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Abstract—A novel learning method of control law of mode

switching for hypersonic morphing aircraft, based on type-2 

Takagi- Sugeno -Kang (TSK) fuzzy neural network, is proposed 

in this paper. The purpose of this method is to learn the control 

law of mode switching from a group of training data, in order to 

steadily and smoothly switch the winglets from retracting to 

stretching mode. In this method, taking into consideration the 

characteristics of type-2 fuzzy, we utilize an interval type-2 TSK 

fuzzy approach, the rules of which are learned from training 

data by back- propagation algorithm. Simulation results 

indicate that the proposed learning method of switching control 

law, based on type-2 TSK fuzzy neural network, can steadily 

and smoothly switch the winglets from retracting to stretching 

mode, providing a novel method for obtaining an excellent 

switching control law in situations with a group of training 

data.

Index Terms—Control law of mode switching, learning rules,

interval type-2 TSK fuzzy, back-propagation algorithm, 

hypersonic morphing aircraft. 

I. INTRODUCTION

Hypersonic morphing aircraft with retracting winglets 

always switch their flight modes while flying in a large range 

of space, so the control laws need to be changed 

correspondingly. It is, however, more difficult to steadily and 

smoothly control the switching processes for the aircrafts, 

with their characteristics of rapid time-variation, strong 

nonlinearity, strong coupling, and model uncertainty [1], [2]. 

Complex nonlinear systems cannot be controlled well using

traditional methods, which increase the difficulty of 

switching control laws [3].

Recent papers have focused attention on this problem. 

Stability of switched systems has been researched and 

analyzed in [4]. A logic-based supervisor has been designed 

to manage the switching moments between two main 

controllers [5]. Inverse dynamics have generated the 

trajectory for transition from VTOL to wing-borne flight [6].

A switched linear parameter-varying system approach has 

been designed for the rigid longitudinal dynamics of a 

hypersonic aircraft to ensure tracking of the given commands 
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of the closed-loop system control [7]. An extended,

bump-less switching technique has been proposed to offer 

optimal control for continuous- time systems of hypersonic 

aircraft via linear quadratic optimal control and an internal 

model principle [8]. A switching fault- tolerant control 

approach has been applied to an air-breathing hypersonic 

vehicle which was subjected to time-varying actuator and 

sensor faults [9]. The piece-wise linear Lyapunov functions 

have been used to investigate the stabilizing switching 

control laws for discrete- and continuous-time linear systems 

[10]. An adaptive switching learning PD control has been 

proposed for trajectory tracking of robot manipulators in an 

iterative operation mode [11].

However, in the current state of research, existing training 

data of switching control law has not been considered. For 

example, sometimes in practice, a pilot of a hypersonic 

aircraft performs a switching task casually, without switching

the control law before doing so. As a result, we need to learn 

the switching control law from the training data, in order to 

instruct other aircraft.

Type-2 fuzzy [12]-[14] is a useful method for dealing with 

uncertainty problems. The switching control law is a kind of 

combination of two control laws, the coefficients of which 

can be regarded as Interval type-2 TSK fuzzy rules learned 

from training data. Hence, we study a novel learning method

in this paper, based on type-2 TSK fuzzy neural network 

from the training data, to learn the control law of mode 

switching when the winglets change from retracting to 

stretching mode. Furthermore, the back-propagation 

algorithm is applied to optimize the type-2 TSK fuzzy rules 

so that the learned switching control law approximates the 

training data as much as possible. Simulation results testified 

to the effectiveness of this learning method.

The outline of this paper is as follows: Section II presents 

the model of hypersonic aircraft. In Section III, the learning 

control law of mode switching from training data is proposed,

based on type-2 TSK fuzzy neural network. In order to 

optimize the type-2 fuzzy rule, the back-propagation 

algorithm is applied to approximate the training data. In 

Section IV, we describe an experiment conducted to testify 

the effects of the proposed method. Finally, conclusions are 

presented in Section V.

II. SLIDING MODE CONTROL LAW OF HYPERSONIC 

AIRCRAFT

In this paper, we researched a hypersonic morphing flight 

vehicle with retracted winglets. Compared with retracting 



  

winglets, stretched winglets can be used to increase the 

lift-drag ratio, mean aerodynamic chord, and reference area. 

