
  

  

Abstract—Most network-based machine learning methods 

are based on the assumption that the labels of two adjacent 

vertices in the network are likely to be the same. However, 

assuming the pairwise relationship between vertices is not 

complete. The information a group of vertices that show very 

similar patterns and tend to have similar labels is missed. The 

natural way overcoming the information loss of the above 

assumption is to represent the given data as the hypergraph. 

However, representing the dataset as the hypergraph will not 

lead to the perfection. The number of hyper-edges may be large; 

hence this will lead to high time complexity of the clustering 

methods or the classification methods when we try to apply the 

clustering/classification methods to this hypergraph dataset. 

Thus, there exists a need to develop the dimensional reduction 

methods for the hypergraph datasets. In this paper, the two 

un-normalized and random walk hypergraph Laplacian 

Eigenmaps are introduced. Experiment results show that the 

accuracy performance measures of these two hypergraph 

Laplacian Eigenmaps combined with graph based 

semi-supervised learning method are greater than the accuracy 

performance measure of graph based semi-supervised learning 

method alone (i.e. the baseline method of this paper) applied to 

the original hypergraph datasets. 

 
Index Terms—Hypergraph, Laplacian, Eigenmaps, 

semi-supervised learning, graph.  

 

I. INTRODUCTION 

In many of the artificial intelligence disciplines, the 

information retrieval topics or the data mining areas, we have 

to solve the problems where the sample datasets are in a very 

high dimension space. This data is usually embedded in a 

differential manifold of low dimension. One of the main tasks 

in machine learning field is to develop the accurate 

representations for this type of data. The dimensional 

reduction methods have a long history. The most popular 

dimensional reduction method is Principal Component 

Analysis (PCA) [1], [2]. Principal Component Analysis 

(PCA) is used to compress the information contained in the 

dataset. The main idea of this technique is to compute the 

most “important” components from the original features. In 

the other words, the objective of PCA is to transform the 

original features into others, named principal components, 

and apply linear combinations of those features. Hence PCA 

tries to reduce the dimensionality and preserve as much as 
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possible the original randomness (i.e. the variance) in the 

high dimensional space. The problem of this method is that it 

does not consider the explicit form of the differential 

manifold structure in which the data probably lie. 

In the last two decades, a lot of researchers have studied 

advanced dimensional reduction methods in which the local 

distances are conserved as much as possible. These advanced 

dimensional reduction methods such as Locally Linear 

Embedding (LLE) [3] or Laplacian Eigenmaps (LE) [4], [5] 

try to obtain and use the neighborhood information of each 

data point by considering the whole dataset as a graph.  

However, in many real world applications, representing 

the dataset as un-directed graph is not complete. 

Approximating complex relationship as pairwise will lead to 

the loss of information. Let us consider classifying a set of 

genes into different gene functions. From [6], we may 

construct an un-directed graph in which the vertices represent 

the genes and two genes are connected by an edge if these 

two genes show a similar pattern of expression (i.e. the gene 

expression data is used as the datasets in [6]). Any two genes 

connected by an edge tend to have similar functions. 

However, assuming the pairwise relationship between genes 

is not complete, the information a group of genes that show 

very similar patterns of expression and tend to have similar 

functions [7] (i.e. the functional modules) is missed. The 

natural way overcoming the information loss of is to 

represent the gene expression data as the hypergraph [7]-[9]. 

A hypergraph is a graph in which an edge (i.e. a hyper-edge) 

can connect more than two vertices. However, representing 

the dataset as the hypergraph will not lead to the perfection. 

The number of hyper-edges may be large; hence this will lead 

to high time complexity of the clustering methods or the 

classification methods when we try to apply the 

clustering/classification methods to this hypergraph dataset. 

Thus, there exists a need to develop the dimensional 

reduction methods for the hypergraph datasets. In [8], [9], the 

symmetric normalized hypergraph Laplacian Eigenmap has 

been developed and successfully applied to zoo dataset. To 

the best of my knowledge, the random walk and 

un-normalized hypergraph Laplacian Eigenmaps have not yet 

been developed and applied to any practical applications. In 

this paper, we will develop the random walk and 

un-normalized hypergraph Laplacian Eigenmaps and apply 

these two methods combined with graph based 

semi-supervised learning method to the zoo dataset available 

from UCI repository and the modified 20-newsgroup dataset. 

