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(tight). 
5) Mtd. Normal class: handwritten digits of {5} (tight); 

anomaly class: handwritten digits of evens {0, 2, 4, 6, 
8} (diverse). 

6) Mdd. Normal class:  handwritten digits of odds {1, 3, 5, 
7, 9} (diverse); anomaly class: handwritten digits of 
evens {0, 2, 4, 6, 8} (diverse). 

For each of these test problems, we sampled without 
replacement the following sets: 
 Training set. 2048  images from the normal class. 
 Validation set. 2048  images from the anomaly class. 
 Testing set. 512  images from the normal class and 

512  images from the anomaly class. 
 

III. ANOMALY DETECTION FRAMEWORK 
In this section, we will describe our anomaly detection 

framework. Although our approach is quite general we will 
focus on components suitable for images. 

Our system performs the following steps given a set of p  

training images x1,...,x p : 

1) Learn a feature encoding, of the training images, using 
an unsupervised sparse feed-forward neural network 
auto-encoder. 

2) Extract features for each image using the trained sparse 
auto-encoder. 

3) Train a one-class non-linear Radial Basis Function ν -
Support Vector Machine (RBF SVM) [14], [15] 
classifier to predict the label, normal or anomalous, 
given the computed features. 

Next, we will go on to describing the steps of our system 
in finer detail. 

A single-layered auto-encoder is a type of feed-forward 
artificial neural network with one hidden layer. An auto-
encoder is trained to reconstruct its input signal by finding 
useful features from the input space. The auto-encoder 
learns a map from input to representation, where the 
representation consists of the activations of the m  hidden 
layer units. Concretely, given an input x ∈ Rn , the auto-
encoder computes an output y ∈ Rn , via a hidden layer 

representation f ∈ Rm . The hidden layer activations are 
computed from the input according to 1 1( ) ( )f g= +x Wx b , 
and the output layer from the hidden layer according to 
y = g(W2 f (x) + b2 ) . Where W1 ∈ Rm×n  and W2 ∈ Rn×m  are 

weight matrices, b1 ∈ Rm  and b2 ∈ Rn  are bias vectors, and 
g(z) =1/ (1+ exp(−z))  is our chosen activation function 
applied to the vector z  component-wise. 

Auto-encoders apply back-propagation, for training 
W1,W2 ,b1 , and b2 , by means of gradient descent, in an 
attempt to achieve y ≈ x  for the training data. If the hidden 
layer has dimensionality not less than the input and output 
layers ( m ≥ n ) then it is trivial for the auto-encoder to 
succeed in exactly reproducing its inputs, and nothing of use 
is learnt. However, if the hidden layer activations are 

encouraged to be sparse then its units are forced to learn 
significant structures within the data. Imposing sparsity, we 
have a minimisation problem of the form: 

minimise xi − yi
2 + β KL ρ ρ̂ j( )

j=1

m

∑
i=1

p

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
,                 (1) 

where KL ρ ρ̂ j( ) = ρ ln ρ / ρ̂ j( ) + 1− ρ( ) ln 1− ρ( ) / 1− ρ̂ j( )( )  is 

our sparsity penalty term, ρ̂ j  is the average activation over 

the whole training set for hidden unit j , ρ  is our (desired) 

sparsity level parameter which we constrain ρ̂ j  to 

approximate, and β  is used to control the weight of the 
sparsity penalty term. 
 

TABLE I: SPARSE AUTO-ENCODER HYPERPARAMETER VALUES 

 Ftd Fdt Mtt Mdt Mtd Mdd 
m 576  144  392  392  98  98  
ρ 0.1 0.5  0.5  0.5  0.25  0.25  
β  4  16  4  4  4  4  

λ  10−1  10−3  10−5  10−5  10−5  10−5  

       
Evidently, there are several hyperparameters associated 

with the simple single-layered sparse auto-encoders we 
employ: m  (number of units in the hidden layer, excluding 
the bias unit), λ  (weight decay) used during back-
propagation, ρ  (sparsity level), and β  (weight of sparsity 
penalty term), which were all set to reasonable values based 
on preliminary results for each test problem. For 
reproducibility our chosen set of hyperparameter values, 

m,ρ,β ,λ{ }, are listed in Table I for each of the six anomaly 

detection test problems.  

We use our sparse auto-encoder to compute several types 
of features for use in anomaly detection: 

Input (INP): x , (2) 

Hidden Representation (HR): f (x) , (3) 

Scalar Residual Magnitude (SRM): x − y
1
, (4) 

Signed Residual (R): x − y , (5) 

Absolute Residual (AR): x − y , (6) 

Squared Residual (SR): x − y( )2
, (7) 

Normalised Signed Residual (NR): x − y( ) σ , and (8) 

Normalised Squared Residual (NSR): x − y( )2
σ

2

, (9) 

where σ = (1/ p) xk − yk( )2

k=1

p∑  is the vector of root-

mean-square residuals between input and output across the 
training set. All of the features set out above are vectors of 

International Journal of Machine Learning and Computing, Vol. 6, No. 1, February 2016

23

A. Unsupervised Sparse Auto-Encoder Feature Learning 

B. Features 



  

dimension m , except for the scalar residual magnitude 
feature.  

