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Abstract—In this article, we propose a transfer learning 

method for the deep neural network (DNN). Deep learning has 

been widely used in many applications such as image 

classification and object detection. However, it is hard to apply 

deep learning methods when we cannot get a large amount of 

training data. To tackle this problem, we propose a new method 

that re-uses all parameters of the DNN trained on source 

images. Our proposed method first trains the DNN to solve the 

source task. Second, we evaluate the relation between the source 

labels and the target ones. To evaluate the relation, we use the 

output values of the DNN when we input the target images to 

the DNN trained on the source images. Then, we compute the 

probabilities of each target label by vetting the output values. 

After computing the probabilities, we select the output 

variables of the peaks of each probability as the most related 

source label. Then, we tune all parameters in such a way that 

the selected variables respond as the outputs variables of the 

target labels. Experimental results by using the MNIST (source) 

and the X-ray CT images (target) show that our proposed 

method can improve classification performance. 

 
Index Terms—Deep learning, deep neural network, deep 

Boltzmann machine, stacked autoencoders, transfer learning, 

computer aided diagnosis.   

 

I. INTRODUCTION 

Deep learning (DL) has been widely used in the fields of 

machine learning and pattern recognition [1]-[3] because of 

its high classification performance. DL methods train the 

deep neural network (DNN) with a large amount of 

parameters using a large number of training data. For 

example, Le et al. [2] trained 1 billion parameters using 10 

million training images, and Krizhevsky et al. [3] trained 60 

million parameters using 1.2 million training images. They 

used the ImageNet dataset [4], which can be accessed via the 

web. Conversely, original datasets, such as medical images 

captured by hospitals, cannot be easily accessed because of 

privacy and security concerns. Therefore, people that want to 

solve original tasks cannot collect enough data to train the 

DNN. Therefore, many applications including computer 

aided diagnosis (CAD) systems use conventional 

sophisticated features [5], [6]. To tackle this problem, we 

propose a novel method that combines the DL and the 

transfer learning method for a small amount of training data.  

Transfer learning is a method that re-uses knowledge 

about the source task to solve the target task [7]. For example, 

Saenko et.al [8] proposed a metric learning based transfer 

learning method that computes the Mahalanobis distance 
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between images, and Okamoto and Nakayama [9] proposed 

unsupervised transfer learning that exploits not only images 

but also distance information. Conversely, Oquab et al. [10] 

proposed a transfer learning method for the DNN. They 

trained a convolutional neural network (CNN) with the 

ImageNet [4] as the source domain. After training the CNN, 

they re-used the parameters from the input layer to the 

mid-level hidden layer. Then, they added a new layer and 

tuned the parameters using the target images. In their article, 

they described how their proposed method outperformed 

other methods.  

However, our proposed method re-uses all parameters of 

the DNN trained on the source images. First, our proposed 

method trains the DNN to solve the source task. Second, we 

evaluate the relation between the source labels and the target 

ones. To evaluate the relation, we use the output values of the 

DNN when we input the target images to the DNN trained on 

the source images. Then, we compute the probabilities of 

each target label by vetting the output values. After 

computing the probabilities, we select the output variables of 

the peak of each probability as the most related source label. 

Then, we tune all parameters in such a way that the selected 

variables respond as the output variables of the target labels. 

The difference between our proposed method and Oquab's 

method is the constraint. Oquab's method constrains the 

network from the input layer to the mid-level hidden layer. 

Conversely, our proposed method constrains all parameters 

including the output layer. This means that our proposed 

method applies the constraint more strictly than Oquab's 

method. We assume that it is effective to apply stricter 

constraints when we have a small number of target images to 

avoid overfitting [11]. Therefore, in such a situation, we 

expect that our proposed method is more suitable than 

Oquab's method. 

We evaluated the classification performance of our 

proposed method by using the MNIST handwritten character 

dataset [12] (source) and the lung dataset of the X-ray CT 

images (target). The source task is to classify the digits from 

“0” to “9” and the target task is to classify lung lesions or not. 

Experimental results show that our proposed method is 

effective when we only have a small number of target images. 

