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Abstract—A multiscale texture segmentation approach based 

on contextual hidden Markov tree (CHMT) model and boundary 

refinement is proposed. A hidden Markov tree (HMT) model is a 

probabilistic model for capturing persistence properties of 

wavelet coefficients without considering clustering properties. 

We have proposed the CHMT model to enhance the clustering 

properties by adding extended coefficients associated with 

wavelet coefficients in every scale. In this study, we train the 

CHMT parameters for every texture and then use them to 

compute maximum likelihoods for every dyadic square region at 

every scale in an image which will be segmented. Then the 

boundary refinement algorithm is adopted to fuse the 

different-scale segmented results to improve the final results. 

We demonstrate the performance of the proposed method on 

synthetic and aerial images; moreover, the comparison with 

other methods is also provided to show the effectiveness of the 

proposed method. 

 
Index Terms—Contextual hidden Markov tree model, 

maximum likelihood, multiscale texture image segmentation, 

wavelet transform. 

 

I. INTRODUCTION 

Texture image segmentation is a fundamental technique to 

categorize pixels into classes based on homogeneous 

properties. Many researchers solved the texture analysis 

problems with various approaches which are broadly 

classified into structural, statistical, model-based, and 

transform approaches [1]-[3]. Structural methods use texture 

elements to describe textures. It is good for image synthesis 

applications. Statistical methods use gray-level relationship 

between neighboring pixels to describe to local texture 

property in first-order, second-order, or higher-order statistics. 

The methods are good for invariant texture analysis and 

classification. Model-based methods model images as 

different probability or linear combination models [3] and use 

model parameters to describe their texture features, such as 

autoregressive models, fractal models [4], Gaussian-mixture 

models (GMM) [5], hidden Markov models (HMM) [6], [7], 

Markov random fields (MRF) [8] and so on. The transform 

methods transfer images into a frequency domain to describe 

textures. The methods usually use Fourier, Gabor, or wavelet 

transform. Bharati et al. [1] and Porter et al. [9] compared 

different methods for texture segmentation and got the result 

that wavelet method appears to be more powerful in texture 

analysis because it keeps the space and frequency information 

simultaneously and it has least sensitivity to noise. 
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Crouse et al. [10] developed a wavelet-based HMM called 

HMT model for signal processing. The model describes 

inheritances of wavelet coefficients from coarser to finer 

scales in wavelet trees. It connects wavelet coefficients 

between scales with Markov chain and preserves the 

persistence properties. Choi and Baraniuk [11], [12] used the 

HMT model to propose a HMTseg algorithm for multiscale 

Bayesian image segmentation. In the Bayesian segmentation, 

an image x is regarded as a realization of a random field X [13]. 

Then the image segmentation problem is interpreted as giving 

an image x and estimating a region xr a class label cr{1,…, 

Nc} which is one of Nc texture candidates with maximum 

likelihood f(xr|cr) [12]. Following the Choi and Baraniuk’s 

method, Fan and Xia [14] developed a HMT-3S method based 

on HMTseg. Xu et al. [15] applied the HMT-based method to 

improve the color texture classification by taking account of 

the dependencies between different color channels. Mor and 

Aladjem [16] fused the class labels at different scales with 

boundary refinement. Liu et al. [17] used a complex wavelet 

domain HMT model to improve the problems of shift variance 

and lack of directionality. Owing to the analysis accuracy is 

not high enough for real-world applications [18], the studies 

of multiscale texture analysis in wavelet-based HMM are still 

progressively improved. Kim et al. [19] presented a 

wavelet-based texture segmentation using multilayer 

perceptron networks and MRFs in a multiscale Bayesian 

framework. Zhang et al. [18] implemented an energy 

minimization algorithm based on graph cut to fuse the 

multiscale classification results. Moreover, Zheng et al. [20] 

employed a fuzzy method to estimate parameters of 

multiresolution Markov random field to segment texture 

images. 

The above-mentioned methods usually concentrate only on 

inter relationships. In this paper, we proposed the CHMT 

model to enhance the clustering properties by adding 

extended coefficients associated with wavelet coefficients in 

every scale. The CHMT model strengthens the clustering of 

wavelet coefficients and holds the persistence properties, 

simultaneously. So both the interscale and intrascale 

dependences between wavelet coefficients are considered. 

The CHMT model had worked well for image denoising [21]. 

