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Abstract—An efficient retrieval of a relatively small number 

of relevant cases from a huge ease base is a crucial subtask of 

Case-Based Reasoning. Moreover, Motion Controlling for 

Humanoid Robot is a very complex problem.  In this paper, we 

propose the application of case-retrieval nets techniques in the 

design of our previously proposed motion controller model for 

humanoid robots. It depends on case-based reasoning (CBR) 

methodology. Our main goal is to enhance the retrieval 

accuracy of the case-based controller of the humanoid soccer. 

The controller is being implemented in the framework of 

Webots Simulation Tool for the NAO Humanoid Robot. The 

main motivation of this paper is to improve the retrieval 

accuracy of our HCBR behavior controller, develop an 

automatic real-time CBR-Retrieval Algorithm for robot, and 

improve the storage capacity of the case-memory. We also 

describe the implementation of our extended retrieval CBR 

algorithm that shows good results for controlling the NAO. 

Future research directions and ideas for developing each 

module are also discussed.  

 

Index Terms—Humanoid robot, RoboCup, artificial 

intelligence, case-based reasoning, webots, motion controller. 

 

I.  INTRODUCTION 

The RoboCup [1], [2] competition is a long-term goal of 

winning against the FIFA world champion [3], [4]. Our 

Humanoid Team of Humboldt University [3]-[5] participated 

in 2006 for the first time in humanoid league. Motion 

planning for humanoid robots suffers from many problems. 

The first problem is the high dimensionality of the 

configuration space. The second is the need to satisfy 

dynamic and static constraints for motion stability. The third 

is the need to navigate in dynamic environment as soccer.  

Moreover, building motion controllers on real robots 

increases the overall complexity. Hardware easily gets 

broken and experiments need manual supervision.  

Case-Based Reasoning (CBR) is a reasoning methodology 

that simulates human reasoning by using past experiences to 

solve new problems [6]. The most crucial CBR tasks involve 

case indexing, representation, retrieval and adaptation.  
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Our Humanoid Team Humboldt builds a simulated tool 

called Simloid for the Bioloid [7], [8]. Currently, we are also 

using the Webots Simulation Tool for Nao Robot [9]. Our 

main goal is to develop a motion controller for fully 

autonomous humanoid robot to navigate in unstructured 

environment.  

In this paper, we propose a new case-based motion 

controller design for humanoid robots. It is currently being 

implemented in the framework of Webots [9]. The model 

design and description of each module are presented. We also 

present the results of our first Case-based algorithm for poses 

and basic walk control. The paper is organized as follows; 

Section II describes CBR for robotics, Section III describes 

robotics platform, Section IV describes the proposed CBR 

motion controller, Section V introduces the CBR algorithm 

along with the new proposed retrieval algorithm. Finally 

Section VI is experimental results.  

 

II.    CBR FOR ROBOTICS 

In robotics, CBR has been applied recently for many 

robotics types and tasks. For example, Hongwei [10] uses 

CBR to evolve robust control programs for humanoid robots. 

Arcos et al., [11] use CBR for autonomous mobile robot 

navigation. Kruusmaa [12] uses CBR for navigation but in 

uncertain environment, and Urdiales [13] presents a new 

reactive layer that uses CBR for robot navigation. CBR has 

also been widely applied in the RoboCup domain; Raquel et 

al. [14] use CBR to define coordination of behaviors for 

multi-robots. Also, they use CBR for retrieving and reusing 

old game plays for robot soccer [15]. Timo [16] uses CBR for 

opponent modeling in multi-agent systems. Ahmadi et al. [17] 

use CBR for prediction of opponents movements in 

multi-agent robotic soccer. Karol et al. [18] use CBR for 

high-level planning strategies for robots playing in the 

Four-Legged RoboCup. 

