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Abstract—We report on work that is part of the development 

of an agent-based structural health monitoring system. The 

data used are acoustic emission signals, and we classify these 

signals according to source mechanisms, those associated with 

crack growth being particularly significant. The agents are 

proxies for communication- and computation-intensive 

techniques and respond to the situation at hand by determining 

an appropriate constellation of techniques. It is critical that the 

system have a repertoire of classifiers with different 

characteristics so that a combination appropriate for the 

situation at hand can generally be found. We use unsupervised 

learning for identifying the existence and location of damage 

but supervised learning for identifying the type and severity of 

damage. The supervised learning techniques investigated are 

support vector machines (SVM), naive Bayes classifiers, and 

feed-forward neural networks (FNN). The unsupervised 

learning techniques investigated are k-means (with k equal to 3, 

4, 5, and 6) and self-organizing maps (SOM, with 3, 4, 5, and 6 

output neurons). For each technique except SOM, we tested 

versions with and without principal component analysis (PCA) 

to reduce the dimensionality of the data. We found significant 

differences in the characteristics of these machine learning 

techniques, with trade-offs between accuracy and fast 

classification runtime that can be exploited by the agents in 

finding appropriate combinations of classification techniques. 

The approach followed here can be generalized for exploring 

the characteristics of machine-learning techniques for 

monitoring various kinds of structures. 

 

 

  

 

 

requirements. Agents negotiate to determine a team of 

techniques for solving the task at hand, and they 

communicate a workflow to a workflow engine, which 

actually carries out the tasks on the data streams provided. 

The agents provide flexibility and intelligence so that 

combinations of techniques suitable for the situation at hand 

may be determined. It is thus important that a variety of 

classifiers with different characteristics be available. For 

example, some will be fast but not very accurate while others 

will be slow but very accurate. The data we use are acoustic 

signals, and the condition we address is crack growth. As the 

source of the signals is unobservable, classifying acoustic 

signals by their source must be based on machine learning. 

Note that sensing here is passive: there is no energy input 

required to generate or sense the signals (although energy is 

required to store and communicate the data).  

In SHM, data is interpreted using parameters that are 

trained with machine-learning techniques. For our 

experiments, a correlation coefficient is computed between 

an observed waveform and six reference waveforms that are 

generated from numerical simulations of acoustic emission 

events. The vector of all six correlation coefficients 

characterizes the waveform. Our dataset consists of a 

different set of 60 samples from the work reported by 

Esterline and his colleagues [1]. 

Worden and his colleagues [2] have formulated seven 

axioms for SHM that capture general aspects that have 

emerged in several decades of experience. Of particular 

interest is their Axiom III, which states that unsupervised 

learning can be used for identifying the existence and 

location of damage but identifying the type and severity of 

damage can only be done with supervised learning. 

Supervised learning tries to generalize responses based on a 

training set with the correct responses indicated. 

Unsupervised learning tries to categorize the inputs based on 

their similarities. Note that unsupervised learning does not 

assume that we have already identified categories and, in fact, 

comes up with categories for classifying data points.  

Following Axiom III, our research uses two unsupervised 

and three supervised learning techniques for different aspects 

of the SHM problem. The results of machine learning provide 

a more sophisticated level that will allow us to look at the 

problem of damage identification. We may then address a 

multitude of issues and provide diagnoses of the problems. 

The unsupervised learning techniques are k-means and 

self-organizing maps (SOM). Supervised learning techniques 

are support vector machines (SVM), naive Bayes classifiers, 

and feed-forward neural networks (FNN). For each technique 

except SOM, we tested a version with principal component 

analysis (PCA) as a frontend to reduce the dimensionality of 

the data (usually to three principal components), and we 
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I. INTRODUCTION

Threats to the integrity of a structure, such as corrosion and 

cracking, produce challenges for the safety and operational 

capability of the structure as well as costs involved in 

monitoring and maintaining it. Structural health monitoring 

(SHM) provides real-time data and consequently information 

on the condition of the monitored structure. The research 

reported here has been carried out as part of the NASA Center 

for Aviation Safety (CAS) at North Carolina A&T State 

University. The structures of interest are aircraft although 

experiments at the stage reported here are performed on 

laboratory specimens. SHM is particularly important for 

aircraft as structural failure can result in massive loss of life. 