We will organize the paper as follows: Section II will 

introduce the definition of hypergraph Laplacians and their 

properties. Section III will introduce the un-normalized, 

random walk, and symmetric normalized hypergraph 

Laplacian Eigenmaps algorithms in detail. In Section IV, we 
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will apply the symmetric normalized graph Laplacian based 

semi-supervised learning algorithm (i.e. the current state of 

art network based semi-supervised learning method) to the 

original zoo dataset available from UCI repository and the 

modified 20-newsgroup dataset and compare its accuracy 

performance measure to the accuracy performance measures 

of the two proposed hypergraph Laplacian Eigenmaps 

algorithms combined with the symmetric normalized graph 

Laplacian based semi-supervised learning algorithm. Section 

V will conclude this paper and the future directions of 

research of these methods will be discussed. 
 

II. HYPERGRAPH DEFINITIONS 

Given a hypergraph G=(V, E), where V is the set of 

vertices and E is the set of hyper-edges. Each hyper-edge 

    is the subset of V. Please note that the cardinality of e is 

greater than or equal two. In the other words,      , for 

every    . Let w(e) be the weight of the hyper-edge e. 

Then W will be the          diagonal matrix containing the 

weights of all hyper-edges in its diagonal entries.    

A. Definition of Incidence Matrix H of G                                     

The incidence matrix H of G is a          matrix that can be 

defined as follows 
 

       

 
                                    

           
      

 

From the above definition, we can define the degree of 

vertex v and the degree of hyper-edge e as follows 
 

                 

   

 

            

   

 

 

Let           be two diagonal matrices containing the 

degrees of vertices and the degrees of hyper-edges in their 

diagonal entries respectively. Please note that    is the 

         matrix and    is the          matrix.   

B. Definition of the Un-Normalized Hypergraph 

Laplacian   

The un-normalized hypergraph Laplacian is defined as 

follows 
 

         
               

 

C. Properties of L  

1) For every vector       , we have       

     
 

 
  

    

    
          

             

2) L is symmetric and positive-definite 

3) The smallest eigenvalue of L is 0, the corresponding 

eigenvector is the constant one vector 1 

4) L has     non-negative, real-valued eigenvalues 

                    

Proof: 

We know that 

 

 
  

    

    
          

             

 
 

 
  

    

    
          

                        

   
    

    
                

        

             

                   
      

    
         

   
    

    
                    

        

 

                  

      

   
    

    
                    

        

 

                  

      

   
    

    
                    

        

 

            

   

  
    

    
                    

        

             
      

           
       

      
 

L is symmetric follows directly from its own definition.  

Since for every vector       , 

     
 

 
  

    

                            We 

conclude that L is positive-definite.  

1) The fact that the smallest eigenvalue of L is 0 is obvious. 

Next, we need to prove that its corresponding 

eigenvector is the constant one vector 1.     

Let         be the vector containing the degrees of 

vertices of hypergraph G,         be the vector containing 

the degrees of hyper-edges of hypergraph G,        be the 

vector containing the weights of hyper-edges of G,        

be vector of all ones, and          be the vector of all ones. 

Hence we have 
 

           
              

     
                                   
 

2) (4) follows directly from (1)-(3).     

D. The Definitions of Symmetric Normalized and Random 

Walk Hypergraph Laplacians                

The symmetric normalized hypergraph Laplacian (defined 

in [1], [2]) is defined as follows      

         
 
 

     
      

 
 

              

The random walk hypergraph Laplacian (defined in [1], 

[2]) is defined as follows  

        
      

      

E. Properties of      and                               

1) For every vector       , we have         
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2) λ is an eigenvalue of     with eigenvector u if and only if 

λ is an eigenvalue of      with eigenvector     

 

     

3) λ is an eigenvalue of     with eigenvector u if and only if 

λ and u solve the generalized eigen-problem                             

4) 0 is an eigenvalue of     with the constant one vector 1 

as eigenvector. 0 is an eigenvalue of      with 

eigenvector   

 

                                              

5)      is symmetric and positive semi-definite and      

and     have     non-negative real-valued eigenvalues 

                             

Proof: 

1) The complete proof of (1) can be found in [1]. 

2) Can be seen easily by solving 

              
 
 

     
      

 
 

               

   
 
 
      

 
 
     

      
 
 
       

 
 
   

   
 
 
     

      
      

 
 
      

 
 
   

Let     
 
 

  , (in the other words,     

 

  ), we have 

             
      

         

      
      

          

         

This completes the proof.       

