
  

 

Abstract—The main purpose of this study was to investigate 

the relationship between adverse events and infrastructure 

development investments by estimating the number of adverse 

events in an active war theater based on the allocation of 

infrastructure development projects utilizing a fuzzy inference 

systems (FIS) approach. The considered model input variables 

included the total number of economic improvement projects 

and their associated budgets at different time periods in 

Afghanistan between 2002 and 2009. The output variables were 

the estimated numbers of people killed, wounded, and hijacked 

in different sectors of Afghanistan in 2010. Six different 

prediction models were developed and tested with an 

independent datasets. The prediction accuracy of each FIS 

model was evaluated and compared based on the mean absolute 

errors (MAE). It was concluded that the FIS is a useful 

modeling approach that can be applied under scenario-based 

conditions to support decision makers in analyzing historical 

economic data on how allocation of regional infrastructure 

development funds can best help reducing the onset of adverse 

events in an active war theater.  

 
Index Terms—Adverse events, fuzzy inference system, 

human social cultural behavior (HSCB) modeling, 

infrastructure development. 

 

I. INTRODUCTION 

To protect civilians, today’s military engages in irregular 

warfare where the civilian population is present [1]. The 

Department of Defense (DoD) describes irregular warfare as 

“a violent struggle among state and non-state actors for 

legitimacy and influence over the relevant population(s)” [2].  

To address the challenges of irregular warfare, the Human 

Social Culture Behavior (HSCB) modeling program was 

initiated [3]. The main objective of HSCB program was to 

guide military in understanding different cultures while 

operating in overseas countries [4], and to improve 

organizing and controlling the human terrain during 

nonconventional warfare and other missions [5].   

Nowadays, there is a need for HSCB models in military 

operations to understand the behavior and structure of 

organizational units at a macro level (economies, politics, 
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socio-cultural regions) and a micro level (social networks, 

tribes, military units) [6]. For instance, infrastructure 

development has been started during ongoing adverse events 

in Afghanistan [7].  Thus, HSCB models are attracting much 

attention with regard to current and future operational 

requirements.  

Because an HSCB model can be defined as a complex 

system, computational modeling and simulation techniques 

are needed to deal with this complexity. While researchers in 

social science are contributing to HSCB modeling efforts by 

considering observations of human social behavior and 

communication [8], the program also needs the capability to 

represent variety of complex, ill-defined, and imprecise 

socio-economic-cultural concepts. Such a challenge can be 

met by application of fuzzy inference systems (FIS) 

modeling approach. To our best knowledge, there is currently 

no study that applies any soft-computing technique to 

investigate the relationship between adverse events and 

economic development projects in an active war theater.  

This study investigates the application of 

Takagi-Sugeno-Kang (TSK) and the Mamdani fuzzy 

inference system (FIS) models to examine the relationship 

between adverse events and infrastructure development 

projects in Afghanistan, where the accuracy of the 

predictions is directly beneficial from an economic and 

humanistic point of view. 

 

II. BACKGROUND 

There are various challenges associated with problems 

related to representing social science data. Researchers have 

emphasized some of these difficulties. Numrich and Tolk [9] 

summarized these difficulties as lack of common vocabulary, 

variations in modeling approaches, and data acquisition. 

Similarly, Schmorrow et al. [10] highlighted the challenge of 

leveraging Modeling and Simulation (M&S) for HSCB. The 

difficulties were summarized as the usage of M&S tools 

within different complexity levels. To apply various 

methodologies in the domain of HSCB, such difficulties must 

be understood and specific modeling requirements must be 

met. 

Studies in this area emerge from data-driven, statistical 

approaches where the modeler empirically derives the HSCB 

model from patterns identified in the data [11]. For example, 

terrorist attacks are not random in space and time, and as a 

result there are patterns that exist. It is possible to discover 

representative patterns in adverse activity or behavior over 

time and space by analyzing geospatial intelligence on 

various reported incidents, as stated by the Director of 
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National Intelligence, Open Source Center (OCS) [12]. The 

OSC study of terrorism in Afghanistan highlighted the 

following types of analysis: mapping incident density, 

identifying the dominant ethnic group where incidents 

occurred, mapping incidents by district, mapping incidents 

by province, identifying the mean center of incidents over 

time, calculating the standard deviation (spatial pattern/trend) 

of overall incidents, mapping total incidents by month, and 

computing the mean center of incidents by month [13].  