In our approach, agents typically serve as proxies for 

techniques with intensive communication or computation 
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tested another version without PCA. The objective is to 

explore these techniques and note their characteristics so that 

various combinations of them may be used appropriately in 

various circumstances. 

The approach followed here can be generalized for 

exploring the characteristics of machine-learning techniques 

for monitoring various kinds of structures. One must first 

determine what signals are appropriate for monitoring the 

structures, (For example, acoustic signals are appropriate for 

monitoring metallic structures while signals propagated 

through optical fiber are appropriate for bridge type 

structures) One then determines the sensor and 

communication infrastructure. Finally, as per this paper, one 

determines the characteristics of various supervised and 

unsupervised learning techniques for monitoring the 

structures in question (given the signals and infrastructure 

chosen). Admittedly, the repertoire of techniques explored 

here is far from complete, but we have included the ones most 

often encountered in structural health monitoring.

The remainder of this paper is organized as follows. The 

next section looks into previous work in machine learning for 

SHM, and Section III provides an introduction to SHM. 

Section IV presents our approach, Section 5 presents our 

results, and the last section concludes.

II. PREVIOUS WORK IN MACHINE LEARNING FOR SHM

Most previous work on machine learning for SHM has 

targeted bridges; we consider mature, representative work in 

this area and then turn to research that has targeted aircraft, 

which is our domain. Figueiredo and his colleagues

performed an experiment on a three-story frame aluminum 

structure that used a load cell and four accelerometers [3]. For 

each test of state conditions, the features were estimated by 

using a least squares technique applied to time-series from all 

four accelerometers and stored into feature vectors.  They 

used four machine learning techniques in an unsupervised 

learning mode: 1) auto-associative neural network (AANN), 

2) factor analysis (FA), 3) singular value decomposition

(SVD), and 4) Mahalanobis squared distance (MSD).  First 

the features from all undamaged states were taken into 

account. Then those feature vectors were split into training 

and testing sets.  In this case, a feed-forward neural network 

was used to build-up the AANN-based algorithm to perform 

mapping and de-mapping. The network had ten nodes in each 

of the mapping and de-mapping layers and two nodes in the 

bottleneck layer. The network was trained using 

back-propagation. The AANN- and MSD- based algorithms 

performed better at detecting damage.  The SVD- and FA-

based algorithms performed better at avoiding false 

indications of damage.

Tibaduiza and his colleagues [4], in investigating SHM for 

an aircraft fuselage and a carbon fiber reinforced plastic

(CFRP) composite plate, made use of multiway principal 

component analysis (MPCA), discrete wavelet transform 

(DWT), squared prediction error (SPE) measures and a 

self-organizing map (SOM) for the classification and 

detection of damage.  Each PCA was created using 66 percent 

of the whole data set from the undamaged structure. Signals 

from the remaining 34 percent of this data set plus 80 percent 

of the data set of the damaged structure were used in 

classifying with the SOM. This approach had an area under 

the ROC curve of 0.9988. A ROC chart is a display of the 

performance of a binary classifier, with true positive rate vs. 

false positive rate. 

Esterline and his colleagues [1] (also targeting aircraft) ran 

an experiment with two approaches. Their first approach used 

as training instances experimental data with eighteen 

traditional acoustic emission features to train a SVM, while 

their second approach used six correlation coefficients 

between basic modes and waveforms from simulation data

also to train a SVM. The SVM with the second approach 

performed as well or better than the SVM using the first 

approach, suggesting the superiority of a set of correlation 

coefficients over a substantial set of traditional acoustic 

emission features for learning to identify the source of 

acoustic emissions.

