



Abstract—In this article, we propose a transfer learning

method for the deep neural network (DNN). Deep learning has

been widely used in many applications such as image

classification and object detection. However, it is hard to apply

deep learning methods when we cannot get a large amount of

training data. To tackle this problem, we propose a new method

that re-uses all parameters of the DNN trained on source

images. Our proposed method first trains the DNN to solve the

source task. Second, we evaluate the relation between the source

labels and the target ones. To evaluate the relation, we use the

output values of the DNN when we input the target images to

the DNN trained on the source images. Then, we compute the

probabilities of each target label by vetting the output values.

After computing the probabilities, we select the output

variables of the peaks of each probability as the most related

source label. Then, we tune all parameters in such a way that

the selected variables respond as the outputs variables of the

target labels. Experimental results by using the MNIST (source)

and the X-ray CT images (target) show that our proposed

method can improve classification performance.

Index Terms—Deep learning, deep neural network, deep

Boltzmann machine, stacked autoencoders, transfer learning,

computer aided diagnosis.

I. INTRODUCTION

Deep learning (DL) has been widely used in the fields of

machine learning and pattern recognition [1]-[3] because of

its high classification performance. DL methods train the

deep neural network (DNN) with a large amount of

parameters using a large number of training data. For

example, Le et al. [2] trained 1 billion parameters using 10

million training images, and Krizhevsky et al. [3] trained 60

million parameters using 1.2 million training images. They

used the ImageNet dataset [4], which can be accessed via the

web. Conversely, original datasets, such as medical images

captured by hospitals, cannot be easily accessed because of

privacy and security concerns. Therefore, people that want to

solve original tasks cannot collect enough data to train the

DNN. Therefore, many applications including computer

aided diagnosis (CAD) systems use conventional

sophisticated features [5], [6]. To tackle this problem, we

propose a novel method that combines the DL and the

transfer learning method for a small amount of training data.

Transfer learning is a method that re-uses knowledge

about the source task to solve the target task [7]. For example,

Saenko et.al [8] proposed a metric learning based transfer

learning method that computes the Mahalanobis distance

Manuscript received November 16, 2015; revised January 14, 2016.

The authors are with Panasonic Corporation, Japan (e-mail:

sawada.yoshihide@jp.panasonic.com, kozuka.kazuki@jp.panasonic.com).

between images, and Okamoto and Nakayama [9] proposed

unsupervised transfer learning that exploits not only images

but also distance information. Conversely, Oquab et al. [10]

proposed a transfer learning method for the DNN. They

trained a convolutional neural network (CNN) with the

ImageNet [4] as the source domain. After training the CNN,

they re-used the parameters from the input layer to the

mid-level hidden layer. Then, they added a new layer and

tuned the parameters using the target images. In their article,

they described how their proposed method outperformed

other methods.

However, our proposed method re-uses all parameters of

the DNN trained on the source images. First, our proposed

method trains the DNN to solve the source task. Second, we

evaluate the relation between the source labels and the target

ones. To evaluate the relation, we use the output values of the

DNN when we input the target images to the DNN trained on

the source images. Then, we compute the probabilities of

each target label by vetting the output values. After

computing the probabilities, we select the output variables of

the peak of each probability as the most related source label.

Then, we tune all parameters in such a way that the selected

variables respond as the output variables of the target labels.

The difference between our proposed method and Oquab's

method is the constraint. Oquab's method constrains the

network from the input layer to the mid-level hidden layer.

Conversely, our proposed method constrains all parameters

including the output layer. This means that our proposed

method applies the constraint more strictly than Oquab's

method. We assume that it is effective to apply stricter

constraints when we have a small number of target images to

avoid overfitting [11]. Therefore, in such a situation, we

expect that our proposed method is more suitable than

Oquab's method.

We evaluated the classification performance of our

proposed method by using the MNIST handwritten character

dataset [12] (source) and the lung dataset of the X-ray CT

images (target). The source task is to classify the digits from

“0” to “9” and the target task is to classify lung lesions or not.

Experimental results show that our proposed method is

effective when we only have a small number of target images.