A typical hypersonic morphing aircraft's retracting and 

stretching winglet modes based on X-24B configuration [15], 

are shown in Fig. 1. 

         
(a) The retracting mode                          (b) The stretching mode. 

Fig. 1. A typical hypersonic morphing aircraft’s modes based on X-24B 

configuration [15]. 

 

According to the longitudinal force and moment 

equilibrium of hypersonic aircraft, the longitudinal model of 

a hypersonic flight vehicle [16] can be obtained as follows: 
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In this model, V ,  , q ,  , and h  are the aircraft’s 

velocity, flight path angle, pitch rate, angle of attack, and 

altitude, respectively;  ,  , and   are the throttle setting, 

natural frequency, and damping coefficient; and m ,  , r , 

yM , and yI  are the mass, gravitational constant, radial 

distance from the earth’s center, pitching moment, and 

moment of inertia. 136820m kg , 29490740yI kg s  . For 

the lift L , drag D , thrust T , we have: 
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where 
LC , 

DC , 
TC , and 

mC  are lift, drag, thrust, and pitch 

moment coefficients, respectively; and  , s , and 
eR  are the 

density of the air, reference area, and radius of the earth. 

In the retracting mode, 2369s m , 27c m , the 

aerodynamic parameters of lift, drag, and pitch moment 

coefficients for different Mach and angle of attack values are 

shown in Fig. 2. 
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Fig. 2. The aerodynamic parameters in retracting mode. 

 

In the stretching mode, 2389s m , 30c m , the 

aerodynamic parameters of lift, drag, and pitch moment 

coefficient for different Mach and angle of attack values are 

shown in Fig. 3. 
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Fig. 3. The aerodynamic parameters in stretching mode. 

 

Before time 
1t , the aircraft is in retracting mode. Then, 

within the time interval 
1 2[ , ]t t , we morph the winglets of 

aircraft, so that the winglets completely switch to stretching 

mode after time 
2t . 

Assumption: s , c , and all the aerodynamic parameters 

are switched according to the following format: 

 

 1 1( ( )) ( ( ))

1 2( ) ( ) ( )(1 )
a t t a t t

X t X t e X t e
   

    (13) 

 

which 
1X  stands for value in retracting mode, 

2X  stands for 

value in stretching mode, and X  stands for value in 

switching mode. When 
1t t , s , c , and all the aerodynamic 

parameters are the same as the values in retracting mode. 

When 
1 2t t t  , s , c , and the weight of values in retracting 

mode decreases gradually, while the weight of values in 

stretching mode increases gradually. So, s , c , and all the 

aerodynamic parameters are the values increasingly in 

stretching mode. When 2t t , s , c , and all the aerodynamic 

parameters are approximately equal to the values in 

stretching mode. 

 

III. LEARNING METHOD OF SWITCHING CONTROL LAW 

Define 
1U  as the control law of retracting mode, and 

2U  

as the control law of stretching mode. When the hypersonic 
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morphing aircraft switches the mode of the winglets, the 

control law must be switched correspondingly. The control 

law of the switching process is as follows: 
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where 
tU  is the control law of mode switching, expressed as 

follows: 

 

 
1 2 +tU aU bU c   (15) 

 

The system structure of learning control law of mode 

switching is shown in Fig. 4. 
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Fig. 4. The system structure of learning control law of mode switching. 

 

In Fig. 4, 
1U  is the control law of retracting mode, and 

2U  

is the control law of stretching mode. From the input-output 

training data, we can learn the control law of mode switching. 

In order to test the performance of the learned control law, we 

need to examine that performance when the mode of the 

winglets switches from retracting to stretching mode, and 

compare the results with the training data. 