Here we extend the application of the CHMT model for 

texture segmentation. 

The procedure of the proposed approach is shown in Fig. 1. 

First, we use iterative expectation–maximization (EM) 

algorithms to train the CHMT parameters for all dyadic blocks 

and the GMM parameters for all pixels of images with several 

texture types. Then, a raw segmentation is obtained by 

computing the maximum likelihoods of each dyadic block of 

the testing image to decide the class label of every dyadic 
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block and pixel. There are two procedures in the labeling. In 

the first procedure, a multiscale segmentation uses the trained 

CHMT parameters to estimate the likelihoods of every dyadic 

block in the wavelet tree of the testing image. We ignore the 

scaling coefficients in CHMT model, because coarser scale 

provides little information for image segmentation. In the 

second procedure, a pixel-level segmentation uses the trained 

GMM parameters to estimate the likelihoods of each pixel in 

the testing image. At last, both segmentation results at various 

scales are combined by the boundary refinement method [16] 

to get a better-quality final segmentation result. 

The remaining sections of this paper are organized as 

follows. Section II introduces the CHMT model. The 

segmentation algorithm using CHMT model and boundary 

refinement is presented in Section III. Section IV reports the 

experiment and other comparison results. At last, conclusions 

are presented in Section V. 
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Fig. 1. The procedure of the proposed method. 

 

II. CONTEXTUAL HIDDEN MARKOV TREE MODELS 

The 2D wavelet coefficients have a quad-tree pyramid 

structure like Fig. 2, in which a node i has a parent node p(i) in 

the last coarser scale and four child nodes c(i) in next finer 

scale. In the quad-tree structure, a tree with the root node at 

the coarsest scale can be expressed as T0. The trees with root 

nodes at the other scales are sub-trees. The tree Ti is one of the 

sub-trees of tree T0. 

Assuming a wavelet coefficient wi is a stochastic variable 

Wi and a hidden state si is associated with the wavelet 

coefficient as another stochastic variable Si. The pair (wi, si) is 

called a node with complete information of the wavelet tree 

structure. Fig. 3 shows dependencies of the nodes a to g in the 

CHMT model, in which the white dots are the coefficients and 

the black dots are the hidden states. 

In a M-state GMM, the wavelet coefficient can be 

expressed as a probability mass function (pmf) 
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where pSi(m) is the probability of state m and fWi|Si(wi|si=m) is 

the conditional probability function of wavelet coefficient wi 

at state m. Here, the conditional probability function 

fWi|Si(wi|si=m) is set as a Gaussian function. Actually, the 

probability density of wavelet coefficients is not a Gaussian 

distribution according to the clustering characteristic [11]. 

However a GMM that can approach any density distribution 

with arbitrarily shape can model wavelet coefficients as a 

multi-state Gaussian distribution. 
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Fig. 2. The pyramid structure of a 2-D wavelet transform. 
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Fig. 3. Dependencies in the CHMT model. 

 

The HMT model holds the interscale dependences between 

different scales in wavelet tree structure as the solid arrows in 

Fig. 3. To keep the clustering property with no drawbacks of 

the network structure, we add extended nodes which are made 

by copying adjacent nodes at the same scale in the HMT 

model to construct a CHMT model. A node connects to its 

extended adjacent nodes as the dashed arrows in Fig. 3 and 

those nodes are treated as tree leaves in every scale. The gray 

nodes b’ to g’ mean the extended nodes which copy from 

nodes b to g, separately. So that CHMT model keeps both 

persistence and light clustering property without losing a tree 

structure. In addition to intersacle, each node of the CHMT 

model gets light intrascale dependencies from adjacent 

coefficients cause of the extended adjacent nodes. 

In the CHMT model, the hidden state variable Se(i) of an 

extended node is only dependent on the hidden state variable 

Si of node i and independent to other hidden state variables; 

that is, the intrascale dependence only influences on the 

coefficient and its extended coefficients and is not propagated 

to others. 

The CHMT model is a parametric model to set the joint pmf 

of the wavelet coefficients. It has strong interscale 

dependences and light intrascale dependences. The parameter 

set θCHMT of the CHMT model is given as 
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0
( )Sp m is the pmf value of the root state variable s0 in state 

m. 
( ),

nm

c i i  is the state transition probability of the Markov chain 

between the hidden states of parent-child nodes and is given 

as the conditional probability 
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( ),

nm

e i i  is the state transition probability of the Markov chain 

between the hidden states of node j and its extended node, 

which is given as the conditional probability 
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,i m  and 2

,i m  are the mean and variance of Gaussian mixture 

model for the wavelet coefficient wi given si in state m. 

