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Abstract—In this paper, we study rough set approximations 

in an incomplete information table via a generalized model of 

Ziarko’s variable precision rough set model, called Variable 

Precision Generalized Rough Set (VPGRS) model. Viewing 

the 𝜷-lower and 𝜷-upper approximations in VPGRS model 

as mappings from 𝟐𝑼 (the power set of the universe of 

discourse) to itself, we show that they are mutually dual, and 

that both of them are order-preserving. We then introduce the 

belief and plausibility functions, respectively, over U, based on  

the 𝜷-lower and 𝜷-upper approximations, respectively, in 

VPGRS model, and we incorporate the concepts of evidence 

theory and VPGRS model to examine incomplete information 

tables. 

 

Index Terms—Rough sets, belief functions, reflexive relations, 

variable precision rough set models, lower and upper 

approximations. 

 

I. INTRODUCTION 

Evidence theory is a useful tool in knowledge 

representation which plays an important role in dealing with 

many aspects of problem solving. This includes handling 

incomplete information tables [1]. One of the most important 

concepts an intelligent system needs to understand is the 

concept of knowledge. It may or may not be perfect. Also, 

one wants to know what knowledge is needed to achieve 

particular goals, and how that knowledge can be obtained. So, 

one of the important problems along this line is to seek an 

appropriate approach to analyze imperfect knowledge. The 

problem related to imperfect knowledge or an incomplete 

information table has been investigated by many researchers 

in different areas. Our approach is to apply evidence theory 

which is essentially Dempster-Shafer theory [2]. This theory 

is a generalization of the Bayesian theory of subjective 

probability, also known as the theory of belief functions. 

Some important features of Dempster-Shafer theory are that 

it has the capability to cope with varying levels of precision 

regarding the information and allows for direct representation 

of uncertainty of system responses where an imperfect 

information can be characterized by a set or an interval. With 

these features, we consider the concept of variable precision 

rough set model [3] that extends applications in lower and 

upper approximations [4]. Rough set theory [5], [6] can be 

used to model certain classification of the available 

information but the classification must be fully correct or 
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certain. We need a method that can handle the classification 

with some degree of uncertainty. In this paper, we focus on 

applying belief functions to representing partial knowledge 

of incomplete information tables [7], [8]. In what follows, we 

set up the notations and recall lower and upper 

approximations in Variable Precision of Generalized Rough 

Sets (VPGRS) [9]-[12]. We then define belief functions and 

incomplete information tables. We establish several 

relationships on incomplete information tables by analyzing 

lower and upper approximations in VPGRS models. We also 

connect evidence theory and VPGRS models. 

 

II. PRELIMINARIES 

Let U be a nonempty finite set, referred as the universe of 

discourse (in short, the universe). The power set of U, 

denoted by 2𝑈, is the collection of all subsets of U, including 

the whole set U and the empty set Ø. That is, 

2𝑈 = {𝑆 | 𝑆 ⊆ 𝑈}. 

The Cartesian product 𝑈 × 𝑈 is the set of all ordered pairs 

of elements of U. A binary relation on U is a subset of 𝑈 × 𝑈. 

For a relation 𝑅 ⊆ 𝑈 × 𝑈, we often write 𝑥𝑅𝑦 to represent 

(𝑥, 𝑦) ∈ 𝑅. In case R is an equivalence relation, we say that 

objects x and y are equivalent. 

Let 𝑅 ⊆ 𝑈 × 𝑈. For each 𝑥 ∈ 𝑈, the image of x under a 

relation R is defined as𝑅(𝑥) = {𝑦 ∈ 𝑈 | 𝑥𝑅𝑦}. Notice that in 

case R is an equivalence relation, the images are either 

disjoint or identical; we use a special notation and write 𝑅(𝑥) 

as [𝑥]𝑅 , referred as the R-equivalence class of x. The 

collection 𝑈/𝑅 of all distinct R-equivalence classes forms a 

partition of U, and is referred to as the quotient set of U 

modulo R. 

