺 = 𝑋𝑏𝑒𝑠𝑡,𝑗

𝐺 + 𝐹(𝑋𝑟1,𝑗
𝐺 − 𝑋𝑟2,𝑗

𝐺 )   (8a) 

𝐷𝐸 𝑏𝑒𝑠𝑡⁄ 2⁄ : 𝑉𝑖,𝑗
𝐺 = 𝑋𝑏𝑒𝑠𝑡,𝑗

𝐺 + 𝐹(𝑋𝑟1,𝑗
𝐺 − 𝑋𝑟2,𝑗

𝐺 ) +

𝐹(𝑋𝑟3,𝑗
𝐺 − 𝑋𝑟4,𝑗

𝐺 )                (8b) 

𝐷𝐸 𝑟𝑎𝑛𝑑⁄ 𝑏𝑒𝑠𝑡 1⁄ : 𝑉𝑖,𝑗
𝐺 = 𝑋𝑏𝑒𝑠𝑡,𝑗

𝐺 + 𝐹(𝑋𝑏𝑒𝑠𝑡,𝑗
𝐺 − 𝑋𝑟2,𝑗

𝐺 ) +

𝐹(𝑋𝑟3,𝑗
𝐺 − 𝑋𝑟4,𝑗

𝐺 )                (8c) 

In APGA/VNC appoach proposed by S. Tooyama and H. 

Hasegawa [16] scaling factor changes according to iteration 

as sigmoid function as in Equation 9. 

     𝐹𝑖 =
1

1+𝑒𝑥𝑝 (𝛼
𝑖−𝑁𝑃

2
𝑁𝑃 )

        (9) 

ISADE give addition scaling 𝐹𝑖
𝑚𝑒𝑎𝑛 as in Equation 10. 

 

𝐹𝑖
𝑚𝑒𝑎𝑛 = 𝐹𝑚𝑖𝑛 + (𝐹𝑚𝑎𝑥 − 𝐹𝑚𝑖𝑛) (

𝑖𝑚𝑎𝑥−𝑖

𝑖𝑚𝑎𝑥
)

𝑛𝑖𝑡𝑒𝑟
          (10) 

 

where 

   𝑛𝑖𝑡𝑒𝑟 = 𝑛𝑚𝑖𝑛 + (𝑛𝑚𝑎𝑥 − 𝑛𝑚𝑖𝑛)
𝑖

𝑖𝑚𝑎𝑥
    (11) 

𝐹𝑖 in Equation 9 is modified as in Equation 11. 

  

      𝐹𝑖 =
𝐹𝑖+𝐹𝑖

𝑚𝑒𝑎𝑛

2
        (12) 

 

Now scaling factor is set to be high in first iterations and 

after certain generations it become smaller for proper 

exploitation. 

2) Crossover control parameter 

 

 
Fig. 5. ISADE implementation flowchart. 

 

ISADE algorithm is able to detect whether high values of 

𝐶𝑟  are useful and if a rotationally invariant crossover is 

required. A minimum base for 𝐶𝑟 around its median value is 

incorporated to avoid stagnation around a single value. The 

control parameter 𝐶𝑟 is assigned as Equation 13. 

 

   𝐶𝑟
𝑖+1 = {

𝑟𝑎𝑛𝑑2      𝑖𝑓      𝑟𝑎𝑛𝑑1 < 𝜏

𝐶𝑟
𝑖                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}                     (13) 

 

where 𝑟𝑎𝑛𝑑1  and 𝑟𝑎𝑛𝑑2  are random values ∈ [0,1],  𝜏 

presents probability to adjust 𝐶𝑟. 𝐶𝑟  is adjusted as in Equation 

14. 

 

𝐶𝑟
𝑖+1 = {

𝐶𝑟𝑚𝑖𝑛
        𝑖𝑓    𝐶𝑟𝑚𝑖𝑛

≤ 𝐶𝑟
𝑖+1 ≤ 𝐶𝑟𝑚𝑒𝑑𝑖𝑢𝑚

𝐶𝑟𝑚𝑎𝑥
        𝑖𝑓    𝐶𝑟𝑚𝑒𝑑𝑖𝑢𝑚

≤ 𝐶𝑟
𝑖+1 ≤ 𝐶𝑟𝑚𝑎𝑥

}   (14) 
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where 𝐶𝑟𝑚𝑖𝑛
,  𝐶𝑟𝑚𝑒𝑑𝑖𝑢𝑚

, 𝐶𝑟𝑚𝑎𝑥
 denote low value, median 

value and high value of crossover parameter respectively. As 

in [12], we take 𝜏 = 0.1 , 𝐶𝑟𝑚𝑖𝑛
= 0.05 , 𝐶𝑟𝑚𝑒𝑑𝑖𝑢𝑚

= 0.5 , 

𝐶𝑟𝑚𝑎𝑥
= 0.95. 