Consider our set of training samples x1,...,x p  and 

suppose that these samples are drawn from a probability 
distribution P , in the feature space. We apply a non-linear 
one-class classification algorithm, namely a Radial Basis 
Function ν -Support Vector Machine, [14], [15] in an 
attempt to estimate the support of this distribution.  

This one-class formulation, of the standard two-class 
SVM procedure, first transforms the feature vector via a 
non-linear RBF kernel, where the origin is viewed as the 
sole member of the unknown second class. The one-class 
SVM gives a function h  that outputs +1 in a region that 
encompasses most of the training samples, and outputs −1 
everywhere else. 

The objective function to separate the training samples 
from the origin of our one-class RBF SVM classifier is the 
following quadratic programming minimisation task: 

 

minω,ξi ,q
1
2

ω 2 + 1
ν p

ξi − q
i=1

p

∑  (10) 

subject to:  
                ω ⋅φ xi( )( ) ≥ q −ξi,∀i =1,..., p,  (11) 

                ξi ≥ 0,∀i =1,..., p,  (12) 
 

 

 
where φ  is a kernel mapping of x i into a dot product space 
F , q  is a bias term, and ν ∈ (0,1) is an upper bound on the 
fraction of the training samples that are considered to be 
out-of-class and a lower bound on the fraction of training 
samples used as Support Vectors (SVs).  

Our decision rule, having solved the quadratic 
programming minimisation problem using Lagrange 
multipliers, is: 

 

h x( ) = sgn αi ⋅ K x, xi( )
i=1

p

∑ − q
⎛

⎝
⎜

⎞

⎠
⎟ , (13) 

 
where the αi are the Lagrange multipliers, and 
 

K xi, x j( ) = exp −γ ⋅ xi − x j
2( ),γ > 0,  (14) 

 
is the RBF kernel with width parameter γ . 

There is no clear means in which to differentiate between 
alternative one-class RBF SVM models, in the case of 
classification accuracy ties, when testing on the validation 
set. Therefore, we employ an ensemble composed of the 
winning models and take the majority output as the class 
label. Formally, our procedure for selecting hyperparameter 
values for ν  and γ  is as follows: 
1) Sample without replacement 1024  normal samples 

from the training set. 
2) Sample 512  normal samples from the training set and 

512  anomalous samples from the validation set. 

3) Perform a grid-search over the hyperparameters, and 
then select all (in the case of ties) hyperparameter tuples 
that give rise to the highest classification accuracy, for 
the samples in Step 2. 

4) Go back to Step 1 and repeat this process twice more. 
We now have a set of hyperparameter tuples ν ,γ{ } . We 

will train an ensemble of one-class RBF SVMs (using the 
set of tuples ν ,γ{ } ), on the entire training set of 2048  

samples, such that they are now ready to predict the labels 
of unseen test samples. We combine the label outputs of 
each one-class RBF SVM, in the ensemble, by taking the 
majority output as the predicted label of an unseen test 
sample.  

To be clear, we have made use of an anomaly set in order 
to select hyperparameter values for our one-class RBF 
SVMs. We emphasise that this is a deficiency within our 
system, however we do not use the anomaly set to choose 
features or a two-class feature space boundary. We aim to 
remove the need for anomalous samples, for classifier 
hyperparameter optimisation, in future work. 

For this study, we utilised the readily available LIBSVM 
toolbox (Version 3.20) [16], which is an integrated piece of 
software with built-in distribution estimation (one-class 
SVM). 

 

IV. EXPERIMENTS AND ANALYSIS 
Using our anomaly detection framework outlined in 

Section III, the experiments that are reported in this paper 
are as follows: 
1) We began by performing a comparison of the features, 

(2)-(9), across all six test problems specified in Section 
III.A. From this it will be possible to evaluate which of 
the features are better suited as representations for the 
concept of normality. Furthermore, we may assess 
whether anomalous samples, do in some cases, give rise 
to abnormal auto-encoder features but normal residuals, 
whilst others have abnormal residuals but normal auto-
encoder features. 

2) Lastly, we performed a comparison of two different 
ways of combining the best performing feature vectors, 
namely: 

• Pre-classifier feature vector concatenation where we 
combined the best feature vectors into a single new 
feature vector. 

• Post-classifier fusion whereby a different sparse 
auto-encoder is trained on each of the chosen feature 
vectors separately and then we combined the results 
of the various one-class RBF SVMs to determine 
whether a sample is anomalous or not. 

Our experiments first considered the usefulness of the 
features: (2)-(9). Table II shows the classification accuracy 
of each ensemble of one-class RBF SVMs, across the six 
test problems, on the unseen testing sets described in 
Section II.C. There are several notable observations that can 
be taken from Table II: 
1) The hidden representation is on average the best 
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C. One-Class RBF SVM Classification 

A. Comparison of Features 



  

performing feature vector across all six test problems, 
and most notably it outperforms the raw input signal.  

2)  The best performing residual is the normalised signed 
residual vector, most importantly showing itself to be 
better than the scalar residual magnitude feature. 