The CHMT model builds a hierarchical Markov chain by 

the way of setting state translation probabilities between 

states of wavelet coefficients in a wavelet tree structure. The 

transition probabilities ’s are used to define the interscale 

dependences, and ’s are used to define the intrascale 

dependences. 

 

III. TEXTURE SEGMENTATION USING CHMT MODELS 

A wavelet-based multiscale segmentation method using the 

CHMT model is proposed. The key steps of this method are 

model training, multiscale segmentation, and boundary 

refinement.  

A. Data Structures for Segmentation 

Traditional segmentation algorithms employ a fix-sized 

window to aggregate the same-classed pixels in the window. 

Obviously, the size of the classification window is crucial to 

the segmentation result. A larger window usually strengthens 

the classification reliability because more pixels provide more 

rich statistical information, but has more risks in which pixels 

belong to different classes. Thus, a larger window produces 

accurate segmentations in large and homogeneous regions but 

poor segmentation on boundaries between different regions. 

A smaller window reduces the possibility of pixels having 

multiple classes in a window, but has lower classification 

reliability for less statistical information. 

To capture the properties of every texture region for 

segmentation, both large and small windows should be 

utilized. A natural way to achieve the purpose is analysis in 

multiscale. In a multiscale segmentation, the results of 

different-sized classification windows are combined to obtain 

a better segmentation result. In this study, we employ the 

dyadic squares to implement classification windows of 

different sizes as shown in Fig. 4(a). The dyadic squares are 

from dividing the image into four subimages of equal size 

recursively until the size of dyadic square is equal to one pixel. 

We use 
j

id  to indicate the dyadic square at scale j with an 

abstract index enumerating i like the numbers. Given a 2J2J 

hierarchy image, the dyadic square 
0

0d  denotes the whole 

image and 
J

id  denotes an individual pixel. Every square 
j

id  

has a parent square 1

( )

j

p i


d  and four children squares 1

( )

j

c i


d . 

In a wavelet tree, each subtree Ti in LH or HL or HH 

represents the information of a certain square region which 

corresponds to one dyadic square in an image. Depending on 

the tree structure, the abstract index enumerating of wavelet 

subtree can be set as one example shown in Fig. 4(b). In 

accordance with the index numbers in the squares and subtree, 

the information of subtree Ti in LH, HL, and HH bands can be 

merged to the relative dyadic square di such as Fig. 4(c). 
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Fig. 4. The relationship of dyadic squares and wavelet subtrees. (a) The 

dyadic squares in an image. (b) The LH subtree in a wavelet tree. (c) 

Quad-tree structure of dyadic squares. 

 

B. CHMT Model Training 

The purpose of the proposed segmentation method is to 

assign a suitable class label to every dyadic square in all 

scales. Before the segmentation, the CHMT models of all 

textures must be trained. At first, each texture image is 

transformed into wavelet domain, then the hidden states of 

wavelet coefficients are characterized. 

Let Ti be the subtree with root at node i, so the subtree Ti 

contains coefficient wi and all its descendants. If Tj is a subtree 

of Ti, then we define Ti/j to be the tree Ti removed its subtree Tj. 

Thus, T0 is the entire tree of all observed coefficients 

including extended coefficients. Let w is the set of all wavelet 

coefficients in the entire tree T0. c(i,j) is defined as the j’th 

child node of node i and e(i,j) is defined as the j’th extended 

node of node i. For each subtree Ti, we define the conditional 

likelihood functions i’s as 

 

( ) ( | , ),i i i CHMTm f S m  T θ                    (5) 

 

/ ( , ) / ( , )( ) ( | , ),i c i j i c i j i CHMTm f S m  T θ              (6) 

 

/ ( , ) / ( , )( ) ( | , ),i e i j i e i j i CHMTm f S m  T θ             (7) 

 

and joint probability i’s for all tree nodes are 

 

0/( ) ( , | ).i i i CHMTm p S m   T θ                  (8) 

 

The trees Ti and T0/i are independent given the state variable 

Si; that is, the ’s and ’s are independent. Then the joint 

probability of node i in state m and entire tree is written as 

 

0( , | ) ( ) ( )i CHMT i ip S m m m  T θ                (9) 

 

and the entire likelihood function of observed coefficients w 

is 
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Based on the chain rule of transition probability, the entire 

likelihood function can be obtained from the joint 

probabilities of node i in its child node c(i,j) in state n 
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and extended node e(i,j) in state n 
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After ’s and ’s are determined, the pmf for each node and 

each chain of two nodes can be calculated by Bayes’s rule, 
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and 

 

( , )

( , ) ( , ), / ( , )

( , ) ( , ), / ( , )

1 1

( , | , )

( ) ( ) ( )
.

