
  

 

Abstract—In this paper, we propose a Bayesian inference of 

the Markov chain model class to model dynamics of order book 

in high frequency trading environment. Accordingly, software 

program can predict the move of market price for both ask & 

bid via predictive distribution. A strategy algorithm can be 

developed for generating, routing & executing orders to gain 

profit. Experimental result based on security AAPL showed 

over 98% coverage by 50 transitions from 6561 state space. It 

further indicated market behavior of short time-frame can be 

clustered & labeled.   

 
Index Terms—Inferring markov chain, bayesian inference, 

high frequency trading, order book.  

 

I. INTRODUCTION 

Stock exchanges have undergone a transformation. 

Today’s trading, offer, bid, order all go through computer 

systems; the processes become fully automated. Meanwhile, 

the trading desk has adopted the same approach as 

Algorithmic & computer-assisted trading. HFT (High 

Frequency Trading) is the subset of this trend with the focus 

on speed & short time-frame. It has been recognized as one of 

the most significant market structure developments in recent 

years [1]-[3]. Estimation of HFT typically exceeds 50% of 

total volume in U.S.-listed equities [1]. 

Inference of Markov chains has a long and successful 

history in mathematical statistics [4]. In this paper, we 

propose a Bayesian inference of the Markov chain model 

class to model dynamics of order book in high frequency 

trading environment. This model provides the foundation of 

high-speed computation for algorithmic trading. Software 

can predict the change of short time-frame based on the 

predictive distribution, further generating, routing & 

executing orders. It’s one of the keys to succeed for 

sophisticated HFT security traders.   

In a well regulated market, high frequency doesn’t have a 

designated role with special data privileges [3]. Specifically, 

the proposed model is verified according to time-frames of 10 

milliseconds. Other than millisecond resolution, our model 

didn’t expect public-unknown information. Experimental 

result based on security AAPL showed over 98% coverage by 

50 transitions from total 6561 state space. It further indicated 

stock market behavior of short time-frame can be clustered & 

labeled.    
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II. INFERRING MARKOV CHAINS  

We develop a systematic relation between the data D , the 

chosen model M  and the vector of model parameters  .  

Bayes’ theorem expresses the relation as [4]:  
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Accordingly, the object of interest in the inference of 

model parameters is the posterior probability density

),|( MDP  ; the prior )|( MP   specifies our assumptions 

regarding the model parameters; the likelihood ),|( MDP   

describes the probability of the data given the model; and the 

evidence (or marginal likelihood) )|( MDP is the 

probability of the data given the model.  

A. Markov Chain  

We assume D  is a single data set of length N , which 

consists of symbols ts  from a finite alphabet  as starting 

point of inference [4],  

  tN ssssssD 13210 ...  (2) 

A generalization of the Markov property from first order 

model class assumes finite memory & stationary in the data 

source. It can be further written as only depending on 

preceding word [4],  

)|()()( 1

2

0
0 tt

N

t

sspspDp 





  (3) 

The stationary condition for any ),( mt  can be expressed 

as  

)|()|( 11   mtmttt sspssp  (4) 

Accordingly, we no longer need to track the position of 

index [4]. The model parameter of first order Markov chain 

M is  

   ttt sssp )|( 1  (5) 

With normalization constraint is applied as  
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B. Bayes’ Theorem to Markov Chain  

Based on Eq. (3) & Eq. (4), the likelihood results in the 

form  
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where )(
1 tt
ssn


is the number of times the word tt

ss
1 occurs in 

the sample data D  [4].  

The prior )|( MP   is adopted to specify assumptions 

about the model to be inferred before the data is considered. 

Here we use conjugate priors (the same functional form as 

posterior distribution).  Accordingly, we have  
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where )(
1 tt
ss


  is the hyperparameters to prior (must be real 

& positive);  )(
1t

s  is defined as 




ts
tt ss )( 1 ; and 

)!1()(  xx is Gamma function [4]. The  function 

constrains the model parameters to be properly normalized 

for each 
1t

s  as [4] 
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Priori’s mean & variance can be expressed as [4] 
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Evidence )|( MDP  is seen to be a simple normalization 

term in Bayes’ theorem. Formally, its definition is  
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where we see this term can be interpreted as an average of the 

likelihood (Eq. (7)) over the prior distribution (Eq. (8)) [4].  