 

II. PROPOSED METHOD 

A. Outline 

Fig. 1 shows the outline of our proposed method. Let xs,i 

(xt,i) be a i-th sample of the source (target) images and let ys,i 

(yt,i) be a label corresponding to xs,i (xt,i). Let Ns (Nt) be the 

number of training samples of the source (target) images 
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(Ns>Nt), and let Cs (Ct) be the number of labels of the source 

(target) images (CsCt). Let Ds be the DNN trained on the 

source images {xs,i | i=0, 1, …, Ns -1}, and let Dt be the DNN 

trained on the target images {xt,i | i = 0, 1, …, Nt -1}. Let ws be 

the parameters trained on the source images, and let wt be the 

parameters trained on the target images. 
 

 
Fig. 1. Outline of our proposed method. We re-use all parameters trained on source images. (A): training deep neural network Ds, (B): evaluating the relation 

between source and target labels, (C): Re-training (fine-tuning) based on the relation. 

 

First, our proposed method trains Ds. Second, we evaluate 

the relation between the source and the target labels. To 

evaluate the relation, we input the target images {xt,i} into Ds. 

Next, we compute the probabilities of each target label on the 

basis of the response of the output layer of Ds. After 

computing the probabilities, we select the appropriate 

variables that relate to the target labels. Finally, we tune the 

parameters in such a way that the selected variables respond 

as the outputs of the target labels. 

B. Details 

1) Multi-prediction deep boltzmann machine 

In this study, we use the multi-prediction deep Boltzmann 

machine (MPDBM) [13] as the DL method. Multi-prediction 

refers to a procedure that includes the prediction of any 

subset of the variables given the complement of that subset of 

variables [13]. The advantage of MPDBM is that it does not 

require greedy layerwise pretraining [13]. 

MPDBM minimizes the following objective function: 
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where 
iSO  is the subset of the variables in O=[x, y]T, 

and ˆ *( , )
iSp O w  is the mean-field approximation as 

follows. 
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where 
iSO  is the subset of the variables in O except for 

iSO , KL(.||.) is the KL-divergence [11], and 

( , | )
i iS Sp O Ow  is the conditional probability distribution 

of p(O, w)=exp(-E(O, w))/Z, where Z is the partition function, 

and E(O, w) is the energy function of the deep Boltzmann 

Machine [13].  

2) All parameters transfer learning method 

In this subsection, we explain the transfer learning method 

using the MPDBM for a small number of target images. 

First, we train Ds by minimizing the equation (1). Then, we 

re-use all parameters of Ds including the output layer. For 

re-using all parameters, we evaluate the relation between the 

source and target labels. In this study, we use the 

probabilities of each target label for evaluating the relation. 

The probability of c-th target label is as follows (c = 0, 1, … , 

Ct -1). 
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1
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Z
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where v (= v0, v1, … , vCs-1) is the output variable of Ds, and 
 

     
(a) MNSIT 

     
(b) Non-lesion 

      
(c) Lesion 

Fig. 2. Examples of dataset. 
 

TABLE I: ENVIRONMENT OF EXPERIMENTS 

CPU Memory 

Core i7-4930K 64.0 GB 
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where Nt(c) is the number of samples of c-th target label, and 

hc(v|xt,j) is the output given xt,j. In this study, we use the 

following approximation. 
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where k = 0, 1, … ,Cs-1. 

After computing the relation by using probability pc(v), we 

select the output variable v(c) of the peak of the probability 

pc(v) as the appropriate variable of the c-th target label.  

After selecting V={ v(c) | c=0, 1, …, Ct -1 }, we re-train Ds 

in such a way that appropriate variables V respond as the 

outputs of each target label. It should be noted that the 

re-training of Ds corresponds to compute wt given ws as the 

initial parameters. 

The algorithm of our proposed method is as follows. 

1) Source task step: 

a) Initialize the parameters ws. 

b) Minimize J({xs, ys}, ws) using the mini-batch stochastic 

gradient descent (SGD). 

2) Target task step: 

a) Input xt to the Ds trained on {xs,i}. 

b) Evaluate the relation between the source and the target 

labels by using the probabilities of outputs. 

c) Select the output variable v(c) that is the peak of the 

probability. 

d) Set ws as the initial parameters of the DNN. 

e) Minimize J({xt,yt}, wt ) so that V responds as the outputs 

of each target label. 

 

III. EXPERIMENTAL RESULTS 

We evaluated the classification performance by using the 

MNIST [9] and the lung dataset of the X-ray CT images. 