III. STRUCTURAL HEALTH MONITORING

In general, damage is defined as change introduced into a 

system that will adversely affect its current or future 

performance [5]. This idea of damage is meaningless without 

a comparison between two states of the system, one assumed 

to be the unloaded and undamaged state. For mechanical 

structures, damage can be defined more narrowly as change 

to the material and/or geometric properties. SHM provides 

real-time information on the integrity of the structure. It 

allows better use of resources than scheduled maintenance, 

which may take place when there is no need.

In characterizing the state of damage in a system, we can 

ask whether there is damage, where in the system it is, what 

kind of damage it is, and how severe it is. Damage prognosis 

is the estimation of the remaining useful life of a mechanical 

structure [6]. Such an estimation may be the output from 

models that predict behavior. 

The field of SHM has matured to the point where several 

fundamental axioms or general principles have emerged. 

Worden and his colleagues [2] suggest seven axioms for 

SHM. The following are those most relevant to this paper.

Axiom III: Identifying the existence and location of 

damage can be done in an unsupervised learning mode, but 

identifying the type of damage present and the damage 

severity can generally only be done in a supervised learning 

mode. 

Axiom IVa: Sensors cannot measure damage. Feature 

extraction through signal processing and statistical 

classification is necessary to convert sensor data into damage 

information. 

Axiom IVb: Without intelligent feature extraction, the 

more sensitive a measurement is to damage, the more 

sensitive it is to changing operational and environmental 

conditions. 

Axiom V: The length- and time-scales associated with

damage initiation and evolution dictate the required 

properties of the SHM sensing system.

Axiom III is particularly relevant here. Supervised 

learning together with either analytic models or data from the 

structure can be used to determine damage type and extent. 

Statistical methods may also be used. 



  

IV. APPROACH 

Our overall architecture involves a multiagent system 

where the agents are typically proxies for computation- or 

communication-intensive techniques. These techniques are 

executed on one or more high-performance platforms 

structured as a workflow engine. Wooldridge defined an 

agent as an autonomous, problem-solving, computational 

entity that is capable of effectively processing data and 

functioning singularly or in a community within dynamic and 

open environments [7]. The agents in our system negotiate to 

determine what techniques in what combinations will be used 

in a monitoring task, thus determining a workflow that is 

executed on the workflow engine. The multiagent system is 

thus the “brains” and the workflow engine the “brawn” of our 

SHM system. Much of the intelligence here is finding the 

appropriate techniques for the situation at hand. In one 

situation, we might want a given task done quickly with only 

rough accuracy, while in another situation accuracy may be 

paramount and speed of only secondary importance. 

Regarding the results of machine learning for SHM, we 

would like an assortment of classifiers to provide a range of 

possibilities for the diversity of situations that arises in SHM.  

Machine learning is generally facilitated by reducing the 

dimensionality of the data. For this, we use PCA [8]. PCA is 

an algorithm that centers the data by subtracting off the mean 

then choosing the eigenvector of the data covariance matrix 

with the largest eigenvalue [8]. It places an axis in that 

direction, and then incrementally and similarly places the 

other axes orthogonally to the first in a way maximizing the 

possible variation. The number of axes is chosen to be fewer 

than the number of axes (dimensionality) of the original data 

set. The data is thus reduced in dimensionality while most of 

the variation is retained.  

Recall that the unsupervised learning techniques we 

investigated are k-means and SOM. The k-means algorithm 

[8] classifies n observations into k clusters. The value of k is 

set by the user. The cluster centers are distributed randomly at 

first, and a data point is assigned to the cluster nearest it in 

terms of Euclidean distance. Each cluster center is then 

updated to be the average of the points assigned to it. The 

data points are reassigned to clusters and the cluster means 

are recomputed until the distance of the data points from their 

cluster centers are within some threshold or some maximum 

number of iterations is reached.  