Can be seen easily by solving 
 

             
      

          
 

        
      

            
 

         
            

 

         
 

This completes the proof.  

First, we need to prove that       . 

Let         be the vector containing the degrees of 

vertices of hypergraph G,         be the vector containing 

the degrees of hyper-edges of hypergraph G,        be the 

vector containing the weights of hyper-edges of G,        

be vector of all ones, and          be the vector of all ones. 

Hence we have  
 

          
      

             

     
      

     

     
        

     
     

     
     

   
 

The second statement is a direct consequence of (2). 

The statement about      is a direct consequence of (1), 

then the statement about     is a direct consequence of (2).           

III. ALGORITHMS 

Given a set of points            } where   is the total 

number of points (i.e. vertices) in the hypergraph G=(V,E) 

and given the incidence matrix H of G.                           

Our objective is to compute the eigenvectors of the three 

hypergraph Laplacians.           

A. Random Walk Hypergraph Laplacian Eigenmap 

Algorithm 

First, we will give the brief overview of the random walk 

hypergraph Laplacian Eigenmap algorithm. The outline of 

this algorithm is as follows 

1) Construct           from the incidence matrix H of G 

2) Compute the random walk hypergraph Laplacian 

        
      

        

3) Compute all eigenvalues and eigenvectors of     and 

sort all eigenvalues and their corresponding eigenvector 

in ascending order. Pick the first   eigenvectors 

             of     in the sorted list. k can be 

determined in the following two ways:  

k is the number of connected components of     [4].  

k is the number such that 
    

    
 or           is largest for 

all               

4) Let        be the matrix containing the vectors 

             as columns and V is the final result 

B. Un-Normalized Hypergraph Laplacian Eigenmap 

Algorithm 

Next, we will give the brief overview of the un-normalized 

hypergraph Laplacian Eigenmap algorithm. The outline of 

this algorithm is as follows 

1) Construct           from the incidence matrix H of G 

2) Compute the un-normalized hypergraph Laplacian 

         
          

3) Compute all eigenvalues and eigenvectors of L and sort 

all eigenvalues and their corresponding eigenvector in 

ascending order. Pick the first   eigenvectors 

             of L in the sorted list. k can be determined 

in the following two ways: 

k is the number of connected components of L [4] 

k is the number such that 
    

    
 or           is largest for 

all               

4) Let        be the matrix containing the vectors 

             as columns and V is the final result 

C. Symmetric Normalized Hypergraph Laplacian 

Eigenmap Algorithm 

Finally, we will give the brief overview of the symmetric 

normalized hypergraph Laplacian based un-supervised 

learning algorithm which can be obtained from [1], [2]. The 

outline of this algorithm is as follows 

1) Construct           from the incidence matrix H of G 

2) Compute the symmetric normalized hypergraph 

Laplacian          
 
 

     
      

 
 

  

3) Compute all eigenvalues and eigenvectors of      and 

sort all eigenvalues and their corresponding eigenvector 

in ascending order. Pick the first   eigenvectors 

             of      in the sorted list. k can be 

determined in the following two ways: 
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k is the number of connected components of      [4] 

k is the number such that 
    

    
 or           is largest for 

all               

4) Let        be the matrix containing the vectors 

             as columns and V is the final result 

 

IV. EXPERIMENTS AND RESULTS 

A. Datasets 

In this paper, we used the zoo data set which can be 

obtained from UCI repository and the modified 

20-newsgroup dataset (see 

https://cs.uwaterloo.ca/~ppoupart/teaching/cs486-fall12/assi

gnments/assignments.html). The zoo data set contains 100 

animals with 17 attributes. The attributes include hair, 

feathers, eggs, milk, etc. The animals have been classified 

into 7 different classes. In this dataset, each attribute is the 

hyper-edge. The modified 20-newsgroup dataset is the 

dataset with binary occurrence values for 3566 words across 

1768 documents. It is classified into two different classes. In 

this dataset, each word is the hyper-edge. Our task is to 

embed the animals in the zoo dataset and documents in 

modified 20-newsgroup dataset into Euclidean space by 

using random walk and un-normalized hypergraph Laplacian 

Eigenmaps. We embed those animals and documents into 

Euclidean space by using the eigenvectors of the hypergraph 

Laplacians associated with the k smallest eigenvalues 

different from 0. The way to find the optimal k is described in 

section III. Finally, the graph based semi-supervised learning 

method is applied to the original and the transformed 

datasets. The information about the graph based 

semi-supervised learning method can be found from [10]. 