Similarly, there are a lot of challenges with HSCB 

modeling, particularly with regard to handling complexity, 

uncertainty, etc. Prediction is a particularly difficult task. The 

use of soft computing techniques with HSCB can mitigate 

these challenges. Fuzzy inference systems can be used for 

solving complex, ill-defined, and nonlinear problems 

including security and safety issues [14]-[16].  To 

demonstrate this, we're going to use FIS to analyze a certain 

characteristic we know aligns with stability and lack of 

violence (infrastructure & economic spending) and see if we 

can use it to do a really difficult but useful modeling task:  

predict adverse events.  

 

III. METHODOLOGY 

A. Dataset 

Two different kinds of Afghanistan datasets provided by 

the HSCB program management were utilized in this 

research, including adverse events and fourteen infrastructure 

development projects which took place between 2002 and 

2010 (see Fig. 1). The adverse event dataset, which includes 

information regarding the date of event, incident type, 

number of people killed, wounded, and hijacked, province, 

city, district, description of the event, and simple event 

summary. The infrastructure aid dataset, which includes 

information regarding the province, city, district, project 

types, and allocated budget information for different sectors 

[17]. 

 
Fig. 1. Input and output data. 

The total number of economic improvement projects and 

the total budget of those projects have been used to estimate 

the occurrence of adverse events. We considered a total of 3 

outputs reflecting the adverse events in terms of the number 

of people killed, wounded, and hijacked. The data was 

grouped for generating rules and validation as follows: years 

between 2002 and 2009 (totally 38400 records for rule 

generation purpose), and year 2010 (totally 4800 records for 

validation). 

B. Fuzzy Inference System 

A fuzzy system consists of five functional blocks including 

fuzzification, database, rulebase, inference operations, and 

defuzzification (see Fig. 2). Moreover, input and output 

variables can be included. 

A fuzzification interface transforms real numbers of input 

into fuzzy sets with linguistic values such as low, medium, 

and high. A database which determines the membership 

functions is applied in the fuzzy rules. A rule base has a 

number of fuzzy if-then rules that include all possible fuzzy 

relationships between inputs and outputs. 

The inference engine helps to achieve inference operations 

on the rules. A defuzzification unit is used for converting 

fuzzy results into crisp values. There are two popular types of 

fuzzy inference systems including Mamdani and 

Takagi-Sugeno-Kang (TSK)  models that have been widely 

used for solving problems in several applications such as 

decision analysis, expert systems, prediction, data 

classification, image processing, optimization, control and 

system identification [19], [20]. 

 
Fig. 2. Fuzzy inference system (Adapted from [18]). 

 

Mamdani’s FIS was proposed by Mamdani and Assilian 

(1975) and the TSK models were introduced by Takagi and 

Sugeno (1985). Since output values have to be fuzzy in 

Mamdani type, and crisp in TSK type; the main difference 

between these two types of models is in generating the crisp 

value. Mamdani type FIS applies defuzzification techniques, 

however the TSK type FIS applies a weighted average and 

weighted sum methods while calculating the crisp output.   

C. Mamdani Fuzzy Model 

The Mamdani fuzzy model proposed by Mamdani and 

Assilian [21] was one of the first developed fuzzy set theory 

based control systems. The output membership functions of 

Mamdani model are fuzzy sets. After the aggregation process, 

defuzzification is necessary for each output variable to 

convert a fuzzy set to a crisp value.  

A defuzzifier transforms the fuzzy results obtained from 

inference operations into a crisp output. There are several 

defuzzification methods such as centroid of area (COA), 

center of gravity, mean of the maximums, and smallest of the 

maximums. The most common defuzzifization method is the 

COA (Equation (1)).  
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where COAy  is the crisp value for the z output and ( )A y  is 

the summation of output membership function [22]. 

The Mamdani fuzzy model is the most popular fuzzy 
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methodology which has been applied widely for several 

problems. Some of the advantages of Mamdani model are its 

suitability and intuitive for expert opinion, and that it is 

widely accepted.  

D. Takagi-Sugeno-Kang (TSK) Fuzzy Model 

The Takagi-Sugeno-Kang (TSK) fuzzy model was 

introduced by Takagi and Sugeno [23] in order to establish a 

systematic approach to construct fuzzy rules from a given 

input-output dataset [22]. There are similarities to the 

Mamdani method in several ways. For instance, the first two 

sections of the fuzzy inference systems (input fuzzification 

and applying the fuzzy operator) are completely same. The 

main difference is in the last part. The output membership 

functions can be a linear or constant for TSK model. A 

common rule in a Sugeno fuzzy model can be defined as 

following: 

If x is A and y is B then z px qy r   . 

where A and B are fuzzy sets and z is a non-fuzzy function. 