All above ideas and theories are implemented as in 

flowchart in Fig. 5. 

G. A New Combination 

From initial position matrix, using one ICP iteration to 

gain a slightly better rotation and translation matrix, the 

algorithm recalculates the error as in Equation 6 and uses it in 

ISADE searching algorithm. Flowchart in Fig. 6 shows 

implementation of the whole algorithm. 
 

 
Fig. 6. Hybrid registration method with ISADE and ray-casting. 

 

IV. EXPERIMENT AND RESULTS 

This section arms at presenting a number of experimental 

results to study how robust and accurate of ISADE results in 

comparison to other Global searching algorithm in using the 

same ray-casting based error function as well as comparison 

of result from new algorithm to KinecFusion in term of 

accuracy. 

 De Falco et al.’s proposal (DE), Differential Evolution as 

a viable tool for satellite image registration [17]. 

 Valsecchi et al.’s proposal (GA), An Image Registration 

Approach using Genetic Algorithms [18]. 

  Talbi et al.'s proposal (PSO), Particle Swarm 

Optimization for Image Processing [19]. 

 Luck et al.'s proposal (SA), registration of range data 

using a hybrid simulated annealing and iterative closest 

point algorithm [20]. 

The proposed algorithm is implemented in C++ and 

compiled with GNU/g++ tool.  

In order to perform a fair comparison between different 

optimization tools, in all methods, maximum iteration is set 

to 100 with population of 25 each generation. As SAICP is 

not a multi-agent method, its maximum iteration is set to 

2500. 

A. Range Image Datasets 

Our experiments carried out number of pair-wise 

registration task using well-known Depth data taken from 

Kinect Microsoft Camera downloaded from website of 

Microsoft Research  

http://research.microsoft.com/en-us/projects/7-scenes/. 

Specifically, Fig. 7 shows all scenes: Chess, Fire, Heads, 

Office, Pumpkin, RedKitchen, and Stairs. 
 

 
Fig. 5. RGB-D 7 scenes datasets. 

 

Those .PNG format depth images were sub-sampled into 

smaller solution of 128 × 96, which is 5 times smaller than 

original solution of 640 × 480  in each dimension. The 

reason for using smaller number of point dataset is to archive 

considerable suitable runtime while accuracy remains 

unchanged. 

B. KinectFusion Error from Data Transpose 

Accompany with depth datasets, 7 scenes database give us 

camera homogeneous transposes at each frame calculated 

from Kinect-Fusion algorithm. Using those transpose, we 

could calculate transformation matrix between two scenes as 

Equations 15. 
 

      𝑇𝑗
𝑖 = 𝑇𝑖

−1 ∗ 𝑇𝑗         (15a) 
 

      𝑇𝑗
𝑖 = [

𝑅𝑗
𝑖 𝑡𝑗

𝑖

0 0 0 1
]                            (15b) 

 

where 𝑇𝑗
𝑖 is transformation matrix to move frame 𝑗 to align 

with frame 𝑖 , 𝑇𝑖  and 𝑇𝑗  are homogeneous transpose matrix 

for camera at frame i and j respectively, 𝑅𝑗
𝑖 ,𝑡𝑗

𝑖 are rotation 

and translation matrix of 𝑇𝑗
𝑖. 

𝑅𝑗
𝑖  , 𝑡𝑗

𝑖  are applied into ray-casting error calculation 

methods for two frames as in Equation 6 to draw errors of 

KinectFusion algorithm for the next comparison step. 

C. Parameter Setting 

In each methods 30 runs were executed with two 

registration depth images are at distance of 20 frames in the 

sequence. The searching space is set so rotation and 

translation limitation at [−2 𝜋 10,⁄ 2 𝜋 10⁄ ]  and 

[−0.3,0.3]separately. All methods are run on a PC of Intel 

core I7-4790 CPU 3.60 GHz ×8 processor and 8 GB of RAM 

memory. 

D. Results Comparison between Algorithms 

ISADE searching algorithm results are compared with 

other algorithms' results in three categories including 

convergent rate, mean and standard deviation, which are 

shown in Table I. 
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TABLE I: RESULTS FROM DIFFERENT SEARCHING ALGORITHM ON 7-SCENE 