II. PROPOSED METHOD

A. Outline

Fig. 1 shows the outline of our proposed method. Let xs,i

(xt,i) be a i-th sample of the source (target) images and let ys,i

(yt,i) be a label corresponding to xs,i (xt,i). Let Ns (Nt) be the

number of training samples of the source (target) images

Whole Layers Transfer Learning of Deep Neural Networks

for a Small Scale Dataset

Yoshihide Sawada and Kazuki Kozuka

International Journal of Machine Learning and Computing, Vol. 6, No. 1, February 2016

27doi: 10.18178/ijmlc.2016.6.1.566

mailto:sawada.yoshihide@jp.panasonic.com
mailto:kozuka.kazuki@jp.panasonic.com

(Ns>Nt), and let Cs (Ct) be the number of labels of the source

(target) images (CsCt). Let Ds be the DNN trained on the

source images {xs,i | i=0, 1, …, Ns -1}, and let Dt be the DNN

trained on the target images {xt,i | i = 0, 1, …, Nt -1}. Let ws be

the parameters trained on the source images, and let wt be the

parameters trained on the target images.

Fig. 1. Outline of our proposed method. We re-use all parameters trained on source images. (A): training deep neural network Ds, (B): evaluating the relation

between source and target labels, (C): Re-training (fine-tuning) based on the relation.

First, our proposed method trains Ds. Second, we evaluate

the relation between the source and the target labels. To

evaluate the relation, we input the target images {xt,i} into Ds.

Next, we compute the probabilities of each target label on the

basis of the response of the output layer of Ds. After

computing the probabilities, we select the appropriate

variables that relate to the target labels. Finally, we tune the

parameters in such a way that the selected variables respond

as the outputs of the target labels.

B. Details

1) Multi-prediction deep boltzmann machine

In this study, we use the multi-prediction deep Boltzmann

machine (MPDBM) [13] as the DL method. Multi-prediction

refers to a procedure that includes the prediction of any

subset of the variables given the complement of that subset of

variables [13]. The advantage of MPDBM is that it does not

require greedy layerwise pretraining [13].

MPDBM minimizes the following objective function:

{ , }

ˆ({ , },) log *(,)
iS

O y i

J y p O


   w w
x

x , (1)

where
iSO is the subset of the variables in O=[x, y]T,

and ˆ *(,)
iSp O w is the mean-field approximation as

follows.

ˆ

ˆ ˆ*(,) arg min ((,) || (, |)
i i i iS S S S

p

p O KL p O p O Ow w w , (2)

where
iSO is the subset of the variables in O except for

iSO , KL(.||.) is the KL-divergence [11], and

(, |)
i iS Sp O Ow is the conditional probability distribution

of p(O, w)=exp(-E(O, w))/Z, where Z is the partition function,

and E(O, w) is the energy function of the deep Boltzmann

Machine [13].

2) All parameters transfer learning method

In this subsection, we explain the transfer learning method

using the MPDBM for a small number of target images.

First, we train Ds by minimizing the equation (1). Then, we

re-use all parameters of Ds including the output layer. For

re-using all parameters, we evaluate the relation between the

source and target labels. In this study, we use the

probabilities of each target label for evaluating the relation.

The probability of c-th target label is as follows (c = 0, 1, … ,

Ct -1).

)(
1

)(vh
Z

vp cc  , (3)

where v (= v0, v1, … , vCs-1) is the output variable of Ds, and

(a) MNSIT

(b) Non-lesion

(c) Lesion

Fig. 2. Examples of dataset.

TABLE I: ENVIRONMENT OF EXPERIMENTS

CPU Memory

Core i7-4930K 64.0 GB





)(

1

,)|()(
cN

j

jtcc

t

vhvh x , (4)

where Nt(c) is the number of samples of c-th target label, and

hc(v|xt,j) is the output given xt,j. In this study, we use the

following approximation.

International Journal of Machine Learning and Computing, Vol. 6, No. 1, February 2016

28






otherwise

v
vh

kk

jtc
,0

max,1
)|(,x . (5)

where k = 0, 1, … ,Cs-1.

After computing the relation by using probability pc(v), we

select the output variable v(c) of the peak of the probability

pc(v) as the appropriate variable of the c-th target label.