A. Set Approximations in the VPGRS Model 

From now on, unless otherwise specified, we shall assume 

that 𝑅 ⊆ 𝑈 × 𝑈  is reflexive. Based on a reflexive relation 

𝑅 ⊆ 𝑈 × 𝑈, Pawlak's lower and upper approximations [5], [6] 

are commonly extended in the following way [13], [14]:  

for 𝑋 ⊆ 𝑈, 

               𝑅(𝑋) = {𝑥 ∈ 𝑈 | 𝑅(𝑥) ⊆ 𝑋},                       (2.1) 

                𝑅(𝑋) = {𝑥 ∈ 𝑈 | 𝑅(𝑥) ∩ 𝑋 ≠ ∅}.                 (2.2) 

Let β be a parameter such that 0 ≤ 𝛽 < 0.5. For 𝑥 ∈ 𝑈, 

and  𝑋 ⊆ 𝑈, we define 𝑅(𝑥) ⊆𝛽  𝑋 by 

𝑅(𝑥) ⊆𝛽  𝑋if and only if 𝑒(𝑅(𝑥), 𝑋) ≤ 𝛽 

which is equivalent to 1 −
|𝑅(𝑥)∩𝑋|

|𝑅(𝑥)|
≤ 𝛽 or 

|𝑅(𝑥)∩𝑋|

|𝑅(𝑥)|
 ≥ 1 − 𝛽, 
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where | ∙ | is the set cardinality and 

𝑒(𝑅(𝑥), 𝑋) = 1 −
|𝑅(𝑥)∩𝑋|

|𝑅(𝑥)|
                     (2.3) 

is the inclusion error of R(x) in X.  

For 𝑥 ∈ 𝑈, and 𝑋 ⊆ 𝑈,  we also define 𝑅(𝑥) ∩𝛽 𝑋 ≠  ∅ by 

𝑅(𝑥) ∩𝛽  𝑋 ≠  ∅  if and only if  𝑒(𝑅(𝑥), 𝑈 − 𝑋) > 𝛽 

which is equivalent to 1 −  
|𝑅(𝑥)∩(𝑈−𝑋)|

|𝑅(𝑥)|
> 𝛽  or 

|𝑅(𝑥)∩𝑋|

|𝑅(𝑥)|
>𝛽. 

With the above notations, the 𝛽 -lower and 𝛽 -upper 

approximations in Ziarko's VP-model can be extended in the 

following way [11].  

For 𝑋 ⊆ 𝑈,  

𝑅𝛽(𝑋) = {𝑥 ∈ 𝑈 | 𝑅(𝑥) ⊆𝛽  𝑋 }  

= {𝑥 ∈ 𝑈 |1 − 
|𝑅(𝑥) ∩ 𝑋|

|𝑅(𝑥)|
 ≤ 𝛽}, 

               = {𝑥 ∈ 𝑈 |
|𝑅(𝑥)∩𝑋|

|𝑅(𝑥)|
 ≥ 1 − 𝛽},                       (2.4) 

and 

           𝑅
𝛽

(𝑋) = {𝑥 ∈ 𝑈 | 𝑅(𝑥) ∩𝛽  𝑋 ≠  ∅ } 

                         = {𝑥 ∈ 𝑈 |1 − 
|𝑅(𝑥) ∩ (𝑈 − 𝑋)|

|𝑅(𝑥)|
> 𝛽 } 

 = {𝑥 ∈ 𝑈 |
|𝑅(𝑥)∩𝑋|

|𝑅(𝑥)|
> 𝛽 }.                           (2.5) 

Rough set theory with such approximations will be 

referred to as the variable precision generalized rough set 

(VPGRS) model [11]. Notice from (2.1)-(2.5) that for any 

𝑋 ⊆ 𝑈, 

              𝑅0(𝑋) = 𝑅(𝑋), 𝑅
0

(𝑋) = 𝑅(𝑋)                     (2.6) 

 

Using (2.3)-(2.5), we immediately obtain the following 

relationships for 𝛽-lower and 𝛽-upper approximations. 