A SOM [8] is a type of neural network used to produce a 

low-dimensional, discretized representation of the space of 

the training data. A SOM identifies features across the range 

of input patterns. Output neurons compete to be activated, 

and only one is activated at any one time. A SOM needs very 

little to no preliminary data cleansing [9]. 

Recall that the supervised learning techniques we 

investigated are FNN, SVM, and naïve Bayes classifiers. An 

artificial neural network (ANN) is a computational model 

based on the structure and functions of a biological neural 

network [8]. In a FNN, or multilayer perceptron, input 

vectors are put into input nodes and fed forward in the 

network. The inputs and first-layer weights will determine 

whether the hidden nodes will fire. The output of the neurons 

in the hidden layer and the second-layer weights are used to 

determine which of the output layer neurons fire. The error 

between the network output and targets is computed using the 

sum-of-squares difference. This error is fed backward 

through the network to update the edge weights in a process 

known as back propagation.  

SVMs rely on preprocessing to represent patterns in the 

data in a high dimension, usually higher than the original 

feature space, so that classes that are entangled in the original 

space are separated by hyper-planes at higher dimension. 

Training a SVM [9] involves choosing a (usually nonlinear) 

function that maps the data to a higher-dimensional space.  

Choices are generally decided by the user’s knowledge of the 

problem domain. SVMs can reduce the need for labeled 

training instances.  

Naïve Bayes classifiers (NBs) form a supervised learning 

technique that belongs to a family of classifiers based on 

Bayes’ theorem with a strong assumption about the 

independence of features [9].  Assumptions and the 

underlying probabilistic model allow us to capture any 

uncertainty about the model.  This is generally done in a 

principled way by determining the probabilities of the 

outcomes.  NBs were introduced to solve diagnostic and 

predictive problems.  Bayesian classification provides 

practical learning through the use of algorithms, prior 

knowledge, and observation of the data in combination.  A 

Gaussian NB assumes that the conditional probabilities 

follow a Gaussian or normal distribution. 

 

  

The learning techniques were run on a machine running a 

Windows 7 64-bit operating system with a 2.4 GHz quad core 

processor and 16 GB of RAM. Software from scikit-learn [10] 

was used for PCA, k-means, SVM, and Gaussian NBs. 

Software from PyBrain [11] was used for the FNN, and 

software from Weka [12] was used for the SOM. Weka is 

written in Java while scikit-learn and PyBrain are written in 

Python. We recorded the time taken by the classifiers 

produced by each technique to classify the data points in our 

test set. For the SOM, this involved executing Java code, 

while for the others Python code was run. We first present the 

results for the supervised learning techniques, and then we 

present the results for the unsupervised learning techniques. 

Our dataset is split into 30 samples in our training set and 30 

samples in our test set. 

A. Supervised-Learning Results 

To compare supervised learning techniques, we used 

classification accuracy, the number of samples classified 

correctly over the number of samples in the dataset. We also 

compared techniques on how long the classifiers they trained 

took to classify the 30 data points in our test set. 
 

TABLE I: ACCURACY OF THE SVM WITHOUT PCA (30 POINTS, 26 RUNS) 

Kernel RBF Polynomial Linear Sigmoid 

mean 0.90 0.13 0.87 0.83 

 

TABLE II: ACCURACY OF THE SVM WITH PCA (30 POINTS, 26 RUNS) 

Kernel RBF Polynomial Linear Sigmoid 

mean 0.77 0.13 0.80 0.77 

 

We ran a SVM with four types of kernel functions: linear, 

radial basis (RBF, with  = 0.03125), polynomial and sigmoid. 

Table I displays the accuracy with which our SVMs classified 

the 30 data points in our test set. The SVMs were also trained 
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V. RESULTS



  

with a PCA frontend and run on the same data. Table II 

displays the resulting classification accuracy. The mean for 

all our results is for 26 runs. The standard deviation in all 

cases for SVMs was essentially zero. 