For a zero-order Sugeno model, the output level z is a 

constant (p=q=0). Many different resources are available in 

the literature for further explanations of FIS [15], [18], [19]. 

 
Fig. 3. Proposed fuzzy inference system flow diagram. 

E. Study Steps 

This study was conducted based on the following sequence 

of main steps as shown in Fig. 3: 

Step 1. Identifying the type of fuzzy system (Mamdani or 

TSK type fuzzy system) 

Step 2. Define the input and output variables 

Step 3. Define the ranges for input and output values 

Step 4. Determination of the membership functions 

Step 5. Generate set of linguistic rules 

Step 6. Assign rule weights.  

Step 7. Aggregate all rules 

Step 8. Defuzzify the aggregate output 

Step 9. Validate the system. 

 

Step 1. Identifying the type of fuzzy system: Both types of 

fuzzy inference system (Mamdani and TSK type) were 

considered and compared to each other at the end of the 

study.  

Step 2. Defining input and output values: Input values 

were considered as total number of economic improvement 

projects and allocated budgets values at different time 

periods whereas output values were three types of adverse 

events: number of people killed, wounded, and hijacked (Fig. 

4). 

 
Fig. 4. General framework of FIS models used in this study. 

 
TABLE I: INPUT VALUES AND THEIR PARAMETERS FOR BOTH FIS 

Input field Range Linguistic 

terms 

Parameters 

Total number 

of aid projects 

 
[0 – 2111] 

 

Low 

Medium 

High 

[0  0  12] 
[8  46  84] 

[70  2111  2111] 

 

 

 

 

Total budget 

value ($) 

 

 

 

 

[0– 

1,362,515,958] 

 

Low 

 

 
Medium 

 

 
 

High 

[0  0  20,000,000] 

 

[15,000,000  
40,000,000  

65,000,000] 

 
[50,000,000  

1,362,515,958 

1,362,515,958] 
 

 
TABLE II: OUTPUT VALUES AND THEIR PARAMETERS FOR MAMDANI TYPE 

FIS 

Output field Range 
Linguistic 

terms 
Parameters 

 
Number of 

people killed 

 
 

[0 103] 

 

Very Low 

Low 

Medium 

High 

Very High 

[0  0  1] 

[0.4  1.2  2] 

[1.5  4  6.5] 

[5  20  35] 

[30  103  103] 

 

Number of 
people 

wounded 

 

 
[0 261] 

 

Very Low 

Low 

Medium 

High 

Very High 

[0  0  1] 

[0.5  1.25  2] 

[1.5  4.5  7.5] 

[6  28  51] 

[40  261  261] 

 
Number of 

people 

hijacked 

 
 

[0 156] 

Very Low 

Low 

Medium 

High 

Very High 

[0  0  1] 

[0.2  0.9  1.6] 

[1.2  2.2  3.2] 

[3  12.5  22] 

[15  156  156] 
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Step 3. Defining the ranges for input and output values: 

Minimum and maximum values of inputs and output fields 

were determined for setting relevant membership functions 

and parameters. The ranges, linguistic terms, and parameters 

for each input and output value were illustrated in Table I, II 

and III.  

TABLE III: OUTPUT VALUES AND THEIR PARAMETERS FOR TSK TYPE FIS 

 

Output 

 

Range 

 

Linguisti
c terms 

 

Parameters 

 

Killed 

 

Wounded 

 

Hijacked 

 
 

 

Killed 
Wounded 

Hijacked 

 
 

 

[0 103] 
[0 261] 

[0 156] 

Lowest [0] [0] [0] 

Very 

Low 
[1] [1] [1] 

Low [2] [2] [2] 

Low 

Medium 
[3] [3] [3] 

Medium [5] [10] [5] 

High [20] [30] [10] 

Very 

High 
[40] [50] [20] 

Highest [103] [261] [156] 

 
Fig. 5. Membership functions of total number of projects. 

 

 
Fig. 6. Membership functions of total project budget ($). 

Step 4. Determination of the membership functions:  For 

this study, due to its computational efficiency and ease to use, 

the triangular membership function was used for both input 

and output values. Triangular membership function for each 

independent and dependent variable is illustrated in Fig. 5 

through 9.  

Step 5. Generating set of linguistic rules:  Total number of 

rules for each prediction methods was determined based on 

the number of input values and related membership functions. 

Training data was considered for generating IF-THEN rules. 

Step 6. Assigning rule weights: The rule weights were 

calculated based on the number of rule frequency extracted 

from the training dataset and assigned to the rules. For 

instance the rule weight for rule i was calculated as 8038 

(frequency of rule i) / 38400 (total number of rules or total 

records in training data) = 0.209323 (the rule weight). 