Lemma 1. Let 𝑅 ⊆ 𝑈 × 𝑈  be reflexive, and let 𝛽 ∈
 [0, 0.5). Then 

1. 𝑅𝛽(∅) =  𝑅
𝛽

(∅) = ∅; 𝑅𝛽(𝑈) = 𝑅
𝛽

(𝑈) = 𝑈. 

2. 𝑅
𝛽

(𝑋)  = 𝑈 − 𝑅𝛽(𝑈 − 𝑋), ∀ 𝑋 ⊆ 𝑈. 

3. If 𝑋 ⊆ 𝑌 ⊆ 𝑈, then 

𝑅𝛽(𝑋) ⊆ 𝑅𝛽(𝑌)  and   𝑅
𝛽

(𝑋) ⊆ 𝑅
𝛽

(𝑌). 

4. 𝑅𝛽(𝑋) ⊆ 𝑅
𝛽

(𝑋), ∀ 𝑋 ⊆ 𝑈. 

B. Belief Functions 

We first recall from [2], 

Definition 1. A real-valued function 

𝑚 ∶ 2𝑈 → [0, 1] 

is called a basic probability assignment, if it satisfies 

1) 𝑚(∅) = 0, 

2) 
UE

Em )( =1. 

A set 𝐸 ⊆ 𝑈  with 𝑚(𝐸) > 0  is referred to as a focal 

element of 𝑚 ∶ 2𝑈 → [0,1].  
Given a basic probability assignment 𝑚: 2𝑈 →

[0, 1], according to Shafer [2], the belief and plausibility 

functions over U, Bel: 2𝑈 → [0,1]  and Pl: 2𝑈 → [0,1] , 

respectively, are defined as follows: for any 𝑋 ⊆ 𝑈, 

                    



XE

EmXBel )()( ,                      (2.7) 

                            
 ≠X∩

)()(
E

EmXPl .                         (2.8) 

The belief and plausibility functions over U are mutually 

dual in the sense that 

        𝑃𝑙(𝑋) = 1 − 𝐵𝑒𝑙(𝑈 − 𝑋), ∀ 𝑋 ⊆ 𝑈.            (2.9) 

We show (2.9) as follows. From Definition 1, (2.7) and 

(2.8), we obtain 

X   

( -X)

( ) ( )

1 ( )

1 ( ).

E

E U

Pl X m E

m E

Bel U X







 

  





∩ ≠

 

 

C. Incomplete Information Tables  

Definition 2. An information table is a 4-tuple (U, A, V, f), 

where U is a nonempty finite universe, A is a nonempty finite 

set of attributes, V is the union of attribute domains, and 

𝑓: 𝑈 ×  𝐴 → 𝑉 is an information function defined for every 

 𝑥 ∈ 𝑈  and 𝑎 ∈ 𝐴 , such that 𝑓(𝑥, 𝑎) ∈  𝑉𝑎 , where 𝑉𝑎 is a 

domain of the attribute a [15]. 

If 𝑉𝑎 contains null value for at least one a ∈ 𝐴, the 4-tuple 

(U, A, V, f), is called an incomplete information table. In what 

follows, we will denote null value by "*".    

 

III. MAIN RESULTS 

Let 𝑅 ⊆ 𝑈 × 𝑈 be reflexive, and let 
 

𝑄 = {(𝑥, 𝑦) ∈ 𝑈 × 𝑈  | 𝑅(𝑥) = 𝑅(𝑦)}. 

 

be the so-called derived equivalence relation of R. For  

𝛽 ∈  [0,0.5),   using the derived equivalence relation, (2.4) 

and (2.5) can be rewritten as 

𝑅𝛽(𝑋) =∪ {[𝑥]𝑄| 𝑅(𝑥) ⊆𝛽  𝑋 }           

                        =  ∪ {[𝑥]𝑄|1 −  
|𝑅(𝑥) ∩ 𝑋|

|𝑅(𝑥)|
 ≤ 𝛽},        

=  ∪ {[𝑥]𝑄|
|𝑅(𝑥)∩𝑋|

|𝑅(𝑥)|
 ≥ 1 − 𝛽},          (3.10) 

and 

𝑅
𝛽

(𝑋) = ∪ {[𝑥]𝑄| 𝑅(𝑥) ∩𝛽  𝑋 ≠  ∅ }            

                    = ∪ {[𝑥]𝑄|1 −  
|𝑅(𝑥) ∩ (𝑈 − 𝑋)|

|𝑅(𝑥)|
> 𝛽 } 

                             = ∪ {[𝑥]𝑄|
|𝑅(𝑥)∩𝑋|

|𝑅(𝑥)|
> 𝛽 }.                   (3.11) 