 

III. ROBOT PLATFORM FOR NAO-TEAM HUMBOLDT 

The NAO-Team Humboldt was founded at the end of 2006 

and consists of students and researchers from the 

Humboldt-University in Berlin. Some of the team members 

have had a long tradition within RoboCup by working for the 

Four Legged league as a part of the German Team in recent 

years. Though we used some concepts and ideas from the 

GT-platform, the software architecture was written totally 

new. Additionally, we developed several tools such as 

Robot-Control and MotionEditor for testing, debugging or 

for creating new motion nets. 

The first NAOs as shown in Fig. 1, arrived in May 2008, so 

we had only 2 months for developing and testing algorithms 
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before we participated in RoboCup 2008 in Suzhou. Despite 

this fact, we achieved the 4
th

 place. 

 

 
Fig. 1. Nao humanoid robot. 

A.  Vision System 

Our vision system worked on YUV images with a 

resolution of 160×120. Because of the limitations of such a 

small resolution, as finding small objects and accuracy of 

recognition, we will increase resolution to VGA 2015 Most 

of the algorithms are based on colour classification. The 

classification is done using two different means - a look up 

table and especially for complementary colours, linear colour 

space segmentation. Since it is, even in this resolution, 

inefficient to classify the whole picture, as shown in Fig. 2, 

we employ a grid for this task. The grid is laid over the 

picture, has a resolution of 80×60 and thus classifies only one 

in four pixels. It provides a -list of all pixels from a given 

color class to the subsequent procedures which are as 

follows. 

 
Fig. 2. Robot Image viewer with some enabled debugs requests. 

B.  Goal Detection 

The algorithm for goal detection relies mainly on the 

calculation of statistical measures for lists of equally 

coloured pixels provided by the grid. For one class of goal 

coloured pixels the algorithm first looks for the best 2 

candidate pixels maximizing x
2
+y

2 
or x

2
-y

2
 (thus minimizing 

the distance to the lower left/right corner) while in the same 

iteration calculating all image moments up to 2
nd

 degree of all 

pixels from this colour class. Those moments are used to 

calculate the main axis for the distribution of pixels having 

goal colour. The axis orientation gives a good hint for both 

goal posts as shown in Fig. 3a), on the image having gathered 

this information the algorithm knows how to interpret the 2 

candidates found before and starts to explore via region 

growing from every pixel representing a goal posts base point 

thus further defining the candidates and the corresponding 

percept. 

C.  Line Detection 

Line Detection is done without color classification. It 

instead scans the whole picture in horizontal and vertical 

directions looking for rises and subsequent falls in the images 

gray value function indicating the possible start and end of a 

line. Having found two of those points the edge angle is 

calculated by the Sobel operator and then averaging the two 

pixels positions resulting in a new point and corresponding 

angle in the middle of these points. Points found this way are 

then first clustered by their angle and second by their 

probability of lying on one line. Clusters with a sufficient 

number of members are then accepted as lines as shown in 

Fig. 3a). 

D.  Robot Detection 

Robot Detection as shown in Fig. 3b), is done using red or 

blue colour areas in the image. Those blobs representing 

distinct parts of a robot (i.e. head, shoulders, feet etc.) must 

have certain attributes such as certain area, centre of mass or 

orientation. Body part candidates identified this way are then 

tried to be grouped to form a robot. The position and 

orientation of the detected robot can easily be extracted from 

the geometric relations between the constituting colour areas. 

E.  World Model 

 Our approach to represent the world state is to use 

different models for different objects. In having this 

separation we can have very effective and special models for 

each individual object type. We distinguish two modelling 

approaches – self localization, ball modelling, and player 

modelling. 