A Gaussian naïve Bayes classifier was trained and run with 

and without PCA. Table III shows the resulting classification 

accuracy. Again, standard deviations are essentially zero. 
 

   

  

   

 

 

 

   

 

 
      

    

   

   
 

Of the four types of kernel functions, the SVM with a 

radial basis kernel function performed the best without PCA 

but the SVM with a linear kernel function performed the best 

with PCA. The SVM with a polynomial kernel function 

performed much worse than any other technique. The 

Gaussian NB and the FNN did not perform well. All 

techniques except FNN performed at least as well without 

PCA as with PCA. 

Table V and Table VI show the time in milliseconds for 

each of the kernel functions of our SVM with and without 

PCA to classify the 30 data points in our test set. (As before, 

the mean is over 26 runs.) All techniques classified the 30 

points in 0.09 to 0.17 msec. Processing with PCA made 

classifying 20-40% faster. The only exception was due to the 

speed-up PCA gave to SVM with a polynomial kernel 

function, cutting its time in half.  
 

TABLE V: TIME (MSEC.) FOR SVM  KERNEL FCTNS W/O PCA TO CLASSIFY 

30 POINTS 

Kernel RBF Polynomial Linear Sigmoid 

mean 0.14 0.15 0.12 0.17 
St. dev. 0.019 0.020 0.014 0.025 

 

TABLE VI: TIME (MSEC.) FOR SVM  KERNEL FCTNS W/ PCA TO CLASSIFY 

30 POINTS 

Kernel RBF Polynomial Linear Sigmoid 

mean 0.10 0.09 0.09 0.14 
st. dev. 0.023 0.024 0.015 0.034 
 

Table VII shows the timing in milliseconds for the rest of 

our supervised learning techniques with and without PCA to 

classify the 30 data points.  PCA again speeds up classifying 

but not as much as with SVMs. 
 

TABLE VII: TIME (MSEC.) FOR THE REST OF OUR SUPERVISED LEARNING 

TECHNIQUES (WITH AND WITHOUT PCA) TO CLASSIFY 30 POINTS 

Technique Gaussian NB 

w/o PCA 

Gaussian NB 

w/ PCA 

FNN w/o 

PCA 

FNN w/ 

PCA 

mean 0.24 0.20 2.75 2.69 

st. deev, 0.029 0.018 0.224 0.202 

 

B. Unsupervised-Learning Results 

Regarding unsupervised learning techniques, we first ran 

k-means clustering without PCA with k equal to 3, 4, 5 and 6. 

Then we ran k-means clustering with PCA with k again equal 

to 3, 4, 5 and 6. Table VIII shows the times taken to classify 

30 data points without PCA, and Table IX shows the same 

times with PCA. All times are in the narrow range 0.16-0.18 

msec. 
 

TABLE VIII: TIME (MSEC.) FOR KMEANS W/O PCA TO CLASSIFY 30 POINTS 

(26 RUNS) 

Technique Kmeans 3 Kmeans4 Kmeans5 Kmeans6 

mean 0.16 0.18 0.17 0.16 

st. dev. 0.03 0.07 0.03 0.02 

 

TABLE IX: TIME (MSEC.) FOR KMEANS W/ PCA TO CLASSIFY 30 POINTS (26 

RUNS) 

Technique Kmeans 3 Kmeans4 Kmeans5 Kmeans6 

mean 0.17 0.17 0.18 0.17 

st. dev. 0.07 0.03 0.03 0.02 

 

 

Fig. 1- Fig. 4 show the clusters for k = 3-6, respectively, 

when PCA with three components was used so that points 

may be plotted in three dimensions. Note that k = 4 identifies 

four visually convincing clusters.  

 
Fig. 1. k-means with 3 clusters with PCA (30 data points). 

 
Fig.  2. k-means with 4 clusters with PCA (30 data points). 