A. Incomplete Information Tables and Rough Set 

Approximations 

Let (U, A, V, f) be an incomplete information table. For 

each nonempty 𝐵 ⊆ 𝐴, define  

𝑅𝐵 = {(𝑥, 𝑦) ∈ 𝑈 × 𝑈 | ∀ 𝑎 ∈ 𝐵, 𝑓(𝑥, 𝑎) = 𝑓(𝑦, 𝑎),  or 

𝑓(𝑥, 𝑎) = ∗, or 𝑓(𝑦, 𝑎) = ∗}.    (3.12) 

As it was shown in Kryszkiewicz [15] that  𝑅𝐵  is a 

reflexive and symmetric relation on the set U. Let 

International Journal of Machine Learning and Computing, Vol. 5, No. 3, June 2015

243



  

 

 𝑄𝐵 = {(𝑥, 𝑦)  ∈ 𝑈 × 𝑈 | 𝑅𝐵(𝑥) =  𝑅𝐵(𝑦)}           (3.13) 

 

be the derived equivalence relation of 𝑅𝐵 . 

In what follows, we shall assume that (U, A, V, f) is an 

incomplete information table. Let 𝛽 ∈  [0,0.5). For 

anynonempty 𝐵 ⊆ 𝐴, according to (3.10) and (3.11), we 

propose a VPGRS model based on the reflexive and 

symmetric relation 𝑅𝐵 on U determined by B as defined in 

(3.12)  as follows:  

For 𝑋 ⊆ 𝑈, 

𝑅𝐵
𝛽(𝑋) = ∪ {[𝑥] 𝑄𝐵

|𝑅𝐵(𝑥) ⊆𝛽  𝑋 }          

                               =  ∪ {[𝑥] 𝑄𝐵
|1 − 

|𝑅𝐵(𝑥) ∩ 𝑋|

|𝑅𝐵(𝑥)|
 ≤ 𝛽},        

             =  ∪ {[𝑥] 𝑄𝐵
|

|𝑅𝐵(𝑥)∩𝑋|

|𝑅𝐵(𝑥)|
 ≥ 1 − 𝛽},    (3.14) 

and 

       𝑅𝐵

𝛽
(𝑋) = ∪ {[𝑥] 𝑄𝐵

|𝑅𝐵(𝑥) ∩𝛽  𝑋 ≠  ∅  }                

 

                         = ∪ {[𝑥] 𝑄𝐵
|1 −  

|𝑅𝐵(𝑥)∩(𝑈−𝑋)|

|𝑅𝐵(𝑥)|
  > 𝛽 }               

 

                         = ∪ {[𝑥] 𝑄𝐵
|

|𝑅𝐵(𝑥)∩𝑋|

|𝑅𝐵(𝑥)|
> 𝛽}.                      (3.15) 

The above discussion, combined with Lemma 1, leads to 

the following theorem. 

Theorem 1. Let(U, A, V, f) be a given incomplete 

information table. For each nonempty𝐵 ⊆ 𝐴, define 
 

𝑅𝐵 = {(𝑥, 𝑦) ∈ 𝑈 × 𝑈 | ∀ 𝑎 ∈ 𝐵, 𝑓(𝑥, 𝑎) = 𝑓(𝑦, 𝑎),
or 𝑓(𝑥, 𝑎) = ∗, or 𝑓(𝑦, 𝑎) = ∗},    

 

and let 𝑄𝐵 = {(𝑥, 𝑦) ∈ 𝑈 × 𝑈  |𝑅𝐵(𝑥) = 𝑅𝐵(𝑦)} be the 

derived equivalence relation of 𝑅𝐵. Then 𝑅𝐵 is reflexive and 

symmetric on U. In addition, for any  𝛽 ∈  [0,0.5), we have 

the following relations. 
 