Table I shows the computer environment and Fig. 2 shows 

some examples. Our experiments were done using a single 

core CPU. Fig. 2(a) represents the examples of MNIST. Fig. 

2(b) and Fig. 2(c) represent the examples of non-lesion and 

lesion images. The size of these images is 28×28 =784 pixels, 

and the determination of lesion or non-lesion was based on 

diagnosis by radiologists. 
 

 
Fig. 3. The probability pc(v). We used MPDBM with dimensions of (784, 500, 

500, 10). 
 

TABLE II: COMPARISON OF CLASSIFICATION PERFORMANCE WITH RESPECT 

TO METHOD FOR SELECTING APPROPRIATE VARIABLES V. V (0) = 0, V(1) = 1 

REPRESENT VARIABLES SELECTED ON THE BASIS OF THE HIGHEST 

RELATION, AND V(0) = 8, V(1) = 9 REPRESENT RANDOMLY SELECTED ONES 

 Performance (%) 

v(0)=8, v(1)=9 97.5 

v(0)=0, v(1)=1 99.6 
 

TABLE III: COMPARISON OF CLASSIFICATION PERFORMANCE WITH 

RESPECT TO DIFFERENT STRUCTURES OF DNN 

 Performance (%) 

(784,500,50,10) 99.3 

(784,500,500,10) 99.6 

TABLE IV: COMPARISION OF CLASSIFICATION PERFORMANCE WITH 

RESPECT TO THE NUMBER OF TRANSFERRED LAYERS 
 Performance (%) 

T=0 93.2 

T=1 98.2 

T=2 98.5 

T=3 (Proposed) 99.6 

 
We used Ns = 60,000 and Cs = 10 (character number from 

"0" (k=0) to "9" (k=9)) and Nt = 2000 and Ct = 2 (lesion (c=0) 

or non-lesion (c=1)), and the number of samples of each label 

is Ns(0) = Ns (1) = … = Ns (9) = 6000, and Nt(0) = Nt(1) = 

1000. As the test dataset, we used 140 images of lesions and 

140 images of non-lesions. These test images are not 

included in the training dataset. 

A. Effectiveness Study of Relation 

Fig. 3 shows the probabilities of the relation. The red bars 

represent the probabilities of the lesions and the blue bars 

represent the probabilities of the non-lesions. When we 

computed these probabilities, we used Ds with 784 units in 

the input layer, 500 units in the first and the second hidden 

layer, and 10 units in the output layer. In the following, we 

represent (784, 500, 500, 10). As shown in this figure, the 

highest relation of the lesion images was the character "0" 

(v(0) = 0) and that of the non-lesion images was the character 

"1" (v(1) = 1). 

Table II shows the comparison of the classification 

performance with respect to the method for selecting the 

appropriate variables V. v(0) = 0 and v(1) = 1 were selected 

by the highest relation, and v(0) = 8 and v(1) = 9 were 

selected randomly. As shown in this table, the DNN based on 

the relation outperformed the randomly selected one. 
 

TABLE V: COMPARISION OF CLASSIFICATION PERFORMANCE WITH OTHER 

METHODS 
 Performance (%) 

Raw data + linear SVM 97.5 

Stacked autoencoder (Non transfer) 98.2 

Stacked autoencoder (Transfer) 98.5 

T=2 (Adding a new layer) 98.9 

T=3 (Proposed) 99.6 
 

  
Fig. 4. The probability pc(v). We used MPDBM with dimensions of (784, 500, 

50, 10). 
 

      
(A)                                                         (B) 

Fig. 5. Examples of the weights of the first layer of the DNN. (A): T=0, (B): 

T=3 (proposed). 
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Fig. 6. The probability pc(v). We used a stacked autoencoder with dimensions 

of (784, 500, 500, 10). 

 
Next, we compared the performance of the other structure 

of the DNN. In this article, we constructed a DNN with 

dimensions of (784, 500, 50, 10). Fig. 4 and Table III show 

the probabilities and the classification performance. As 

shown in Fig. 4, we set v(0) = 2 and v(1) = 1. As shown in 

these results, the appropriate variables v and the classification 

performance changed depending on the structure. These 

results indicate the importance of evaluating the relation 

between the source labels and the target ones. 

In the following experiments, we use a DNN with 

dimensions of (784, 500, 500, 10) because the 

classification performance was better than (784, 500, 50, 

10). 