After selecting V={ v(c) | c=0, 1, …, Ct -1 }, we re-train Ds

in such a way that appropriate variables V respond as the

outputs of each target label. It should be noted that the

re-training of Ds corresponds to compute wt given ws as the

initial parameters.

The algorithm of our proposed method is as follows.

1) Source task step:

a) Initialize the parameters ws.

b) Minimize J({xs, ys}, ws) using the mini-batch stochastic

gradient descent (SGD).

2) Target task step:

a) Input xt to the Ds trained on {xs,i}.

b) Evaluate the relation between the source and the target

labels by using the probabilities of outputs.

c) Select the output variable v(c) that is the peak of the

probability.

d) Set ws as the initial parameters of the DNN.

e) Minimize J({xt,yt}, wt) so that V responds as the outputs

of each target label.

III. EXPERIMENTAL RESULTS

We evaluated the classification performance by using the

MNIST [9] and the lung dataset of the X-ray CT images.

Table I shows the computer environment and Fig. 2 shows

some examples. Our experiments were done using a single

core CPU. Fig. 2(a) represents the examples of MNIST. Fig.

2(b) and Fig. 2(c) represent the examples of non-lesion and

lesion images. The size of these images is 28×28 =784 pixels,

and the determination of lesion or non-lesion was based on

diagnosis by radiologists.

Fig. 3. The probability pc(v). We used MPDBM with dimensions of (784, 500,

500, 10).

TABLE II: COMPARISON OF CLASSIFICATION PERFORMANCE WITH RESPECT

TO METHOD FOR SELECTING APPROPRIATE VARIABLES V. V (0) = 0, V(1) = 1

REPRESENT VARIABLES SELECTED ON THE BASIS OF THE HIGHEST

RELATION, AND V(0) = 8, V(1) = 9 REPRESENT RANDOMLY SELECTED ONES

 Performance (%)

v(0)=8, v(1)=9 97.5

v(0)=0, v(1)=1 99.6

TABLE III: COMPARISON OF CLASSIFICATION PERFORMANCE WITH

RESPECT TO DIFFERENT STRUCTURES OF DNN

 Performance (%)

(784,500,50,10) 99.3

(784,500,500,10) 99.6

TABLE IV: COMPARISION OF CLASSIFICATION PERFORMANCE WITH

RESPECT TO THE NUMBER OF TRANSFERRED LAYERS
 Performance (%)

T=0 93.2

T=1 98.2

T=2 98.5

T=3 (Proposed) 99.6

We used Ns = 60,000 and Cs = 10 (character number from

"0" (k=0) to "9" (k=9)) and Nt = 2000 and Ct = 2 (lesion (c=0)

or non-lesion (c=1)), and the number of samples of each label

is Ns(0) = Ns (1) = … = Ns (9) = 6000, and Nt(0) = Nt(1) =

1000. As the test dataset, we used 140 images of lesions and

140 images of non-lesions. These test images are not

included in the training dataset.

A. Effectiveness Study of Relation

Fig. 3 shows the probabilities of the relation. The red bars

represent the probabilities of the lesions and the blue bars

represent the probabilities of the non-lesions. When we

computed these probabilities, we used Ds with 784 units in

the input layer, 500 units in the first and the second hidden

layer, and 10 units in the output layer. In the following, we

represent (784, 500, 500, 10). As shown in this figure, the

highest relation of the lesion images was the character "0"

(v(0) = 0) and that of the non-lesion images was the character

"1" (v(1) = 1).

Table II shows the comparison of the classification

performance with respect to the method for selecting the

appropriate variables V. v(0) = 0 and v(1) = 1 were selected

by the highest relation, and v(0) = 8 and v(1) = 9 were

selected randomly. As shown in this table, the DNN based on

the relation outperformed the randomly selected one.

TABLE V: COMPARISION OF CLASSIFICATION PERFORMANCE WITH OTHER

METHODS
 Performance (%)

Raw data + linear SVM 97.5

Stacked autoencoder (Non transfer) 98.2

Stacked autoencoder (Transfer) 98.5

T=2 (Adding a new layer) 98.9

T=3 (Proposed) 99.6

Fig. 4. The probability pc(v). We used MPDBM with dimensions of (784, 500,

50, 10).