1. 𝑅𝐵
𝛽(∅) =  𝑅𝐵

𝛽
(∅) = ∅; 𝑅𝐵

𝛽(𝑈) = 𝑅𝐵

𝛽
(𝑈) = 𝑈. 

2. 𝑅𝐵

𝛽
(𝑋) = 𝑈 − 𝑅𝐵

𝛽(𝑈 − 𝑋), ∀  𝑋 ⊆ 𝑈. 

3. If 𝑋 ⊆ 𝑌 ⊆ 𝑈, then 

               𝑅𝐵
𝛽(𝑋) ⊆ 𝑅𝐵

𝛽(𝑌)  and   𝑅𝐵

𝛽
(𝑋) ⊆  𝑅𝐵

𝛽
(𝑌). 

4. 𝑅𝐵
𝛽(𝑋) ⊆ 𝑅𝐵

𝛽
(𝑋), ∀ 𝑋 ⊆ 𝑈. 

B. Evidence Theory and VPGRS Model 

Let (U, A, V, f) be an incomplete information table. Let 
 

 𝑅𝐴 = {(𝑥, 𝑦) ∈ 𝑈 × 𝑈 | ∀ 𝑎 ∈ 𝐵, 𝑓(𝑥, 𝑎) = 𝑓(𝑦, 𝑎),
or 𝑓(𝑥, 𝑎) = ∗, or 𝑓(𝑦, 𝑎) = ∗} 

 

be the reflexive and symmetric relation on U determined by A, 

and  let 𝑄𝐴 be the derived equivalence relation of 𝑅𝐴. 
Let 

F = {𝑅𝐴(𝑥)| 𝑥 ∈ 𝑈} 

 = {𝐹1,𝐹2, ∙ ∙ ∙, 𝐹𝑘 } 

 

be the collection of all distinct images of members of U under 

𝑅𝐴. For j = 1, 2, …, k, let 
 

𝐸𝑗 = {𝑥 ∈ 𝑈 |𝑅𝐴(𝑥) = 𝐹𝑗}. 

 

Then {𝐸1,𝐸2, ∙ ∙ ∙, 𝐸𝑘 }  is the collection of all distinct 

𝑄𝐴-equivalence classes. That is, 
 

U/𝑄𝐴  =  {𝐸1,𝐸2, ∙ ∙ ∙, 𝐸𝑘 }. 
 

Define  
 

𝑚𝐴: 2𝑈 → [0,1] 
 

by assigning 

𝑚𝐴(𝐹𝑗) =  
|𝐸𝑗|

∑ |𝐸𝑗|j=1,2,…,k

.   (3.17) 

 

 

to each 𝐹𝑗, and zero to all other subsets of U. Then, according 

to Definition 1, 𝑚𝐴: 2𝑈 → [0,1]  is a basic probability 

assignment [16].  

For any parameter 𝛽 ∈  [0,0.5),according to (3.14) and 

(3.15), the 𝛽-lower and 𝛽-upper approximationsof a set X, 

𝑅𝐴
𝛽(𝑋)and 𝑅𝐴

𝛽
(𝑋), respectively, can be rewritten as follows. 