( ) ( ) ( )

e i j i CHMT

nm

e i j e i j i i i e i j

M M
nm

e i j e i j i i i e i j

n m

p S n S m

n m m

n m m

   

   
 

 





w θ

      (15) 

 

All state variables in the CHMT model are interdependent. 

We use EM algorithm to compute the CHMT model 

parameters based on the maximum likelihood principle [10]. 

The algorithm consists of three steps: up expectation, down 

expectation, and maximization steps. Based on the parameter 

set θCHMT, the up step determines the likelihood of subtrees 

from the finest scale to the coarsest scale of wavelet 

coefficients in a wavelet tree and the down step determines the 

joint probability of subtrees from the coarsest scale to the 

finest scale in a wavelet tree. Combining these two steps, all 

state transition probabilities are evaluated. Finally, we get 

new model parameters θCHMT by calculating the mean of 

expectation results in the maximization step [22]. 

For reducing the number of parameters we use the universal 

tying strategy [12] to tie parameters for estimation. The 

wavelet coefficients tend to display similar statistical 

characteristics within the same scale, so we can often use the 

same parameters for those coefficients in the same scale. 

C. Multiscale Segmentation 

We use the CHMT model parameters for every texture 

image to compute the likelihood functions of dyadic squares 

at different scales in segmented images. Then a class label 

with maximum likelihood is assigned to each dyadic square. 

A 2-D image wavelet transform comprised three subbands 

with three quad tree structures. The subtrees LH

iT , HL

iT , and 

HH

iT  in the LH, HL, and HH subbands respectively 

correspond to the dyadic square di in the image as shown in 

Fig. 4. For making computation problem to be more tractable, 

we assume that the three wavelet trees are statistical 

independent. Then the likelihood function of a dyadic square 

can be computed as 
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In this study, we model each wavelet coefficient as a 

mixture model with two states. The “high” state represents 

that a wavelet coefficient has large value and contains 

significant contribution to signal energy, and “low” state 

indicates a wavelet coefficient having small value and little 

signal energy. The conditional likelihood function ( )i m  

obtained by sweeping up the quadtree from fine-scale to 

coarse-scale and the state probabilities ( | )i CHMTp S m θ  can 

be got from the parameter set CHMT. Each dyadic square is 

raw classified using the maximum likelihood segmentation as 

 

arg max ( | ).i i CHMT
c
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This segmentation does not exploit any relationship 

between the different scales. 

D. Pixel-Level Segmentation 

The wavelet tree characterize the joint statistics of dyadic 

image squares only down to 2  2 blocks, so a pixel-level 

segmentation is needed separately to implement. 

Pixel intensity is taken as the probability density function 

value for an individual pixel. We use an EM algorithm to train 

a two-state Gaussian mixture model to fit the probability 

density function for each training datum. Let x denote the set 

of intensity values, and xi be a pixel value. Let m , 2

m , and 

m  denote the mean, variance, and probability mass function 

of state m, respectively. Let GMM be a parameter set which 

consists of 2{ , , }m m m    at state m. We start the EM 

algorithm for the GMM with an initial parameter set 0

GMM . At 

the k’th iteration, the E step is compute as 
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
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where np is the number of pixel in an image. We can then 

compute the likelihood of each pixel of segmented image to 

categorize pixels into classes. 

E. Boundary Refinement 

Through the CHMT-based and pixel-level segmentations, 

the class label of each dyadic square in every scale has been 

decided; that is, every dyadic square has been judged the 

belonging of one texture class. The segmentation result 

suffers from low resolution at coarse scales and instability at 

finer scales. To improve the results, a multiscale decision 

fusion method was used to conmbine the results of the CHMT 

and pixel-level results. Choi and Baraniuk [12] proposed a 

context-based interscale fusion method to fuse the class 

decisions at different scales; but there, we adopt Mor and 

Aladjem’s [16] boundary refinement method because it has 

higher performance. 