A. Interval Type-2 TSK Fuzzy 

In Fig. 4, for the group of input-output training data, there 

are two inputs 
1 2,U U  and one output fU . In a type-2 TSK 

fuzzy logic, IF-THEN rules are also used to describe the 

relationship between input and output data. We used the 

Gaussian primary membership function with uncertain mean 

as the input membership function and the output membership 

function. We describe the j -th rule of interval type-2 TSK 

fuzzy logic system (A2-C1 case)  as: 
jR : If

1U is 1

jF  and 
2U is 2

jF , then 

0 1 1 2 2

j j j j

fU C C U C U    

where 1, ,j M L ; 
1U  is the control law in retracting mode 

and 
2U  is the control law in stretching mode; 1

jF  is the 

interval type-2 fuzzy set of 
1U , and 2

jF  is the interval type-2 

fuzzy set of 
2U ; fU  stands for the output of type-2 TSK 

fuzzy; 0

jC , 1

jC , and 2

jC  are consequent parameters, which 

are uncertain. 

For the A2-C1 case, , ( 0,1, 2)j

iC i   can be expressed as 

follows: 
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where 
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ic  denotes the mean of 
j

iC  and 
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is  denotes the 

spread of 
j

iC ( 1, ,j M L ; 0,1,2i  ). 

Membership function: Suppose that j
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  and j
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  are the 

lower and upper membership functions of j
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 , respectively. 

Then, the membership function j
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  can be expressed as  
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Gaussian primary membership function with an uncertain 

mean: Suppose that ( )j
i

iF
U  is the Gaussian primary 

membership function with an uncertain mean. Then, 
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Consequently, the membership function ( )j
i

iF
U  is 
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In the type-2 TSK fuzzy logic system with meet operation 

under product or minimum t-norm, the result of the input and 

antecedent operations, which are in the firing set 
2
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i

j

i i iF
U F U  , is an interval type-1 set [17]. 



 ( ) [ ( ), ( )] [ , ]j j j j jF U f U f U f f   



where 


1 2

1 2( ) ( ) ( )j j

j

i F F
f U U U    

303

International Journal of Machine Learning and Computing, Vol. 5, No. 4, August 2015



  


1 2

1 2( ) ( ) ( )j j

j

i F F
f U U U    



The consequent of fuzzy rule jR  is also an interval type-1 

set, [ , ]j j j

f fl frU U U , where 

 


2 2

0 0

1 1

j j j j j

fl i i i k

i i

U c U c U s s
 

      




2 2

0 0

1 1

j j j j j

fr i i i k

i i

U c U c U s s
 

      



The following after fuzzy inference is the type reducer. We 

used the center-of sets type reducer [17] 
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where cosfU  is the interval set; flU  is the left-most point of 

fU ; and frU  is the right-most point of fU . Then, we have: 
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where 
j

lf  is the left-most point of 
jf , 

j

rf  is the right-most 

point of 
jf , j

flU  is the left-most point of j

fU , and j

frU   is the 

right-most point of j

fU . 

Note that , , ( 1, , )j j

fl frU U j M    L  must be computed 

before the computation of cosfU . 

To compute flU , we need to determine , ( 1, , )j

lf j M L , 

and to compute frU  we need to determine , ( 1, , )j

rf j M L . 

The computation procedure for frU  is provided briefly here. 

Without loss of generality, assume that the pre-computed 
j

frU  are arranged in ascending order; i.e., 

1 2 M

fr fr frU U U  L . Then: 

1) Compute frU in (29) by initially setting 

( ) / 2j j j

rf f f   for 1, ,j M L , where jf and jf  

have been preciously computed using (23)-(24), and let 

fr frU U  . 

2) Find (1 1)R R M   , such that 1R R

fr fr frU U U   . 

3) Compute frU in (29) with j j

rf f  for j R , and 

j j

rf f  for j R , and let 
fr frU U  . 

4) If 
fr frU U  , proceed to Step 5. If 

fr frU U  , stop, 

and set 
fr frU U  . 

5) Set 
frU   equal to 

frU  , and return to Step 2. 

Observe that in this algorithm, the number R  plays an 

important role. For j R , j j

rf f , whereas for j R , 

j j

rf f ; hence, frU in (29) can be represented as 
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The procedure for computing flU  is very similar to the 

one outlined above for frU . In Step 2, find (1 1)L L M    

such that 1L L

fl fl flU U U   . Additionally, in Step 3, compute 

flU  with j j

lf f  for j L  and j j

lf f  for j L . Then, 

flU  in (28) can be represented as 

 

 

1 1 1

1 1

1 1

( , , , , , , , , )L L M M

fl fl fl fl

L M
j j j j

fl fl

j j L

L Mj j

j j L

U U f f f f U U

f U f U

f f



  

  








 

 

L L L

 (31) 

 

where L  and R  are the number of points which separate 

flU  and frU into two sides, respectively, one side using 

lower firing strengths, and the other using upper firing 

strengths. 