By knowing likelihood, prior & evidence, posterior 

distribution becomes [4] 
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Accordingly, we can obtain posterior mean estimate (PME) 

as [4]  
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C. Predictive Distribution  

After we have an inferred model, a common task is to 

estimate the probability of a new observation 
)(newD . This 

can be implemented from likelihood as [4] 
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where )
2

1(, ttm ss 
is the number of times the word 

tt ss2

1

occurs in the sample data 
)(newD  . The respected posterior 

distribution as [4] 
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After following the same methodology to calculate 

evidence, posterior distribution can be obtained 
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III. MODELING ORDER BOOK DYNAMICS  

We consider a financial asset traded in an order-driven 

market. Accordingly, market participants can post two types 

of buy/sell orders: market order or limit order. When market 

order arrives to security exchange, it is matched with the best 

available price in the limit order book and a trade occurs. The 

quantities available in the limit order book will be updated 

thereafter. A limit order is an order intended to trade a certain 

amount of a security at a given price. Typically, limit orders 

are posted to an electronic trading system and orders’ states 

are summarized at each price level: this is known as the limit 

order book. For the lowest price of an outstanding limit sell 

order, it is called ask price; bid price is referred to the highest 

buy price from the order book [5], [6].     

A limit order from the order book can be executed or 

canceled. The execution of a limit order can be very quickly, 

just it may take a long time till participates are willing to trade 

based on the requested price [5], [6].  
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For traders, the change of ask & bid price represents the 

opportunity to gain profit. If trader’s buy order was filled 

with bid price lower than current ask price, an executed sell 

order based on current market price means capital gain (from 

the price gap between sell & buy orders). Alternatively, if 

trader’s security was borrowed, a current buy order filled 

with lower price than previously executed sell order is 

signifying another type of capital gain: After returning the 

security, the price gap between sell & buy orders is the 

margin. A high-precision model for order book dynamics can 

be utilized to predict the move for both ask & bid prices. A 

trading algorithm can be further developed. 

A. Market Structure  

We describe the order book and security trading with four 
Z  discrete time Markov processes in the sequence of ask 

process, bid process, executed volume process and filled 

price process (i.e. executed order) as below   
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Accordingly, )(tAskk
 is the ask price from participant k

at time t ; ),( taskn  stands for the total number of asks at 

time t . Similarly, )(tBid l
 is the bid price from participant l

at time t ; ),( tbidn  stands for the total number of bids at time 

t ; )(torderVolm
 and )(torderPricem

  is the traded volume 

& price for participant m at time t ; we use ),( tordern  to 

represent the total number of trades at  time t .  

Limit order will be valid & stay in the order book till 

execution or cancelation. )(tAskvalid
 & )(tBid valid

 are used 

to indicate the still valid asks & bids at time t  (they were 

created before time t ). Therefore, the best ask & bid prices at 

time t  are then defined as  

)}(

),(),...,(),(min{)( ),(21

tAsk

tAsktAsktAskttopAsk

valid

taskn

 (23) 

 

)}(

),(),...,(),(max{)( ),(21

tBid

tBidtBidtBidttopBid

valid

tbidn

 (24) 

We must have )()( ttopBidttopAsk  , otherwise, a 

free-lunch situation exists. The best ask & bid prices 

sometimes are referred to NBBO (National Best Bid & Offer). 

For our model, we are also interested to know spread & 

mid-price at time t  as 
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)()()( ttopBidttopAsktspread   (26) 

 

We also want to know the highest & lowest traded prices  
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In addition to that, their mid-price and total volume are 

also considered   
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B. Inference of Markov Chain  

We first define the normalization function ),( txf to 

ensure finite memory & stationary as  
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Accordingly, a join operation to represent the at time t  is 

created as 
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where tp is the transpose operation.  

For every element in state, there are 3 possible outcomes 

(i.e. 1, 0 & -1). Totally, we have 6561 possible states 

( 656138  ). Here, we define Markov chain transition matrix 

as 
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where jkp , represents the transition number from state k  to 

state j and z indicates the state space.  

We consider Eq. (33) Markov chain transition matrix MC  

as model M  in inference framework. Without loss of 

International Journal of Machine Learning and Computing, Vol. 5, No. 3, June 2015

249



  

generality, we can assume a high-frequency data D being 

described as   
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In order to map )(tD to a Markov state, we first apply 

normalization function ),( txf (Eq. (31)). Thereafter, a hash 

mapping )(thash  can be considered as 
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where 
koffset  and 

jY are element k

order. Here, we can set 1koffset   for all k and jjY 3 for 

all j. This hash will guarantee a unique positive integer for 

every state.  