B. Comparison of Classification Performance with 

Respect to the Number of Transferred Layers 

In this subsection, we explain our evaluation of the 

classification performance with respect to the number of 

transferred layers T. In this article, T=0 represents the DNN 

that does not transfer ws, T=3 transfers all parameters ws, and 

T=1, 2 transfer from the input layer to the T–th hidden layer.  

Table IV shows the results of the classification 

performance. As shown in this table, the classification 

performance of our proposed method (T=3) was the best. Fig. 

5 shows the examples of the weights of the first layer of the 

DNN. Fig. 5(A) represents the weights of T=0, and Fig. 5(B) 

represents the weights of T=3. As shown in this figure, the 

weights of T=3 expressed a more complex appearance than 

T=0. This is one of the reasons that our proposed method 

improved the classification performance. 

C. Comparison of Classification Performance with Other 

Methods 

In this subsection, we explain our evaluation of the 

classification performance with other methods. To compare 

other methods that do not use a DNN, we evaluated the 

classification performance of linear-SVM [14] where the 

feature has 784 dimensional raw-data. In addition, to confirm 

whether our proposed method can be applied to other DNNs, 

we evaluated our method on the basis of the stacked 

autoencoders [15]. The dimensions we set were (784, 500, 

500, 10), and the algorithm explained below. The difference 

from our method based on the MPDBM is that this algorithm 

only fine-tunes Ds so that V responds as the outputs of each 

target label. 

1) Source task step: 

a) Initialize the parameters ws. 

b) Compute Ds on the basis of the stacked autoencoders. 

2) Target task step: 

a) Input xt to the Ds trained on {xs,i}. 

b) Evaluate the relation between the source and the target 

labels by using the probability of output. 

c) Select the output variable v(c) that is the peak of the 

probability. 

d) Set ws as the initial parameters of the DNN. 

e) Fine-tune Ds so that V responds as the outputs of each 

target label. 

Table V shows the classification performance with other 

methods. It should be noted that T=2 (adding a new layer) 

added a top hidden layer as used in the Oquab's method [8]. 

In this study, we set (784, 500, 500, 500, 10) as dimensions, 

and we used MPDBM as the training method.  

As shown in this table, our proposed method outperformed 

Oquab's method [10]. This result demonstrates that our 

method is more effective than Oquab's method because of the 

stricter constraint. In addition, comparing the classification 

performance of T=0 (93.2%) (Table IV), the classification 

performance of linear-SVM (97.5%) was shown to be better 

(Table V). Conversely, the classification performance of the 

DNN trained by stacked autoencoders (Non transfer) 

(98.2%) was better than the linear-SVM ones. These results 

imply that the DNN trained on a small-scale dataset may not 

work well, and using other methods that do not use a DNN 

may work better. 

Fig. 6 shows the relation of the DNN trained by the stacked 

autoencoders. As shown in Fig. 6, we set v(0) = 5 and v(1) = 8 

as the appropriate variables. This result indicates that the 

relation between the source labels and the target ones 

changed depending on the training method of the DNN. 

Furthermore, the classification performance of the DNN 

trained by the stacked autoencoders can improve slightly by 

using our transferred method (98.2% 98.5%), as shown in 

Table V. This result represents the capability that our 

transferred method can be applied to other methods. 

 

IV. CONCLUSION 

We proposed a transfer learning method for a small 

number of target images. First, we trained a deep neural 

network Ds on the MNIST dataset. For training Ds, we used 

the multi-prediction deep Boltzmann machine (MPDBM) 

and the stacked autoencoders. Second, we inputted the 

medical images to Ds and computed the probabilities on the 

basis of the response of the output layer of Ds to evaluate the 

relation between the MNIST and the medical images (the 

target task was to classify lesions or non-lesions). After 

computing the probabilities, we selected the output variables 

of the peaks of the probabilities as the appropriate variables 

that relate to the MNIST dataset. Then, we tuned all 

parameters of Ds in such a way that the selected variables 

respond as lesion or non-lesion. Experimental results showed 

that selecting the variables on the basis of the relation was 

effective, and our proposed method outperformed the 

classification performance. 

In our future work, we will compare the classification 

performance by using other source images and will try to use 

convolutional neural networks and GPU acceleration to train 

the DNN. 
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