DATA 

Scene name Algorithm CvR(%) Mean St.dev 

Chess 

ref: 0.2483 

ISADE 

DE 
GA 

PSO 

SA 

100 

100 
0 

0 

6.6667 

0.0695  

0.0752 
1.8018  

0.6753  

0.9413 

0.0107 

0.0144 
0.6643 

0.4502 

0.7171 

Fire 
ref: 0.2431 

ISADE 
DE 

GA 

PSO 
SA 

100 
100 

0 

20 
6.6667 

0.0230 
0.0290 

0.7740 

0.3497 
0.3306  

8.85e-04 
2.55e-04 

0.2300 

0.2826 
0.2679 

Heads 

ref: 2.9907 

ISADE 

DE 
GA 

PSO 

SA 

100 

100 
100 

100 

73.3333 

0.0024 

0.0027 
0.3080 

0.0824 

0.4494 

3.59e-05 

0.0048 
0.1349 

0.0836 

0.3385 

Office 

ref: 0.6294 

ISADE 

DE 

GA 
PSO 

SA 

100 

100 

100 
100 

33.3333 

0.0358 

0.0371 

0.8577 
0.2819  

0.5526 

8.47e-05 

8.24e-04 

0.3445 
0.3702 

0.5851 

Pumpkins 

ref: 0.111361 

ISADE 

DE 
GA 

PSO 

SA 

100 

100 
0 

6.6667 

0 

0.0407  

0.0489 
1.1097 

0.3779 

6.6667 

0.0071 

0.0127 
0.4057 

0.3330 

0.6984 

RedKitchen 

ref: 0.0984 

ISADE 

DE 

GA 
PSO 

SA 

100 

93.3333 

0 
0 

10 

0.0315 

0.0473 

1.4215 
0.4863 

0.3021 

0.0049 

0.0239 

0.6508 
0.3829 

0.2898 

Stairs 

ref: 0.0156 

ISADE 

DE 
GA 

PSO 

SA 

100 

100 
0 

0 

3.3333 

0.0056  

0.0062 
0.9413 

0.2441   

0.4808  

5.63e-06 

0.0014 
0.3373 

0.2435 

0.6281 

 

KinectFusion error or reference value is considered as 

correct convergence. In Table I, convergence rate (CvR) 

means percentage of algorithms results smaller than 

reference value. 

Proposed algorithm and DE are superior to other methods 

in every category. ISADE are better than DE in almost cases 

only in the Fire scene standard deviation of ISADE method 

larger than DE method's. 

The proposed method are qualified in all tested scenes with 

convergence value are always smaller than reference value. 

This can be explained by accumulating error by using ICP 

algorithm from frame to frame. As using ICP continuously 

from frame to frame in Kinect Fusion algorithm error would 

be accumulated and become large. The final transformation 

matrix becomes less accurate than which gained from direct 

registration method using only two frames. 

 

 
Fig. 8. Registration output examples. 

Fig. 8 shows four scenes registration results using ISADE 

integrated algorithms including: Fire, Head, Office, Stairs. 

Model pointcloud are in pink and data pointcloud are in green 

color. 

E. Runtime 

For the data of 128 × 96 resolution, average running time 

for the proposed method are shown in Table II. 

 
TABLE II: AVERAGE RUNTIME WITH DIFFERENT SCENES IN SECOND 

Chess Fire Heads Office Pumpkin Redkitchen Stairs 

7.5053 5.8596 8.0114 7.4527 5.9005 6.0466 7.8627 

 

The results show the average time for registration at around 

8 seconds. Two registering frames are at distance of 20 

frames. That means the rate of registering equivalence at rate 

of 2.5 fps (frames per second). To make algorithm run at 

real-time rate of 20fps, the speed need to be increased by 8 

times. If we exploit all core of 8-core-processors or GPU 

multi-core processors, this target could be archived. 

 

V. DISCUSSION AND CONCLUSION 

Image registration has been a very active research area. 

Recently, the approach of using evolutionary algorithms 

(EAs), especially new methods, proved their potential of 

tackling image registration problem based on their robustness 

and accuracy on searching for global optimal. With EAs 

algorithm as searching tools, it is not necessary to have good 

initials to avoid local minima and converge to near-global 

minima solutions. To do that, EAs algorithms need tuning 

carefully to gain best results. 

We proposed the new registration algorithm by integrating 

a new self-adaptive optimization algorithm (ISADE) into a 

fast closest point searching method to tackle well-known 

challenging task of computer vision area. In the experiments, 

the results show that ISADE is able to find a robust and 

accurate transformation matrix of camera movement. 

What is more important, accuracy and robustness results 

have been obtained in comparison with other state-of-the-art 

evolution based algorithms. ISADE shows its superior than 

GA, PSO, SA in searching for global minima solution. In 

comparison with DE, ISADE also show its much better in 

almost tested scenes. The robustness and accuracy is tested 

and proved in real 3D scenes captured by Microsoft Kinect 

camera.  

In term of running time, by using fast searching closest 

point methods, proposed algorithms are considered fast in our 

sense. It shows potential of applying in real-time application 

if using parallel programing technique with multi-core 

processors. 

In future work, ISADE algorithm can be implemented in 

parallel in GPU (Graphic Processor Unit) which can help 

algorithm reduces runtime to prove real-time implement 

possibility in 3D reconstruction, 3D mapping and 3D 

localization.  
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