Consequently, the defuzzified crisp output fU  is 

 

 ( ) / 2f fl frU U U   (32) 

 

B. Learning The Type-2 TSK Fuzzy Rules From Training 

Data Using a Back-Propagation Algorithm 

Given the N input-output training data 

(
( ) ( )k k

i tU U， ), 1,2; 1, ,i k N  .  
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The purpose is to learn the parameters 
j

iC  of fuzzy rules to 

minimize J  in (33). The steps to learn the type-2 TSK fuzzy 

rules are as outlined below: 
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Step 1: Initialize all of the parameters of antecedent and 

consequent membership function. 

Step 2: Set all the counters. 

Step 3: Compute the output of type-2 TSK fuzzy 

according to the input data of pair-wise training data. 

Compute ( )( )j k

fl iU U  and ( )( )j k

fr iU U ; 

Compute jf , jf  

Compute the defuzzified output ( )( )k

f iU U  

Step 4: Update the 
j

ic  and 
j

is  
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where 1,2i  ,  is learning rate. 

Step 5: Repeat until convergence. 



IV. EXPERIMENTS 

We set the switching time as 35s. Before time 35s, the 

aircraft was in retracting mode. Then, within the time interval 

[35s, 40s], we morphed the winglets of aircraft, so that the 

winglets completely switched to stretching mode after time in 

40s. 
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Fig. 5. Learning effect of throttle setting. 

In order to better learn the control law of mode switching 

and overcome over training, we used 50% of the sample data 

for training. The learning effects of control laws in [35s, 40s] 

including throttle setting 
c and elevator deflection 

e , are 

shown in Fig. 5 and Fig. 6.  
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Fig. 6. Learning effect of elevator deflection. 

 

From Fig. 5 and Fig. 6, we can see that the learned 
c  and 

e  were fairly approximate to the original training data. 
c , 

in particular, nearly overlapped with the training data. In 

order to test the control effects of the learned control law of 

mode switching, we applied the learned control law in the 

switching process of hypersonic morphing aircraft. Then, we 

obtained the switching effects of the learned control law of 

mode switching, as shown in Fig. 7. 
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(c) Angle of attack                                       (d) Flight path angle 

Fig. 7. The switching effects of learn  control law of mode switching. 

 

From Fig. 7, we can see that the before time 35s, the 

control law of the retracting mode could keep the hypersonic 

aircraft in retracting mode with good tracking performance. 

After time 40s, the hypersonic aircraft in stretching mode 

could precisely track the ideal command under the control 

law of stretching mode. Particularly, in the switching process 

within the time interval [35s, 40s], the flight states of 

hypersonic aircraft, including velocity, altitude, angle of 

attack, and flight path angle, switched very steadily and 

smoothly, without any saltation. The simulation results above 

illustrate the effectiveness of proposed learning method of 

control law of mode switching from retracting to stretching 

mode. 
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V. CONCLUSION

The learning method of type-2 TSK fuzzy neural network

has been studied in this paper in order to learn the unknown 

control law of mode switching for hypersonic morphing 

aircraft from a group of training data. When a hypersonic 

morphing aircraft switches the mode of the winglets from 

retracting to stretching mode, considering the control law of 

mode switching is a kind of combination of two control laws, 

the coefficients of the combination can be regarded as the

type-2 TSK fuzzy rules. Afterwards, the back- propagation 

algorithm is utilized so that the learned switching control law 

approximates the training data as much as possible. The 

effectiveness of the novel learning control law of mode 

switching is illustrated by comparisons of learned control 

effects with the training data through simulation studies. The 

numerical simulation results indicated that the control law of 

mode switching learned from training data during the process 

of switching from retracing mode to stretching mode can 

keep the switching process stable and smooth.
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