3) The normalised signed residual vector has superiority 
over the hidden representation when the normal class is 
tight or the anomaly class is diverse, exemplified in the 
comparison of their scores for Ftd with Fdt. For Ftd the 
hidden representation scores 94.43%  while the 
normalised signed residual vector scores 98.24% ; for 
Fdt the scores are 92.99%  and 73.34% , respectively. 

for comparison of features 

Having established that input features (2), hidden layer 
features (3), and reconstruction errors—encoded as 
normalised signed residuals (8)—are all sometimes 
effective, but each on different problems, we then 
considered the most effective means of combining them. We 
compared pre-classifier feature vector concatenation and 
post-classifier fusion using a combination of these three 
features. 

1) Pre-Classifier Feature Vector Concatenation (PRE) 
1) Create combined feature vectors for the training data 

comprised of the features derived from (2), (3), and (8) 

by concatenation. 
2) Scale feature dimensions so that each has zero-mean 

and unit-variance across the training set. 
3) Retrieve the predicted class labels for the testing set 

given by the ensemble of one-class RBF SVMs trained 
on normal data, with the combined feature vectors, and 
take the mode of the predictions, for each sample, as the 
label. 

2) Post-Classifier Fusion (POST): 
1) Retrieve the predicted class labels for the testing set 

given by the ensemble of one-class RBF SVMs trained 
on normal data with feature vectors of the form (2). 
Then compute the mean label, for each sample, given 
the predictions from the ensemble. 

2) Repeat Step 1, but this time for feature vectors of the 
form (3). 

3) Repeat Step 1, but this time for feature vectors of the 
form (8).  

4) Compute the mean of the labels given by Steps 1--3, 
then label a sample as normal if the output is positive, 
otherwise label as anomalous. 
The results in Table III show post-classifier fusion to be 

superior to using any of the stand-alone feature vectors: (2), 
(3), or (8). In contrast, pre-classifier feature vector 
concatenation is on average the worst performing approach, 
receiving the lowest classification accuracy. 

 
TABLE II: TEST CLASSIFICATION ACCURACY (%) ON THE TEST PROBLEMS (BOLD INDICATES THE HIGHEST ACCURACY WITHIN A ROW) 

Test Problem INP HR SRM R AR SR NR NSR 
Ftd 98.24 94.43 95.02 98.24 98.93 98.54 98.24 99.22 
Fdt 80.37 92.99 81.15 55.08 48.14 50.78 73.34 48.44 
Mtt 91.11 91.21 84.96 86.91 88.77 83.59 91.80 90.43 
Mdt 86.23 85.06 70.70 79.69 81.35 78.71 83.40 80.08 
Mtd 85.74 88.77 87.60 50.00 50.00 86.91 86.33 83.01 
Mdd 78.52 75.29 80.66 50.00 50.00 70.12 75.59 74.80 

Average 86.70 87.96 83.35 69.99 69.53 78.11 84.78 79.33 

 
TABLE III: TEST CLASSIFICATION ACCURACY (%) ON THE TEST PROBLEMS (BOLD INDICATES THE HIGHEST CLASSIFICATION ACCURACY WITHIN A ROW) 

FOR FEATURE VECTOR COMBINATION 

Test Problem INP HR SRM NR PRE POST 
Ftd 98.24 94.43 95.02 98.24 98.24 97.66 
Fdt 80.37 92.99 81.15 73.34 51.86 89.55 
Mtt 91.11 91.21 84.96 91.80 92.19 92.29 
Mdt 86.23 85.06 70.70 83.40 82.91 87.01 
Mtd 85.74 88.77 87.60 86.33 86.82 89.75 
Mdd 78.52 75.29 80.66 75.59 72.95 78.22 

Average 86.70 87.96 83.35 84.78 80.83 89.08 

 

V. SUMMARY 
In this empirical study, on the detection of anomalous 

data using auto-encoders, we have conducted several 
experiments on a range of anomaly detection test problems. 
Our experiments compared a selection of different feature 
vectors derived from a sparse auto-encoder feed-forward 
neural network. The empirical results appear to support our 
hypothesis that there is indeed a better way to use residual 
errors than simply computing the magnitude, and this is 
most apparent when the normalised signed residual is 
employed. Furthermore, the results suggest that the hidden 
layer representation, as a stand-alone feature vector, is more 
than capable of characterising the fundamental attributes of 

normality. Its competence is shown through it having the 
highest average recognition rate amongst the stand-alone 
feature vectors. The robustness of the hidden layer 
representation is best illustrated in situations where the auto-
encoder does not struggle to reconstruct anomalous images, 
and so gives rise to low residuals. For instance, in Fdt, 
where we have a diverse normal class of high-complexity 
non-empty cargo containers and an anomaly class of empty 
cargo containers. In this test problem the auto-encoder is 
able to reconstruct the low-complexity empty cargo 
containers, despite having never been trained to do so. 
However, the units of the hidden representation are activated 
in an abnormal fashion, and as such we are able to identify a 
greater number of anomalous images, as opposed to using 
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