Given the posterior probability p(ci|x), the maximum a 

posterior (MAP) classification of image x corresponds to the 

class label that maximizes the posterior probability 
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By Bayesian rule, the posterior distribution is 
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Let j
d  denote the set of all dyadic squares at scale j and 

each j
d  contains complete information of image x. Thus, the 

posterior can be described as 
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where j

ic  is  the class label of dyadic squares j

id  in scale j. 

The boundary refinement sets boundary probability to 

solve the MAP problem. At first, the prior probability of 

texture class was got from the class labels of previous scale 
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where ( )j

iN c  is the number of dyadic squares which have the 

same class label with j

ic in square 
1
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j
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
d  and its eight neighbor 

squares. Then we use the Bayes law, to establish the raw 

posterior probability for the M classes 
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where ( | )j j

i if cd  is given by (34). 

In order to get more correct segmentation, we prefer the 

class label at finer scale near boundaries and coarser scale at 

smooth regions. For this purpose, the boundary variable j

ib  is 

build up and used to express the position characteristic, 
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We consider that the class label j

ic  of square j

id  is same 

with all the class labels 1

( )

j

ch ic   of its four children squares in 

homogeneous regions then the variable j

ib  is set to zero. 

Otherwise, the variable j

ib is set to one. Thus the probability 

( 0)j

ip b   will be high in homogeneous regions and the 

probability ( 1)j

ip b   is anticipated to be high in the regions 

with boundaries. 

Given the boundary variable at parent node, the conditional 

posteriori probability is computed 
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where A(i) means the ancestor of node i at the scale L and 

( )

L

A id  is the set of 1 2

( ) ( ( )) ( ){ ,  ,  ,  ..., }j j j L

i p i p p i A i

 
d d d d . The averaged 

posteriori of the class label of ancestor dyadic squares is 

 
1

1 1

( ) ( ) ( ) ( )

0

( | ) ( | , ) ( ).j L j L j j

i A i i A i p i p i

m

p c p c b p b m 



 d d         (30) 

 

If 1

( ) 1j

p ib   , the conditional posterior probability 

1

( ) ( )( | , )j L j

i A i p ip c d b   is the original raw posterior at the current 

scale. The finer scale raw posterior probabilities are used in 

boundary regions. In smooth regions, 1

( ) 0j

p ib   , the average 

posterior probability 1

( ) ( ( ))( | )j L

p i A p ip c d  has sufficient statistical 

property, so that it is used in place of the conditional posterior 

probability of the current finer scale. 

In (30), the boundary probability 
1

( )( )j

p ip b m   is usually 

unknown in advance. We use an iterative procedure to 

estimate the boundary probability and then substitute (29) and 

(30). The estimation is iteratively refined until the boundary 

probabilities have converged. For estimating the
1

( )( )j

p ip b 
, we 

assume the four class labels ( ( )){ }j

ch p ic  are independent given 

their ancestor dyadic squares ( )

L

A qd . The probability of class 

labels ( ( )){ }j

ch p ic  being equal to the same class label C is 

 

( ( )) ( )({ } ) ( | ),j j L

ch p i q A q

q

p c C p c C   d             (31) 
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where q is an abstract index of the four children of p(i). 

Substituting (29) and (30) into (31) and summing over all 

class labels, we can get 

1 1 1
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1

1
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j j L j
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C q
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q q p q
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



   
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 d

d

    (32) 

Due to the fact 1 1

( ) ( )( 1) ( 0) 1j j

p q p qp b p b     , equation (32) 

becomes a function of a single variable and can be solved by 

any standard root finding method. Here, we use Secant 

method [23] to solve (32); the solution converges quickly and 

the initial values do not influence the result. 

Finally, the MAP segmentation problem of (23) is 

transformed to 

( )arg max ( | ), 1,..., .
j

i

j j L j

i i A i i
c

c p c c M d            (33) 

This merging procedure is run repeatedly from a suitable 

scale to the finest scale; that is, the results of raw segmentation 

are fused by considering the stability of coarse segmented 

images at smooth regions and the finer segmented images near 

texture boundaries. 
 

IV. EXPERIMENTS 

We demonstrate the performance of the proposed method 

on four 256256 synthetic images, “mix-2”, “mix-3”, 

“mix-4”, and “mix-5”, shown in Fig. 5. Their ground-truth 

segmentation results were given in Fig. 6. We compare the 

results of raw and final segmentations with HMTseg [12] and 

Mor’s [16] methods. 