(A) (B)

Fig. 5. Examples of the weights of the first layer of the DNN. (A): T=0, (B):

T=3 (proposed).

International Journal of Machine Learning and Computing, Vol. 6, No. 1, February 2016

29

Fig. 6. The probability pc(v). We used a stacked autoencoder with dimensions

of (784, 500, 500, 10).

Next, we compared the performance of the other structure

of the DNN. In this article, we constructed a DNN with

dimensions of (784, 500, 50, 10). Fig. 4 and Table III show

the probabilities and the classification performance. As

shown in Fig. 4, we set v(0) = 2 and v(1) = 1. As shown in

these results, the appropriate variables v and the classification

performance changed depending on the structure. These

results indicate the importance of evaluating the relation

between the source labels and the target ones.

In the following experiments, we use a DNN with

dimensions of (784, 500, 500, 10) because the

classification performance was better than (784, 500, 50,

10).

B. Comparison of Classification Performance with

Respect to the Number of Transferred Layers

In this subsection, we explain our evaluation of the

classification performance with respect to the number of

transferred layers T. In this article, T=0 represents the DNN

that does not transfer ws, T=3 transfers all parameters ws, and

T=1, 2 transfer from the input layer to the T–th hidden layer.

Table IV shows the results of the classification

performance. As shown in this table, the classification

performance of our proposed method (T=3) was the best. Fig.

5 shows the examples of the weights of the first layer of the

DNN. Fig. 5(A) represents the weights of T=0, and Fig. 5(B)

represents the weights of T=3. As shown in this figure, the

weights of T=3 expressed a more complex appearance than

T=0. This is one of the reasons that our proposed method

improved the classification performance.

C. Comparison of Classification Performance with Other

Methods

In this subsection, we explain our evaluation of the

classification performance with other methods. To compare

other methods that do not use a DNN, we evaluated the

classification performance of linear-SVM [14] where the

feature has 784 dimensional raw-data. In addition, to confirm

whether our proposed method can be applied to other DNNs,

we evaluated our method on the basis of the stacked

autoencoders [15]. The dimensions we set were (784, 500,

500, 10), and the algorithm explained below. The difference

from our method based on the MPDBM is that this algorithm

only fine-tunes Ds so that V responds as the outputs of each

target label.

1) Source task step:

a) Initialize the parameters ws.

b) Compute Ds on the basis of the stacked autoencoders.

2) Target task step:

a) Input xt to the Ds trained on {xs,i}.

b) Evaluate the relation between the source and the target

labels by using the probability of output.

c) Select the output variable v(c) that is the peak of the

probability.

d) Set ws as the initial parameters of the DNN.

e) Fine-tune Ds so that V responds as the outputs of each

target label.

Table V shows the classification performance with other

methods. It should be noted that T=2 (adding a new layer)

added a top hidden layer as used in the Oquab's method [8].

In this study, we set (784, 500, 500, 500, 10) as dimensions,

and we used MPDBM as the training method.

As shown in this table, our proposed method outperformed

Oquab's method [10]. This result demonstrates that our

method is more effective than Oquab's method because of the

stricter constraint. In addition, comparing the classification

performance of T=0 (93.2%) (Table IV), the classification

performance of linear-SVM (97.5%) was shown to be better

(Table V). Conversely, the classification performance of the

DNN trained by stacked autoencoders (Non transfer)

(98.2%) was better than the linear-SVM ones. These results

imply that the DNN trained on a small-scale dataset may not

work well, and using other methods that do not use a DNN

may work better.

Fig. 6 shows the relation of the DNN trained by the stacked

autoencoders. As shown in Fig. 6, we set v(0) = 5 and v(1) = 8

as the appropriate variables. This result indicates that the

relation between the source labels and the target ones

changed depending on the training method of the DNN.

Furthermore, the classification performance of the DNN

trained by the stacked autoencoders can improve slightly by

using our transferred method (98.2% 98.5%), as shown in

Table V. This result represents the capability that our

transferred method can be applied to other methods.

