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Abstract—This paper presents an efficient algorithm for face 

recognition using game theory. Texture based feature 

extraction techniques are popular for facial recognition, 

specifically those that segment a facial image into even sized 

regions, or patches. A cooperative game theory (CGT) based 

patch selector is exploited to select the most salient patches to 

extract features. The patches that have a stronger individual 

importance along with a strong interaction with other patches 

are selected. A modified local binary pattern (mLBP) feature 

extraction technique is utilized to extract features from each 

patch. The performance of the proposed scheme is validated 

using the Face Recognition Technology (FERET) database. 

Results show that compared to using mLBP alone, the CGT 

based selector outperforms it in regards to accuracy and 

amount of pathces used among different patch resolutions.  

 
Index Terms—Face recognition, modified local binary 

pattern (mlbp), game theory, and patch selection.  

 

I. INTRODUCTION 

 Face recognition technology has received significant 

attention in the past several years due to its potential for a 

wide variety of applications in both law enforcement and 

non-law enforcement. Current face recognition algorithms 

usually rely on a very good initial alignment and illumination 

of the faces to be considered for performance evaluation to 

ensure the higher performance. Under controlled image 

acquiring constraints, it is possible to capture high quality 

images and achieve an impressive accuracy with a very low 

error rate. However, illumination invariance, facial 

expressions, and partial occlusions are some of the most 

challenging problems in face recognition and decrease 

recognition accuracies substantially. Several researchers 

proposed different facial recognition algorithms to tackle 

these problems [1]-[3]. The face recognition algorithms 

based on local appearance descriptors such as Gabor filters, 

SURF, SIFT, and histograms local binary patterns (LBP) 

provide more robust performance against occlusions, 

different facial expressions, and pose variations than the 

holistic approaches [4], [5]. The LBP-based feature extractor 

has proven to be highly distinctive and its key advantages 

includes robustness against illumination and pose variations 

[6]. The LBP operator was employed to extract the 

discriminative facial features [4], [5]. In this paper, we apply 

a modified LBP (mLBP), which fuses both the sign and 
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magnitude features, to improve the facial texture 

classification performance [7]. Though the sign component 

of LBP operator preserves most of the information of local 

difference, the magnitude component provides additional 

discriminant information that enhances the overall 

recognition accuracy. 

In machine learning, selecting the best features from the 

higher-dimensional feature space has several potential 

benefits, including confronting the problem of 

dimensionality to enhance the prediction performance, 

reducing the measurement and storage requirements and 

decreasing the training and prediction times [8]. Several 

different approaches are conducted in feature selection such 

as adaboost [9], genetic algorithms [10], simulated annealing 

[11], SVM [12], and boosting method [13]. Most of these 

selectors ignore features which as a group have strong 

discriminatory power but are individually weak [14]. To 

handle this problem, a Coalition Game Theory (CGT) model 

is utilized to select only important patches over entire image 

area instead of selecting only individual features. By 

selecting only the important patches instead of the entire 

image, the recognition process of face images can focus only 

on those patches and hence reduce overall complexity and 

time.  The CGT evaluates each patch according to its 

influence to the intricate and intrinsic interrelations among 

patches based on Shapley value [15]. Each patch performs as 

a player in this model and the patches with most contribution 

in the coalition‟s outcome are selected [16]. Previously we 

applied similar approach for selecting patches in iris 

recognition process [16].    

The remainder of this paper is organized as follows. 

Section II provides an overview of feature extraction. Section 

III describes the feature selection technique using coalition 

game theory. In Section IV, we present our experimental 

results. Finally, Section V provides the conclusions. 

 

II. FEATURE EXTRACTION USING MLBP 

The LBP method was first proposed by Ojala et al. [6] to 

encode the pixel-wise information in images. Images are 

probed locally by sampling grayscale values at a central point 

gc and P points at g1, g2…..gp-1 spaced equidistantly around a 

circle of radius R. 
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where 
cg  denotes the gray level value of the center pixel, 

pg represents the value of the neighboring pixels of the 

center, P is the total number of neighboring pixels and R is 
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the radius of the neighborhood. For an image of size I*J   LBP 

pattern is computed for each pixel of an image and a 

histogram is developed to represent the face texture:
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where K denotes the maximal LBP pattern value. Now, we 

calculate the local difference, Distp, between the center pixel

gc and the evenly spaced neighboring pixels, gp, p = 0, 1, 2… 

P-1 as Distp = gp - gc. Thus, we obtain the image local 

structure at gc with the local difference vector [Dist0, … ,

. Since the center intensity value, gc is removed, the 

local difference vector provides robust performance against 

the illumination changes. In addition to the traditional LBP 

implementation, the mLBP technique also incorporates 

another component. We decompose the Distp into two 

components [7]:

p p pDist s m        (3)

where  0,1

0,1



 p

p

Dist

Distps and mp are the sign and magnitude of 

Distp, respectively. 