       𝑅𝐴
𝛽(𝑋) = {𝑥 ∈ 𝑈 |𝑅𝐴(𝑥) ⊆𝛽  𝑋 } 

                     =  ∪ {𝐸𝑗|𝐹𝑗 ⊆𝛽  𝑋 }, 

                     =  ∪ {𝐸𝑗|1 −  
|𝐹𝑗∩𝑋|

|𝐹𝑗|
 ≤ 𝛽} 

                     =  ∪ {𝐸𝑗|
|𝐹𝑗∩𝑋|

|𝐹𝑗|
 ≥ 1 − 𝛽},                      

and 

            𝑅𝐴

𝛽
(𝑋) = {𝑥 ∈ 𝑈 |𝑅𝐴(𝑥) ∩𝛽  𝑋 ≠  ∅ } 

                        = ∪ {𝐸𝑗|𝐹𝑗 ∩𝛽 𝑋 ≠ ∅} 

                             = ∪ {𝐸𝑗|1 − 
|𝐹𝑗∩(𝑈−𝑋)|

|𝐹𝑗|
> 𝛽 }                 

                          = ∪ {𝐸𝑗|
|𝐹𝑗∩𝑋|

|𝐹𝑗|
> 𝛽 }.                            (3.18) 

 

According to (3.17) and (3.18), we obtain 

 

| 𝑅𝐴
𝛽(𝑋)| =  ∑ |𝐸𝑗|𝐹𝑗⊆𝛽 𝑋                         (3.19) 

 

                    |𝑅𝐴

𝛽
(𝑋)| = ∑ |𝐸𝑗|.𝐹𝑗∩𝛽𝑋≠∅                       (3.20) 

 
 

Let us define   𝑃𝑟: 2𝑈 → [0,1] as follows. 
 

                            𝑃𝑟(𝑋)=
|𝑋|

|𝑈|
 ,   ∀ 𝑋 ⊆ 𝑈.                         (3.21) 

 

We next define the belief and plausibility functions over U, 

Bel:2𝑈 → [0,1] and  Pl : 2𝑈 → [0,1], respectively, as follows. 

For any 𝑋 ⊆ 𝑈, 
                 

  𝐵𝑒𝑙(𝑋) = ∑ 𝑚𝐴(𝐹𝑗)𝐹𝑗⊆𝛽 𝑋                         (3.22) 

 

 𝑃𝑙(𝑋) =   ∑ 𝑚𝐴(𝐹𝑗)𝐹𝑗∩𝛽𝑋≠∅                      (3.23) 

Then, according to (3.16)-(3.21), we have 
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𝐵𝑒𝑙(𝑋) = ∑ 𝑚𝐴(𝐹𝑗)

𝐹𝑗⊆𝛽 𝑋

 

                                          = ∑
|𝐸𝑗|

∑ |𝐸𝑗|𝑗=1,2,…,𝑘
  𝐹𝑗⊆𝛽 𝑋  

 

                                      =  
1

∑ |𝐸𝑗|j=1,2,…,k
∑  | 𝐸𝑗  |         𝐹𝑗⊆𝛽 𝑋  

 

                                      = 
1

|𝑈|
 | 𝑅𝐴

𝛽(𝑋)| 

 

= 𝑃𝑟 (𝑅𝐴
𝛽(𝑋)), 

and  

𝑃𝑙(𝑋) =   ∑ 𝑚𝐴(𝐹𝑗)

𝐹𝑗∩𝛽𝑋≠∅

 

                                =   ∑
|𝐸𝑗|

∑ |𝐸𝑗|𝑗=1,2,…,𝑘
𝐹𝑗∩𝛽𝑋≠∅

            

=  
1

∑ |𝐸𝑗|𝑗=1,2,…,𝑘
∑ |𝐸𝑗|𝐹𝑗∩𝛽𝑋≠∅  

                                      = 
1

|𝑈|
|𝑅𝐴

𝛽
(𝑋)| 

                                      = 𝑃𝑟 (𝑅𝐴

𝛽
(𝑋)). 

 

We summarize the results of this discussion in the 

following theorem. 

Theorem 2. Considering an incomplete information table    

(U, A, V, f), let  

 𝑅𝐴 = {(𝑥, 𝑦) ∈ 𝑈 × 𝑈 | ∀ 𝑎 ∈ 𝐴, 𝑓(𝑥, 𝑎) = 𝑓(𝑦, 𝑎),
or 𝑓(𝑥, 𝑎) = ∗, or 𝑓(𝑦, 𝑎) = ∗} 

be the reflexive and symmetric relation on U determined by A, 

and let 𝑄𝐴be the derived equivalence relation of 𝑅𝐴. Let  
 

F= {𝑅𝐴(𝑥)| 𝑥 ∈ 𝑈} = {𝐹1,𝐹2, ∙ ∙ ∙, 𝐹𝑘 } 

 

be the collection of all distinct images of members of U 

under 𝑅𝐴,  and let  
 

𝐸𝑗 = {𝑥 ∈ 𝑈 |𝑅𝐴(𝑥) = 𝐹𝑗}. 