There are three ways to construct the similarity graph from 

the incident matrix H and the transformed matrix of zoo 

dataset (or modified 20-newsgroup dataset): 

1) The ε-neighborhood graph: Connect all animals (or 

documents) whose pairwise distances are smaller than ε. 

2) k-nearest neighbor graph: Animal (or document) i is 

connected with animal (or document) j if animal (or 

document) i is among the k-nearest neighbor of animal 

(or document) j or animal (or document) j is among the 

k-nearest neighbor of animal (or document) i.     

3) The fully connected graph: All animals (or documents) 

are connected. 

In this paper, the similarity function is the Gaussian 

similarity function 

                           
                

 
  

This describes how we construct W of the simple graph. D 

is the diagonal matrix and its i-th element is defined as 

follows: 

       

 

 

B. Experiments and Results 

In this section, we experiment with the above proposed 

un-normalized and random walk hypergraph Laplacian 

Eigenmaps combined with the graph based semi-supervised 

learning method and the graph based semi-supervised 

learning method applied directly to the two original datasets  

in terms of accuracy performance measure. The accuracy 

performance measure Q is given as follows 
 

 

 
                           

                                                         
 

 

All experiments were implemented in Matlab 6.5 on 

virtual machine. The accuracy performance measures of the 

above proposed methods and the graph based 

semi-supervised learning method alone are given in the 

following Table I and Table II. 

 
TABLE I: ACCURACIES OF THE TWO PROPOSED METHODS COMBINED WITH 

GRAPH BASED SEMI-SUPERVISED LEARNING METHOD AND THE GRAPH 

BASED SEMI-SUPERVISED LEARNING METHOD ALONE FOR ZOO DATASET 

Accuracies (%) 

Graph based 

semi-supervised 

learning method 

Un-normalized 

hypergraph Laplacian 

Eigenmap + Graph 

based semi-supervised 

learning method 

Random walk 

hypergraph Laplacian 

Eigenmap + Graph 

based semi-supervised 

learning method 

84 88 88 

 
TABLE II: ACCURACIES OF THE TWO PROPOSED METHODS COMBINED WITH 

GRAPH BASED SEMI-SUPERVISED LEARNING METHOD AND THE GRAPH 

BASED SEMI-SUPERVISED LEARNING METHOD ALONE FOR THE MODIFIED 

20-NEWSGROUP DATASET 

Accuracies (%) 

Graph based 
semi-supervised 

learning method 

Un-normalized 
hypergraph Laplacian 

Eigenmap + Graph 

based semi-supervised 
learning method 

Random walk 
hypergraph Laplacian 

Eigenmap + Graph 

based semi-supervised 
learning method 

78.08 83.03 98.02 

 

From the above two tables, we recognized that the 

accuracy of the random walk hypergraph Laplacian 

Eigenmap is slightly better than the accuracy of the 

un-normalized hypergraph Laplacian Eigenmap. 

Interestingly, the accuracies of the two proposed hypergraph 

Laplacian Eigenmaps combined with graph based 

semi-supervised learning method are significantly better than 

accuracy of the graph based semi-supervised learning method 

alone. 

 

V. CONCLUSION 

We have proposed the detailed algorithms the two 

un-normalized and random walk hypergraph Laplacian 

Eigenmaps applying to the zoo dataset and the modified 

20-newsgroup dataset. Experiments show that these two 

methods combined with the graph based semi-supervised 

learning method greatly perform better than the graph based 

semi-supervised learning method alone.  

Moreover, in the future, we can also develop the 

hypergraph based semi-supervised ranking methods utilizing 

these three hypergraph Laplacians. Then these methods can 

be applied to disease gene prioritization problem in 

bio-informatics field. In specific, given a set of genes (i.e. the 

queries) involved in a specific disease such as leukemia 

which is my future research, these methods can be used to 

find more genes involved in leukemia by ranking genes in the 

hypergraph constructed from gene expression data. The 

genes with the highest rank can then be selected and checked 

by biology experts to see if the extended genes are in fact 
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involved in leukemia. Finally, these selected genes will be 

used in cancer classification. 

To the best of my knowledge, the un-normalized 

hypergraph p-Laplacian Eigenmap has not yet been 

developed. This method is worth investigated because of its 

difficult nature and its close connection to partial differential 

equation on hypergraph field. 
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