IV. CONCLUSION

We proposed a transfer learning method for a small

number of target images. First, we trained a deep neural

network Ds on the MNIST dataset. For training Ds, we used

the multi-prediction deep Boltzmann machine (MPDBM)

and the stacked autoencoders. Second, we inputted the

medical images to Ds and computed the probabilities on the

basis of the response of the output layer of Ds to evaluate the

relation between the MNIST and the medical images (the

target task was to classify lesions or non-lesions). After

computing the probabilities, we selected the output variables

of the peaks of the probabilities as the appropriate variables

that relate to the MNIST dataset. Then, we tuned all

parameters of Ds in such a way that the selected variables

respond as lesion or non-lesion. Experimental results showed

that selecting the variables on the basis of the relation was

effective, and our proposed method outperformed the

classification performance.

In our future work, we will compare the classification

performance by using other source images and will try to use

convolutional neural networks and GPU acceleration to train

the DNN.

International Journal of Machine Learning and Computing, Vol. 6, No. 1, February 2016

30

REFERENCES

[1] Y. Bengio, “Learning deep architectures for AI,” Foundations and

Trends® in Machine Learning, vol. 2, no. 1, pp. 1–127, Jan. 2009.

[2] O. V. Le, “Building high-level features using large scale unsupervised

learning,” in Proc. Acoustics, Speech and Signal Processing, 2013, pp.

8595–8598.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification

with deep convolutional neural networks,” in Proc. Advances in Neural

Information Processing Systems, 2012, pp. 1097–1105.

[4] J. Deng, W. Dong, R. Socher, L-J. Li, K. Ki, and L. Fei-Fei, “Imagenet:

A large-scale hierarchical image database,” in Proc. Computer Vision

and Pattern Recognition, 2009, pp. 1–8.

[5] Y. Sawada, T. Oku, H. Hontani, J.Wu, T. Takeda, and Y. Watanabe,

“Improved detection of tumors in FDG-PET/CT images based-on

single class classifier,” in Proc. International Forum on Medical

Imaging in Asia, 2009, pp. 229–234.

[6] K. Kozuka, K. Takata, K. Kondo, M. Kiyono, M. Tanaka, and T. Sakai,

“Development of lung CT images-retrieval system based on imaging

findings and an image-selection interface,” in Proc. IEEE EMBC, 2013,

p. 1.

[7] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE

Transactions on Knowledge and Data Engineering, vol. 22, no. 10, pp.

1345–1359, Oct 2010.

[8] K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual

category models to new domains,” in Proc. Computer Vision—ECCV,

2010, pp. 213–226.

[9] M. Okamoto and H. Nakayama, “Unsupervised visual domain

adaptation using auxiliary information in target domain,” in Proc.

Multimedia, 2014, pp. 203–206.

[10] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and transferring

mid-level image representations using convolutional neural networks,”

in Proc. Computer Vision and Pattern Recognition, 2014, pp. 1–8.

Yoshihide Sawada received his Ph.D. degree in

computer science and engineering from Nagoya

Institute of Technology 2013. He is currently a research

staff at Panasonic Corporation.

Kazuki Kozuka received his Ph.D. degree from

Nagoya Institute of Technology 2009. In 2009, he

joined Panasonic Corporation as a staff reseacher. His

research interests include medical image processing

and machine learning.

International Journal of Machine Learning and Computing, Vol. 6, No. 1, February 2016

31

[11] C. M. Bishop, Pattern Recognition and Machine Learning; New York:

Springer-Verlag, 2006, ch. 1.

[12] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based

learning applied to document recognition,” Proceeding of IEEE, vol.

86, no. 11, pp. 2278–2324, Nov. 1998.

[13] I. Goodfellow, M. Mirza, A. Courville, and Y. Bengio,

“Multi-prediction deep Boltzmann machines,” in Proc. Advances in

Neural Information Processing Systems, 2013, pp. 548-556.

[14] C. Cortes and V. Vapnik, “Support-vector networks,” Machine

Learning, vol. 20, no. 3, pp. 273–297, Sep. 1995.

[15] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P-A. Manzagol,

“Stacked denoising autoencoders: Learning useful representations in a

deep network with a local denoising criterion,” Machine Learning, vol.

11, pp. 3371–3408, Dec. 2010.