 

For j=1, 2, …, k, let 
 

𝑚𝐴(𝐹𝑗) =  
|𝐸𝑗|

∑ |𝐸𝑗|𝑗=1,2,…,𝑘

 

 

and let 𝑚𝐴(𝑆) = 0 for all other subsets S⊆ 𝑈. Then 
 

𝑚𝐴: 2𝑈 → [0,1] 

 

is a basic probability assignment, and  the belief and 

plausibility functions over U,  
 

Bel:2𝑈 → [0,1]   and   Pl : 2𝑈 → [0,1], 

 

can be defined as follows. 
 

𝐵𝑒𝑙(𝑋) =  ∑ 𝑚𝐴(𝐹𝑗)

𝐹𝑗⊆𝛽 𝑋

 

              = 𝑃𝑟 (𝑅𝐴
𝛽(𝑋)), 

and  
                            

𝐵𝑒𝑙(𝑋) =  ∑ 𝑚𝐴(𝐹𝑗)

𝐹𝑗∩𝛽𝑋≠∅

 

        = 𝑃𝑟 (𝑅𝐴

𝛽
(𝑋)) 

 

for any 𝑋 ⊆ 𝑈. 
 

IV. AN ILLUSTRATIVE EXAMPLE 

For the sake of illustration, we present in this section an 

example of an incomplete information table (U, A, V, f), 

which is shown in Table I. From this table, we have  

U = {1, 2, 3, 4, 5, 6}, A = {p, q}. 

Let 𝑅𝐴 be the reflexive and symmetric relation on U 

determined by A as defined in (3.12).  According to Table I, 

the images are:  
 

𝑅𝐴(1)= 𝑅𝐴(2)={1, 2, 6},  𝑅𝐴(3)={3}, 

𝑅𝐴(4) = 𝑅𝐴(5) = {4, 5, 6},  𝑅𝐴(6) = {1, 2, 4, 5, 6}. 

 

From the images of 𝑅𝐴, we assume that 

𝐹1 = {1, 2, 6},  𝐹2={3}, 

𝐹3 = {4, 5, 6},  𝐹4={1, 2, 4, 5, 6}. 

It follows that 

𝐸1 = {1, 2},  𝐸2={3}, 𝐸3={4, 5},  𝐸4(6)={6}. 

 
TABLE I: EXAMPLE OF AN INCOMPLETE INFORMATION TABLE 

U p q 

1 1 1 

2 1 1 

3 2 2 

4 1 2 

5 1 2 

6 1 * 

Let  𝑄𝐴 be the derived equivalence relation of  𝑅𝐴 , then we 

have 
 

U/𝑄𝐴  =  {{1, 2}, {3}, {4, 5}, { 6} }. 
 

Let us approximate the sets   𝑋 =  {1, 2, 3},  and 𝑌 =
 {1, 2, 3, 4, 6} for the threshold 𝛽 = 0.3. 
 

According to (2.3), we have 
 

𝑒(𝐹1, 𝑋) = 1 −
2

3
=

1

3
, 𝑒(𝐹2, 𝑋) = 1 −

1

1
= 0, 

𝑒(𝐹3, 𝑋) = 1 −
0

3
= 1, 𝑒(𝐹4, 𝑋) = 1 −

2

5
=

3

5
, 

𝑒(𝐹1, 𝑈 − 𝑋) =
2

3
, 𝑒(𝐹2, 𝑈 −  𝑋) = 1, 

𝑒(𝐹3, 𝑈 − 𝑋) = 0,          𝑒(𝐹4, 𝑈 −  𝑋) =
2

5
, 

𝑒(𝐹1, 𝑌) = 1 −
3

3
= 0, 𝑒(𝐹2, 𝑌) = 1 −

1

1
= 0, 

𝑒(𝐹3, 𝑌) = 1 −
2

3
=

1

3
, 𝑒(𝐹4, 𝑌) = 1 −

4

5
=

1

5
, 
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According to (3.16), we have 
 