F.  Ball Modeling 

Tracking the ball is most important for the attacker and for 

the goal keeper. Since playing passes was hard with the 

NAOs so far, which would make global positions necessary; 

we use a local model for each robot to track the ball. Still, by 

using self localization information we were able to 

communicate global ball we also want to have a player model 

to recognize friendly passing partners and to avoid kicking 

the ball into opponent players. Right now we want to find out 

which kind of model fits our needs best. Therefore we 

evaluate the advantages of a model which tracks all the 

different players separately against those of a model which 

just takes occupied regions into account.  
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Fig. 3. a) A recognized goal, detected by two rectangles framing the goal posts  b) a seen robot c) detected robot areas 

including the extcentricity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G.  Robot Detection 

Robot Detection is done using red or blue colour areas in 

the image. Those blobs representing distinct parts of a robot 

(i.e. head, shoulders, feet etc.) must have certain attributes 

such as certain area, centre of mass or orientation. Body part 

candidates identified this way are then tried to be grouped to 

form a robot. The position and orientation of the detected 

robot can easily be extracted from the geometric relations 

between the constituting colour areas as shown in Fig. 3c). 

H.  World Model 

Our approach to represent the world state is to use different 

models for different objects. In having this separation we can 

have very effective and special models for each individual 

object type. We distinguish two modelling approaches – self 

localization, ball modelling, and player modelling. 

I.  Ball Modeling 

Tracking the ball is most important for the attacker and for 

the goal keeper. Since playing passes was hard with the 

NAOs so far, which would make global positions necessary; 

we use a local model for each robot to track the ball. Still, by 

using self localization information we were able to 

communicate global ball  

J.  Player Modeling 

Having data over recognized field players we also want to 

have a player model to recognize friendly passing partners 

and to avoid kicking the ball into opponent players. Right 

now we want to find out which kind of model fits our needs 

best. Therefore we evaluate the advantages of a model which 

tracks all the different players separately against those of a 

model which just takes occupied regions into account.   

 

IV. CASE-BASED MOTION CONTROLLER FOR                                          

NAO HUMANOID ROBOT 

The goal of our Humanoid-Team-Humboldt [5] is to 

develop a motion controller for fully autonomous humanoid 

robot to navigate in unstructured environment.  

This section describes our new proposed case-based 

motion controller for humanoid robots. Its main architecture 

is shown in Fig. 4, it consists of four main Modules: CBR 

biomechanical Module, CBR navigational Module, 

case-based keyframe motion planning Module and CBR gait 

balance Module. Also, it has three CaseBases: CaseBase of  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

keyframes of body poses, sub-CaseBase of keyframes of 

balanced body poses and a CaseBase of keyframes of 

environment paths. The next sub-sections define the task of 

each Module. 

A.  CBR Biomechanical Module 

This is a Case-Based Medical Expert System. Its task is to 

collect experience of the biomechanical expert doctors and 

built a CaseBase of human-like body poses. We believe that 

this will help in developing a motion controller that mimics 

real human motions.  

Development directions will include: knowledge 

engineering phase of the biomechanical domain [18], using 

fuzzy retrieval algorithms to retrieve similar cases, using and 

modifying our developed adaptation model [19] to adapt the 

unusual body poses. The architecture of this Module will 

simply follow the CBR cycle. This Module will generate two 

CaseBases, which are: CaseBase of keyframes of all 

biomechanical body poses,  and Sub-CaseBase of keyframes 

of balanced biomechanical body poses. A keyframe here is 

defined as a case of body poses of all joint angels.  

B.  CBR Navigational Module 

This is a case-based system for robot navigation. Its task is 

to use CBR to navigate in unstructured environment. 

Research directions in this Module will include: 

enhancement of retrieval algorithms for case-based 

navigation using fuzzy logic and development of new 

adaptation algorithms for case-based navigation and obstacle 

avoidance in unstructured environments. These Research 

directions in this Module will focus mainly on developing an 

independent retrieval-adaptation model for robot motion 

planning in unstructured environments. One of the tasks of 

the adaptation model is to function as the transitions in the 

keyframe-transition structure [8], [9]. A keyframe is a 

structure that keeps all joint angles of the robot current pose. 

A transition is a decision to transit from one keyframe to 

another. Poses and motions are executed by transitions 

between keyframes.  