(a) Frontal view

(b) Angle view

(c) Half right

Fig. 1. Facial images with different patches. 

In this paper, we utilize the complementary strengths of the 

sign and magnitude components of Distp in order to improve 

the texture classification performance. The equation (3) 

represents the local difference Sign Magnitude Transform 

(SMT). To extract the facial textural features, first, we divide 

the facial image into several patches and apply the mLBP on 

each patch (see Fig. 1). Each facial patch is represented by 

256 sign and 256 magnitude components. We concatenate 

the sign and magnitude components and present a single 

patch by 256×2=512 components. Depending on the number 

of patches created, the overall features obtained can be 

dramatically large. For example, a subject‟s image split into 

4×6 patches results in 24 patches.  Each one of these patches 

has 512 features, leading to 12,288 features to represent the 

facial image. 

To determine the identification accuracy of a particular 

feature extraction technique on a dataset of facial subjects, 

the subject instances are divided into a probe set and a gallery 

set. The probe set represents users attempting to gain access 

into a system, while the galley set represents a database of 

enrolled subjects. All instances are converted into FVs using 

the feature extraction technique. Some distance metric such 

as Euclidean distance or Manhattan distance is used to 

determine the similarity between probe instances and gallery 

instances. The gallery instance with the smallest distance will 

be considered the match.  The accuracy of the feature 

extractor depends on how many probe instances are correctly 

matched with their corresponding gallery instances.  

III. PATCH SELECTION USING CGT

CGT is concerned with situations in which the 

decision-makers interact with one another and the reward for 

each participant in the coalition depends not just on his own 

decisions but on the decisions made by everyone. Coalition 

games involve a set of players and a reward associated with 

different groups or coalitions of players. The reward of a 

certain coalition depends on individual contributions of 

players composing this coalition to the game. The larger the 

contribution of a player is, the higher the benefit of having 

this player in a coalition. Coalitions with high reward are 

naturally preferable over those with small reward. This 

perspective yields an iterative algorithm, contribution 

selection algorithm (CSA), for patch selection to optimize the 

performance of the classifier on unseen data [17]. In this 

approach, each patch obtained using mLBP extractor is 

regarded as player. The mLBP technique fuses both the sign 

and magnitude feature components to improve the feature 

extraction performance; whereas the traditional LBP utilizes 

only the sign information. Even though the sign component 

of LBP operator preserves most of the information of local 

differences, the magnitude component provides additional 

discerning features that can improve the overall classification 

accuracy. The CSA algorithm ranks each patch on each step 

by using the classifier. Previously we applied this patch 

selection algorithm on iris recognition [16]. Here the 

application of CGT is applied for face recognition. The 

ranking is based on the Shapley value reported in [15], a 

well-known concept from game theory, to estimate the 
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importance of each patch considering the interactions 

between patches [18].

Shapley values measures the distribution of the power 

among the players in the voting game, which can be 

transformed into the arena of patch/feature selection 

attempting to estimate the importance of each patch. The idea 

is motivated by the observation that every subset of patches 

can be regarded as a candidate subset for the final selected 

optimal subset and the power of each patch can be measured 

by averaging the contributions that it makes to each of the 

subset which it belongs to. 

The Shapley value is defined as follows [15]. Let the 

marginal importance of player i to a coalition S (i S) be:

)(}){( SviSvi                             (4)

where v(S) is the reward associated with coalition S. The 

reward can be negative, zero, or positive. The negative or 

zero reward implies no benefits of inclusion of player i into 

the current coalition. The Shapley value is then defined as:

1
( ) ( ( ))
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 
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where n is the total number of players, )(iS is the set of 

players appearing before player i in permutation  , and 

is the set of permutations over n. Thus, the Shapley value of a 

given player is the mean of its marginal importance averaged 

over all possible coalitions of players.