 
Fig. 3.  k-means with 5 clusters with PCA (30 data points). 
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TABLE III: ACCURACY OF THE GAUSSIAN NAIVE BAYES CLASSIFIER (30

POINTS, 26 RUNS)

Technique Gaussian NB

without PCA

Gaussian NB 

with PCA

mean 0.73 0.60

A FNN classifier was trained and run with and without 

PCA. Table IV shows the resulting classification accuracy, 

giving means and (relatively small) standard deviations.

TABLE IV: ACCURACY OF THE FNN (30 POINTS, 26 RUNS)

Technique FNN without PCS FNN with PCA

mean 0.62 0.64
st. dev. 0.075 0.021



  

 

 
   

     

     

     

 

 
    

  

  

  

  

  

 

The four sharp clusters (as per k-means with k = 4) can be 

anticipated given our experimental set-up, as we expect 

signals from four different sources. First of all, there are 

signals from the crack growth itself, but incremental crack 

growth deeper in the specimen produces waveforms with 

rather different characteristics from those produced on the 

surface, and this difference is enough to pull the crack data 

into two distinct clusters. Next, there is friction where the 

specimen is attached, accounting for a third cluster. Finally, 

the electrical environment produced a consistent kind of 

noise, giving rise to a fourth cluster. We conjecture that the 

SOMs tend to find only three clusters because there is a sort 

of continuum of data points between those related to deep 

crack growth and those related to crack growth at the surface; 

a SOM preserves the topological properties of the input space, 

and these intermediate points apparently pull together 

otherwise disparate clusters.  

 

VI. CONCLUSION 

This paper reports on work that is part of our development 

of an agent-based structural health monitoring (SHM) system. 

The data used are acoustic signals, and one attempts to 

classify these signals according to source, those associated 

with crack growth being particularly significant.  The agents 

are for the most part proxies for communication- and 

computation-intensive techniques. They negotiate to 

determine a pattern of techniques for understanding the 

situation at hand. Such a pattern determines a workflow. The 

agents respond in an intelligent way by determining a 

constellation of techniques appropriate for the situation at 

hand. It is critical that the system have a repertoire of 

classifiers with different characteristics so that a combination 

appropriate for the situation at hand can generally be found.  

Following Worden and his colleagues [2], we use 

unsupervised learning for identifying the existence and 

location of damage but supervised learning for identifying 

the type and severity of damage. Our objective at this stage is 

to explore various machine-learning techniques and note 

their characteristics so that various combinations of them 

may be used appropriately in various circumstances The 

supervised learning techniques investigated are support 

vector machines (SVMs), naive Bayes classifiers (NBs), and 

feed-forward neural networks (FNNs). The unsupervised 

learning techniques investigated are k-means (with k equal to 

3, 4, 5, and 6) and self-organizing maps (SOMs, with 3, 4, 5, 

and 6 output neurons). For each technique except SOM, we 

tested a version with principal component analysis (PCA) as 

a frontend to reduce data dimensionality to three principal 

components, and we tested another version without PCA.  

Turning to the results, first of all for the supervised 

learning techniques, the most accurate are the SVMs, in the 

range 77-90% except for the one with a polynomial kernel 

function (13% with or without PCA), which we henceforth 

ignore. Using PCA decreases the accuracy of the SVMs by 

about 10%. The SVM that performed best without PCA was 

the one with the RBF kernel function (90%), and the one that 

performed best with PCA was the one with the linear kernel 

function (80%). The Gaussian NB classifiers did noticeably 

worse than SVMs, doing worse (60%) with PCA than 

without (73%). The FNN performed at a level similar to or 

worse than that of the NB classifiers, with little difference 

between the case with (60%) and without (62%) PCA. 

Regarding the time to classify the 30 samples in the test set, 

the SVMs were the fastest, 20-40% faster with PCA. PCA 

also speeds up NB and FNN, but not as much as it speeds up 

the SVMs. NB with PCA takes about twice as long as the 

SVMs with PCA, and FNN in general requires about six 

times more time than the SVMs to classify the 30 data points.   