C.  Case-Based Keyframe Motion Planning Module 

This is the main Module of the case-based motion 

controller. Its task is to plan for the next body pose and 

generate the next walking pattern that the humanoid robots 

should adopt. As shown in Fig. 4 it works as follows: first the 

current keyframe is seen as an input. Then the most similar 

keyframe is retrieved from the casebase of body poses. The 
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retrieval algorithm also takes into account the current path 

navigated by the CBR navigational module. Finally, the 

retrieved keyframe is adapted according to the current 

navigated path. This adapted keyframe is proposed as the 

next body pose. 

D.  CBR Gait Balance Module 

This is a case-based fault diagnosis expert system. Its task 

is to test and monitor the balance state of the generated 

walking pattern. It will simply follow the CBR cycle and will 

use the Sub-CaseBase of balanced keyframes. In case of not 

accepted walking pattern, it will return back to the 

Case-Based Keyframe Motion Planning Module to 

re-generate another walking pattern. This feedback cycle will 

continue until a suitable walking pattern is generated.  

 

 
Fig. 4. Case-Based Keyframe motion controller for humanoid robots. 

 

V.  REAL-TIME CASE-BASED ALGORITHM FOR KEYFRAMES 

GENERATION 

We are currently implementing our new algorithms for our 

case-based motion controller. In this section, we describe our 

first Case-based algorithm for Nao Robot keyframes 

generation. Its architecture is shown in Fig. 5. It consists of 

three main modules, which are case input, retrieval and 

adaptation. It also includes a case-memory of cases and a 

rule-base of adaptation rules. 

 

Fig. 5. Architecture of real-time case-based Keyframe algorithm. 

 

A.  The Case-Memory 

NAO humanoid robot has ten sensors, one distance sensor 

for measuring distance, eight force sensors, four in each foot 

and one accelerometer sensor for measuring acceleration. In 

addition, Nao Robot has twenty two Joints. Taking these in 

consideration, therefore each case in our case-memory 

consists of thirty two features and it is represented as a frame 

[9]. One sample case of our cases is shown in Fig. 6. The case 

is decomposed into two parts:  

Case <problem, solution>. Case problem consists of the 

ten sensors features, while case solution consists of the 

twenty-two joints features.   
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 Case Solution 

Features 

Case Solution(Pose) 
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B. Case Retrieval Nets 

This section presents the main algorithm of our 

CRN-HCBR behavior control. As shown in Fig. 6, it consists 

of 12 steps, which are classified into three levels. Each level 

uses a CRN [2] to retrieve a similar sub-case and apply 

propagation adaptation rules to adapt its solution until the 

final solution of the complete case is found at level three. 

 

 

The main steps of CRN-HCBR are described as follows: 

Step 1: Input Case-Query. This is done by real-time 

sensor IE’s readings from robot simulation environment.  

Step 2: Retrieve Similar IE’s. Retrieve module uses only 

local similarity functions to retrieve similar IE’s. Two local 

similarity functions are used, a Boolean function that is used 

to compute local similarity of Boolean features and it is 

defined as: 

( , ) 1 ( )Sim Ni Ri Ni Ri    

Another local similarity function to compute similarity 

between features of real values as Robot_x and Robot_y 

features. This function is defined by Burkhard [6]:        

 ( , ) 1/ 1Sim Ni Ri Ni Ri    

Step 3: Apply Adaptation Propagation rules. In this 

algorithm, adaptation rules , which will be defined also  in 

coming section , are used to propagate to case nodes and 

propose solutions. 

Step 4: Output 1. Find adapted role solution. This is the 

first solution that results for robot role as attacker or Goalie. 

Step 5: Backward Reasoning. This is to append Robot 

Role solution to case query IE’s in real-time RoboCup soccer 

domain. This updates the Case query IE’s and thus activates 

new IE’s query for the second level automatically.  

Step 6: Retrieve Similar IE’s. This step also applies the 

same local similarity functions but for Level two. This is to 

find solution of Robot Skill as Goal-score. Dribble or pass.  