Step 7. Aggregate all rules: The output of each rule was 

combined to determine one fuzzy output value. For this study, 

this process is done by using the fuzzy “OR”.  

 
Fig. 7. Membership functions of number of people killed. 

 

 
Fig. 8. Membership functions of number of people wounded. 

 

Step 8. Defuzzify the aggregate output: For Mamdani type 

FIS, there are several defuzzification approaches such as 

Centroid of area (COA), Bisector of area (BOA), Mean of 

maximum (MOM), Smallest of maximum (SOM), and 

Largest of maximum (LOM). In this paper, we chose bisector 

of area (BOA) approach, since the lowest MAE values were 

obtained among other approaches. For the Sugeno type FIS, 

there are two approaches called weighted sum and weighted 

average. For this study, the weighted average approach was 

applied based on the lowest MAE values.  

Step 9. Validating the system: The system was validated 

using testing data for year 2010. The model performance was 

evaluated based on the mean absolute error (MAE) value. 
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Fig. 9. Membership functions of number of people hijacked. 

F. Performance Metrics 

Performance metrics were used for calculating the error 

(difference between actual and predicted values) in the model. 

There are several performance metrics including MSE (Mean 

Square Error), RMSE (Root Mean Square Error), MAE 

(Mean Absolute Error), and MAPE (Mean Absolute 

Percentage Error).  In this study, the model accuracy was 

evaluated based on the mean absolute error (MAE) between 

the predicted and actual values. The following equation was 

used for this calculation: 

1

1
MAE ( )

N

i ii
A P

N 
                       (2) 

where Pi and Ai were predicted and actual values, 

respectively; N: total number of records. 

 

IV. RESULTS AND DISCUSSION 

The performance values for incident types (number of 

people killed, wounded, and hijacked) for Mamdani and TSK 

models are given in Fig. 10. While the MAE values of 

number of killed, wounded, and hijacked output for Mamdani 

model were found as 0.6608, 1.0098, and 0.1981, 

respectively, these values were found in TSK model as 

0.7907, 1.1875, and 0.2494. The results showed that better 

prediction results were obtained for number of people 

hijacked than other dependent variables. Both Mamdani and 

TSK models were useful for estimating the number of 

adverse events based on the number of economic 

improvement projects and project budgets. However, 

Mamdani models had better predictive accuracy than TSK 

models as demonstrated by experimental results. 

In summary, these techniques were considered to examine 

the relationship between adverse events and infrastructure 

development in an active war theater. These models may be 

considered as general models that used Afghanistan data for 

validation and verification. The model has applicability for 

another country looking to build infrastructure while terrorist 

and military activities are present. 

Selecting the right fuzzy membership function and 

extracting of fuzzy rules are crucial and complicated for 

constructing fuzzy inference systems. Due to its 

computational efficiency and ease to use, the triangular 

membership function was selected to define fuzzy variables. 

It must be noted that this selection may not be the optimum 

one, and different membership functions should be tried in 

further studies.  

 
Fig. 10. Mean absolute values (MAE) of predicted values for 2010. 

 

The fuzzy inference rules were generated from training 

data and each rule was weighted based on its frequency 

among training records. Similarly, this approach may not be 

the optimum one and other approaches can be considered 

such as optimization-based methods (simulated annealing 

algorithm, genetic algorithm, etc.) for further analysis.   

 

V. CONCLUSIONS 

In this paper, the Takagi-Sugeno-Kang (TSK) type and the 

Mamdani type fuzzy inference systems (FIS) were applied to 

the problem of adverse events prediction based on the 

economic improvement projects and allocated infrastructure 

development budgets at different time periods in active war 

theater. As demonstrated by experimental results, when the 

model accuracy was calculated based on the mean absolute 

error (MAE), the Mamdani models had better predictive 

accuracy than the TSK models. It can be concluded that the 

FIS is a useful modeling technique for predicting the number 

of adverse events based on economic data.  Such a modeling 

approach should be further investigated for scenario-based 

prediction to support decision makers in analyzing historical 

economic data on how regional funds allocation can best help 

reduce or minimize the onset of adverse events in active war 

theater. Since one of the main goals of this research effort 

was to assess the relationship between adverse events and 

economic infrastructure developments, in the future more 

input data should be used to test data patterns of such adverse 

events, with sensitivity analysis to study the plausible 

cause-and-effect relationships. Finally, geographic 

information systems should be implemented to improve the 

expected model resolution and prediction quality.  
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