In this research effort, we apply the forward selection 

algorithm. The CSA iteratively selects patches through 

forward selection. The forward selection variant iteratively 

adds a predefined number of patches with the highest 

contribution to the classification accuracy as long as there are 

patches with sufficiently large contribution values exceeding 

a preset contribution threshold. This algorithm returns a 

contribution value for each patch according to its role in 

enhancing the classifier‟s performance considering its 

interaction with other patches.

IV. EXPERIMENTAL RESULTS

In this research effort, the Face Recognition Technology 

(FERET) program database [19] is used for experiments. The 

FERET database was collected in 15 sessions between 

August 1993 and July 1996. FERET has roughly 5138 facial 

images from 723 subjects and the instances per subject vary 

from 2 to 60 instances. In our experiments, 4415 images are 

placed in the gallery set and 723 images are placed in the 

probe set. In FERET dataset, many instances from each 

subject are affected by different non-ideal factors, including 

subject‟s alignment to the camera, facial expression, gaze 

deviation, and facial hair styling. Therefore, these noise 

factors make it difficult to produce accurate results. Fig. 2 

shows some samples of facial images that have been 

preprocessed by cropping. As mentioned in Section II, we 

divide each subject‟s image into a multitude of different 

patch variations and generate mLBP feature vectors for each 

patch. While each LBP patch provides 256 features (only 

sign components), each mLBP patch produces 512 features 

as it utilizes both the sign and magnitude components for 

experiments. We conduct an extensive set of experiments to 

evaluate the performance in two modes: verification 

(one-to-one) and identification (one-to-many). In the 

verification mode, we measure the performance in terms of 

Genuine Accept Rate (GAR) and False Accept Rate (FAR)

with the assumption that a test sample comes from a specific 

subject. In the identification mode, we make a one-to-many 

search in the entire dataset for a given test sample to find the 

best matched sample. The one-to-many matching 

performance results are enlisted in Table I.  The first column 

of Table I includes different patch combinations, accuracy 

with only mLBP and accuracy with CGT and mLBP are 

enlisted in column 2 and column 3 respectively. The 

percentages of selected patches of total patches are included 

in parentheses in column 3. It is shown in Table I that CGT 

model improved the recognition performance using a smaller 

image area to evaluate the performance. Among different 

combinations of patches, 5 × 5 combinations provided best 

matching results using only 40% of entire image area. Further 

analysis is shown using the Cumulative Match 

Characteristics (CMC) curve and Receiver Operator 

Characteristics (ROC) curve only for important and selected 

patches using CGT model and mLBP patch extractor.  Fig. 3 

depicts the ROC performance for face recognition and CMC 

curve is shown in Fig. 4. From Fig. 3, it can be shown that 

the GAR is 33.5 % at 1% FAR. 

TABLE I: FACE RECOGNITION MATCHING RESULTS

Patches 

(R ×C)

Accuracy with 

mLBP 

Accuracy with mLBP and CGT (% 

area used)

4 ×6 0.8546 0.8837(41%)

5 ×5 0.8518 0.9086 (40%)

5 ×6 0.8601 0.8961 (33%)

6 ×6 0.8629 0.8878 (27 %)

6 ×7 0.8407 0.8684 (35%)

8 ×5 0.8463 0.8961 (37%)

8 ×6 0.8560 0.8864 (41%)

8 ×8 0.831 0.8712 (62%)

10 ×6 0.8740 0.8961 (50%)

10 ×10 0.838 0.8975 (25%)

Fig. 2. Facial image samples with patches from FERET. 
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Fig. 3. ROC curve for Face Recognition.

Fig. 4. CMC curve.

V. CONCLUSION

In this research effort, the performance of face recognition 

was evaluated on a non-ideal FERET facial dataset. A CGT 

based patch selection model is explored to select only most 

important patches where each patch was considered as a 

player for recognition process. This selection model not only 

considered the individual importance of a patch but also 

considered its interactions with other patches based on 

Shapley value. An mLBP technique was applied to extract 

features from each patch. The game theoretic face

recognition model not only maintained better accuracy but 

also it reduced the amount of image area required for 

performance evaluation.
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