From Step 7 to Step 11. The previous steps are repeated 

recursively from Step 7 to Step 11 until the lower level 

primitive behaviors are executed for the robot.  

C. Adaptation and Keyframe Generation 

The main task of our case-based algorithm is to take 

decisions on the behavior level [10], [13], [17]. This means to 

decide which keyframe to execute next. These decisions are 

done by using a set of adaptation rules, which first check for 

similarity conditions and then take decisions. These decisions 

can be a single generated keyframe as fall-down or a 

sequence of generated keyframes as walk-forward.  

An example of one of our adaptation rules is:  

 

    IF        (Similarity >= 90%) 

    AND     Sensor_Readings in range of Stand_up 

    THEN   Take decision_1 (generate keyframe) of 

Walk_Forward 

 

As shown in this example, our adaptation rule consists of 

three parts: IF … AND … THEN. In the IF part, we test for 

the global similarity value. In the AND part, we test again 

for the sensor readings of the case query to determine the 

current position of the Robot in order to generate the suitable 

keyframe(s) in the THEN part. 

 

VI. EXPERIMENTAL EVALUATION 

 In this section, the experimental results of the 

CRN-HCBR algorithm are discussed. Our experiments are 

done in the simulation environment of Webots integrated 

with Visual Studio for programming our CBR behavior 

control algorithm. These are done in the framework of the 

project of NAO Humanoid Team Humboldt [5]. We conduct 

four main experiments.  Experiment (A) is for testing the 

retrieval accuracy of the CRN. Experiments (B) is for testing 

the overall performance measure of the CRN-HCBR 

algorithm for Attacker robot. The measures used for testing 

retrieval accuracy of the CRN for cases retrieval are:  

Number of IE’s and Case nodes in the Case-Memory: 

The main goal of CRN should to reduce the size of 

case-memory. The size of CNR memory is measured by 

number of IE’s and number of case nodes but this must be 

CRN-HCBR Algorithm:  

i) Input Real-Time IE’s Case Query of Level 1 

ii) Retrieve similar IE’s using CRN 

iii) Adaptation Propagation Rules to adapt Abstract 

case nodes of Robot Role. 

iv) Output1: Adapted Role solution 

v) Backward Reasoning Adapted Role & Append as new 

IE to Level 2. 

vi) Retrieve similar IE’s using CRN. 

vii) Adaptation Propagation Rules to Abstract case 

nodes of Robot Skills.  

viii) Output2: Adapted Skills solution 

ix) Backward Adapted Skills & Append as new IE to 

Level 3. 

x) Retrieve similar IE’s using CRN. 

xi) Propagate to Abstract case nodes of robot behaviors. 

xii) Apply Adaptation function of case-based NAO 

behaviors.  

 

 

Fig. 6. A sample of the Nao robot case frame. 
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independent of the overall total number of cases stored in 

case-memory. 

Retrieval Accuracy. It means that the required set of case 

nodes are retrieved correctly during the execution of the 

retrieved process. 

Retrieval Efficiency. It means the ability of our CRN 

retrieval to give the same set of retrieved case nodes at 

different similarity ranges, for similar test query cases. That 

is to access relevant cases. Access of these cases should avoid 

exhaustive search in memory. 

Completeness: assures that every sufficiently similar case 

in memory will be found during retrieval.  

Experiment:  Testing the accuracy of CRN for 

Attacker Robot 

In this experiment, we test the accuracy of the CRN in case 

of robot role acts as Attacker in RoboCup simulated soccer. 

The accuracy of is measured for the two CRN’s used at level 

two and level three of our CRN-HCBR. It is not measured at 

level one because we already fix the robot role to be Attacker.  

Number of IE’s and Case nodes in the Case-memory at 

level two:  the main task of level two is to determine the skill 

of the Attacker robot. 