Regarding unsupervised learning techniques, the time 

required for k-means to classify our 30 data points, for all 

values of k (= 3-6) and with or without PCA, was in the 

narrow range 0.16-0.18 msec. The SOMs took much longer, 

around 500 msec. (about 400 msec. with three or four output 

neurons, and about 600 msec. with five or six neurons).  

Note that PCA degrades the accuracy of the supervised 

techniques except in the case of FNN. This suggests that 

reducing data dimensions to three as we did with PCA can 

often obscure information needed for classification. Still, 

PCA results in faster classification with all the supervised 

techniques (up to 40% faster) and gives only marginally 

slower performance for k-means. This is because generally 

the time required to form the linear combinations of input 

feature values required by PCA is more than offset by the 
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Fig. 4. k-means with 6 clusters with PCA (30 data points).

We ran a SOM with 3, 4, 5 and 6 output neurons. Table X

shows the time (in milliseconds) it took each of the SOM 

instances to classify all 30 data points in our test set. Clearly, 

the SOMs took much longer than did the k-means classifiers.

TABLE X: TIMING OF THE SOM

Technique SOM 3 SOM4 SOM5 SOM6

mean 409.62 445.38 617.31 600.00

st. dev, 13.11 17.49 8.74 11.66

Table XI shows the sizes of the clusters for the SOMs with 

3, 4, 5, and 6 output neurons. Twenty-six runs produced no 

variation in cluster sizes for any of the SOMs. In the table, the 

right-side column gives the sizes of the clusters in the order 

cluster 0, cluster 1, and so on. Clusters of exactly the same 

size are found with three and four output neurons, but the four 

case adds an empty “cluster”. Indeed, the partition of the set 

of data points into three clusters gives the least variation in 

cluster size. 

TABLE XI: MEAN CLUSTER SIZES FOR VARIOUS SOMS (26 RUNS),

ORDERED AS CLUSTER 0, CLUSTER 1, ETC

SOM3: 14, 7, 9

SOM4: 14, 7, 0, 9

SOM5: 7, 2, 5, 5, 11

SOM6: 5, 11, 5, 0, 2, 7
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speed up in the basic classifier due to reduction in 

dimensionality. 

We can consider combinations of classifiers trained in 

unsupervised and supervised learning mode, the first to find 

existence and location of damage and then the second to 

determine the extent and type of damage. In a practical 

situation, we look at a large number of events and watch for 

cases when hundreds are classified as originating from crack 

growth. So we can tolerate a certain amount of inaccuracy. 

Cracks, however, grow over months, yet relevant events may 

be only milliseconds apart, and monitoring a large structure 

may put a premium on speed. So the extent to which 

classification time is critical is an involved issue. 

These results are generally encouraging for our multiagent 

system as they reveal significant differences in the machine 

learning techniques investigated. For both supervised and 

unsupervised techniques, there are trade-offs between 

accuracy and fast runtime that can be exploited by agents in 

finding a combination of techniques appropriate for a given 

situation. We stated how our approach can be generalized for 

exploring the characteristics of machine-learning techniques 

for monitoring various kinds of structures.

Future work will include investigation of the physical 

reality behind the clusters found with unsupervised learning. 

We are tagging the waveforms as they are classified so that 

we may get full information on the waveforms that end up in 

each cluster. Future work will also consider which classifiers 

work best in combination with which other classifiers.

Finally, we will investigate approaches to dimensionality 

reduction. We will investigate what dimensionalities 

provided by PCA are most efficient in various situations. And 

we will consider alternatives to PCA. We are looking at 

coalition game theory [13] as a way to select combinations of 

feature that do the best job distinguishing the data by class. 

We are also considering GEFeWS (Genetic and Evolutionary 

Feature Selection and Weighting), which evolves linear 

combinations of feature values (over a certain threshold) that 

optimize classification accuracy [14].
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