𝑚𝐴(𝐹1) =   
1

3
, 𝑚𝐴(𝐹2) =  

1

6
, 

 

 𝑚𝐴(𝐹3) =  
1

3
,  𝑚𝐴(𝐹4) =  

1

6
 

 

Therefore, we have 
 

 

𝑅𝐴
0.3(𝑋) = 𝐸2 = {3} 

 

𝑅𝐴

0.3
(𝑋) = 𝐸1 ∪ 𝐸2 ∪ 𝐸4 = {1, 2, 3,6} 

 

𝑅𝐴
0.3(𝑈 − 𝑋) = 𝐸3 = {4, 5} 

 

𝑅𝐴

0.3
(𝑈 − 𝑋) = 𝐸1 ∪ 𝐸3 ∪ 𝐸4 = {1, 2, 4, 5, 6} 

 

𝑅𝐴
0.3(𝑌) = 𝐸1 ∪ 𝐸2 ∪ 𝐸4 = {1, 2, 3, 6} 

 

𝑅𝐴

0.3
(𝑌) = 𝐸1 ∪ 𝐸2 ∪ 𝐸3 ∪ 𝐸4 = {1, 2, 3, 4, 5, 6} 

 

According to (3.22) and (3.23), we obtain 
 

 

Bel(𝑋) = ∑ 𝑚𝐴(𝐹𝑗)𝐹𝑗⊆𝛽 𝑋  
 

             = 𝑚𝐴(𝐹2)  
 

=  
1

6
 = 𝑃𝑟 (𝑅𝐴

0.3(𝑋)) 

 

 =  1 −  𝑃𝑟 (𝑅𝐴

0.3
(𝑈 − 𝑋)) 

 

 =  1 − 𝑃𝑙(𝑈 − 𝑋) 
 

Pl(𝑋) =  ∑ 𝑚𝐴(𝐹𝑗)𝐹𝑗∩𝛽𝑋≠∅  
 

= 𝑚𝐴(𝐹1) + 𝑚𝐴(𝐹2) +  𝑚𝐴(𝐹4) 

         =  
1

3
+

1

6
+

1

6
 

 

= 𝑃𝑟 (𝑅𝐴

0.3
(𝑋)) 

 

=  1 −  𝑃𝑟 (𝑅𝐴
0.3(𝑈 − 𝑋)) 

 

=  1 − 𝐵𝑒𝑙(𝑈 − 𝑋) 
 

Bel(𝑌) = 𝑚𝐴(𝐹1) + 𝑚𝐴(𝐹2) +  𝑚𝐴(𝐹4) 

             =  
1

3
+

1

6
+

1

6
= 𝑃𝑟 (𝑅𝐴

0.3(𝑌)) 

 

 

Pl(𝑌) =  𝑚𝐴(𝐹1) + 𝑚𝐴(𝐹2) + 𝑚𝐴(𝐹3) +  𝑚𝐴(𝐹4) 

          =  
1

3
+

1

6
+

1

3
+

1

6
= 𝑃𝑟 (𝑅𝐴

0.3
(𝑌)) 

 

This example validates the results in Section III. 

 

V. CONCLUSION 

We connect evidence theory, rough set theory and the 

variable precision concept to present applications in 

incomplete information tables. More precisely, for a given 

parameter, we extend Pawlak's lower and upper 

approximations to set approximations in the VPGRS models. 

We also extend the relationship between lower and upper 

approximations from VPGRS models to incomplete 

information tables. We further show the duality between the 

belief and plausibility functions in evidence theory. It shows 

potentials for more applications. The implications of this 

paper are to release the limitation of rough set theory. So, one 

can use more tools to deal with problems with incomplete 

information tables. We will work out more examples and 

case studies in a future project. 
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