Number of IE’s  and case nodes in Case-memory: The 

skills to be decided are Goal-Score or Dribble.  We define a 

formula to calculate the number of IE’s  stored in CNR 

case-memory as:  

IE_CRN = N × D = 14 × 10 = 140 IE’s. 

where, 

IE_CRN: The number of IE’s stored in case-memory of the 

CRN 

N: the real number of features defined from RoboCup 

soccer domain  

D: the number of associated features results from 

discretization of real   features. We fix these ranges to be 

equal nearly 10.  

This proves a big reduction in the size of the case-memory. 

The number of stored case nodes is 650, these represents the 

real number of total cases for Attacker robot.  Therefore, 

instead of storing 650 IE’s, it is reduced to 140 IE’s. This is 

illustrated in Table I. 

We also define a simple formula for defining the number 

of case nodes included in CRN. Our formula is:  

 

CaseNodes_CRN =  

                      Total Number of Cases in flat Case Memory 

 

where Total number of Cases is total number of complete 

cases stored in standard flat structure case-memory.  

In our experiment, the total number of cases is 650 cases. 

This means the number of Case nodes is also equals 650. This 

is shown in Table I.  

Retrieval Accuracy. In order to improve the retrieval 

accuracy of our CRN, the values of each IE are discretized 

into ranges. This is also done to reduce the error of sensor 

readings of the Webots simulation tool. Table I shows as a 

sample a complete list of Robot localization IE’s used in this 

experiment along with their ranges. The retrieval accuracy of 

CRN at level is very high as it reaches 97 %. Also, the CRN at 

level 3 reaches 92%. The results are shown in Table I. The 

retrieval accuracy is calculated by our formula given as:   

                     Retrieval_Accuracy = CC / TC 

where, 

CC: Number of sets of case nodes retrieved correctly by 

our algorithm 

TC: Number of total sets of case nodes included in the 

CRN-HCBR controller. 

Retrieval Efficiency. The retrieval efficiency of the CRN 

at level two was very high as it reaches 98 %, while at level 

three it reaches 96%. This is because the cases used for 

querying are divided into similar sets, which increases the 

overall retrieval efficiency. The results are shown in Table I 

Our formula for retrieval efficiency is defined as:                                                     

                     Retreival_efficiency = SC / TQ  

where, 

     SC: Number of sets of case nodes retrieved correctly 

during cases query runs.  

     TQ: Total number of sets of case queries used for testing. 

Completeness.  It shows low performance at level two as 

it reaches 70 % and at level three it reaches only 60 %. This 

due to a huge number of IE’s ranges need to incorporated 

further in the system or a complete set of Adaptation rules. 

These is usual is infeasible and a learning mechanism is 

essential in these cases. 

 
TABLE I: PERFORMANCE ACCURACY OF CRN 

 

 

 

No. of 

IE’s 
Accuracy Efficiency Completeness 

CRN                 

Level 

Two 

140 97 % 98 %   70 % 

CRN                       

Level 

Three 

200 92 % 96 %   60 % 

 

VII. CONCLUSION AND FUTURE WORK 

 In this paper, the design of a case-based motion controller 

for Humanoid robots is represented. It depends on case-based 

reasoning methodology. It is main goal is to handle the 

problems of motion planning tasks for humanoids robots. 

That is to generate adaptive balanced human-like walking 

patterns, which are able to navigate in dynamic and 

unstructured environments, to avoid obstacles and collision 

with multiple robots. This model is currently being 

implemented in the framework of Webots Simulation tool for 

the Nao Robot.  

This paper also presents the first case-based algorithm that 

has been implemented for generating some basic keyframes. 

However, first experiments show success of our first 

case-based algorithm and its applicability for generating 

humanoid robot motions. 

In our future work, the complete implementation of our 

model will be done in our Nao humanoid project. As a next 

step, fuzz logic will be used for case retrieval in order to 

retrieve more reliable cases. Also, the algorithm will cover 

decisions of internal keyframes of each state, as generating a 
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walk step to simulate real human walking cycle. This will 

include knowledge engineering phase of the human gait 

analysis and walking cycle. 
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