We only consider first order model, 
jkp ,
can be realized as 

follow 
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Without loss of generality, Eq. (5) can be rewritten as  
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Combining Eq. (33), Eq. (34) and Eq. (37), an inference 

Markov chain is obtained with  

1) High-frequency & time-series data )}({ tDD    

2) Markov chain transition matrix MC as chosen model  

3) The vector of model parameters    

Thereafter, online & real-time trading software can adopt 

predictive distribution to predict the change of bid & ask 

prices.    

IV. IMPLEMENTATION  

The proposed model is realized in two packages 

hftCsvParser and hftMarkovChain. We use Python language 

with scientific computing package numpy.  

Package hftCsvParser was mainly developed for data 

processing. Similar to real-world applications, HFT data feed 

can be noisy. To provide accurate result, it’s necessary to 

clean out noise before fitting. We implemented multi-stage 

processing: csv raw input, pre data, and parsed data.  

The proposed inference Markov chain is developed by 

package hftMarkovChain. Other than model building, it also 

included serialization & deserialization based on sparse for 

storage & computing efficiency. The direct dump of 

transition matrix MC  is over 1GB (Gigabyte); the 

sparse-based serialization is 40KB (kilobyte) in our 

experimentation.  

 

V. EXPERIMENTAL RESULTS  

Experimentation is conducted based on security AAPL 

with 43,710 time-series records. The period of time is ranged 

from 19:19:08.12 GMT to 19:26:25.07 GMT on May 18th, 

2012 with inputs topAsk , topBid , barHi , barLo , and vol . 

The model building time will depend on machine. In our lab, 

Ubuntu 12.10 can finish fitting within 2 minutes.   

Fig. 1 is the scatter plot of inference Markov chain 

transition matrix. Horizontal axis represents the start state; 

the end state is vertical axis. Each dot indicates actually 

happened transition from start state to end state. Theoretically, 

there are over 43 million possible transitions (6561 states to 

6561 states, i.e. 43,046,721 possible transitions.) From Fig. 1, 

we see limited number of transitions and recognizable 

clusters. Specifically, with looking at the top 50 transitions 

(based on appeared numbers), its sparsity can be further 

acknowledged as illustrated in Fig. 2. 

Fig. 3 is another chart for transition matrix. Its vertical axis 

stands for the happening times for transition i; every possible 

transition has been labeled on the horizontal axis. 521 

transitions have actually happened (less than 0.01% of all 

possible transitions.) By skipping the highest transition, the 

rest 49 transitions have similar range (between 10 and 380) as 

displayed in Fig. 4. If we look at the coverage percentage, top 

10 transitions is over 95.5%; top 20 can cover 97%; over 98% 

has been included by top 50 transitions as in Table I.  

As a result, over 98% coverage can be achieved by 50 

transitions. Since the number of nodes can’t be higher than 

number of transitions, 50 Markov nodes can model the 

dynamic of order book. It further indicates stock market 

behavior of short time-frame can be possibly clustered & 

labeled.    

 

VI. CONCLUSION 

In this paper, we propose a Bayesian inference of the 

Markov chain model class to model dynamics of order book 

for high frequency trading environment. Our real-world 

experimental result indicates the change behavior of short 

time-frame is in limited variety: 50 states can cover over 98% 

of transitions; their happening numbers are also mostly in the 

similar range (only one exception.) Consequently, this model 
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can be utilized as the foundation for algorithmic trading; the 

predictive distribution can be adopted to predict the move of 

order book. Profit strategy can be developed accordingly.  

Possible future works of this research include further 

large-scale fitting of other securities to understand the 

difference of models; holdout methods for performance 

benchmarking; multi-order inference Markov chain.  

 
TABLE I: THE PERCENTAGE OF TOP TRANSITION STATES 

 Top 10 Top 20 Top 50 All (522) 

Percentage 95.537% 97.066% 98.038% 100% 

 

 
Fig. 1. Scatter plot of inference Markov chain transition matrix. 

 

 
Fig. 2. Scatter plot of inference Markov chain transition matrix (50 

transitions). 

 

 
Fig. 3. Number of transitions in Markov chain transition matrix. 

 
Fig. 4. Number of top 2 to 50 transitions in Markov chain transition matrix. 
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