 

    
(a)                        (b)                         (c)                        (d) 

Fig. 5. The synthetic test images (a) “mix-2”, (b) “mix-3”, (c) “mix-4”, and 

(d) “mix-5”. 

 

    
(a)                        (b)                         (c)                        (d) 

Fig. 6. The ground-truth segmentation results of (a) “mix-2”, (b) “mix-3”, (c) 

“mix-4”, and (d) “mix-5”. 

 

We use the texture data from the usc-sipi image database. 

For every texture, we randomly selected ten 128128 images 

for training CHMT parameters. The EM algorithm converged 

in 10 iterations. In our experiments, the raw segmentations at 

dyadic square size 1616 are usually considered as good 

enough for fusing the smaller dyadic squares. The correction 

rate is used to evaluate the segmented results and is defined 

the ratio of correct classified pixels to all pixels. 

Table I shows the correction rates of raw segmentation at 

different dyadic square size using HMT and CHMT model. 

Table II shows the correction rates of raw pixel-level 

segmentation. Fig. 7-Fig. 10 show the raw segmented results. 

Table III shows the correction rates of final segmentation 

from the three test methods. Fig. 11 and Fig. 12 show the final 

segmentation results, respectively. 

 
TABLE I: THE CORRECTION RATES OF RAW SEGMENTATION 

Image Model 
1616 

square 

88 

square 

44 

square 

22 

square 

mix-2 
HMT 0.9090 0.8786 0.8543 0.7663 

CHMT 0.9207 0.8645 0.8806 0.8567 

mix-3 
HMT 0.8593 0.8796 0.8466 0.7136 

CHMT 0.8626 0.8810 0.8849 0.8174 

mix-4 
HMT 0.8633 0.8389 0.7517 0.5976 

CHMT 0.8906 0.8857 0.8174 0.7178 

mix-5 
HMT 0.7337 0.7340 0.6057 0.4325 

CHMT 0.7836 0.7943 0.6956 0.5877 

 
TABLE II: THE CORRECTION RATES OF RAW PIXEL-LEVEL SEGMENTATION 

Image mix-2 mix-3 mix-4 mix-5 

pixel-level square 0.8552 0.8593 0.5292 0.5675 

 

    
(a)                        (b)                         (c)                        (d) 

    
(e)                        (f)                         (g)                        (h) 

Fig. 7. Raw segmentation results of image “mix-2” in HMT model with (a) 

1616, (b) 88, (c) 44, (d) 22 dyadic squares and in CHMT model with (e) 

1616, (f) 88, (g) 44, (h) 22 dyadic squares. 

 

    
(a)                        (b)                         (c)                        (d) 

    
(e)                        (f)                         (g)                        (h) 

Fig. 8. Raw segmentation results of image “mix-3” in HMT model with (a) 

1616, (b) 88, (c) 44, (d) 22 dyadic squares and in CHMT model with (e) 

1616, (f) 88, (g) 44, (h) 22 dyadic squares. 

 

    
(a)                        (b)                         (c)                        (d) 

    
(e)                        (f)                         (g)                        (h) 

Fig. 9. Raw segmentation results of image “mix-4” in HMT model with (a) 

1616, (b) 88, (c) 44, (d) 22 dyadic squares and in CHMT model with (e) 

1616, (f) 88, (g) 44, (h) 22 dyadic squares. 
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(a)                        (b)                         (c)                        (d) 

    
(e)                        (f)                         (g)                        (h) 

Fig. 10. Raw segmentation results of image “mix-5” in HMT model with (a) 

1616, (b) 88, (c) 44, (d) 22 dyadic squares and in CHMT model with (e) 

1616, (f) 88, (g) 44, (h) 22 dyadic squares. 

 

TABLE III: THE CORRECTION RATES OF FINAL SEGMENTATION 

Image Method 
88 

square 

44 

square 

22 

square 

pixel-level 

square 

mix-2 

HMTseg 0.8927 0.8941 0.8957 0.9593 

Mor's method 0.9466 0.9535 0.9594 0.9705 

The proposed 

method 
0.9563 0.9594 0.9626 0.9733 

mix-3 

HMTseg 0.8676 0.9008 0.8681 0.9127 

Mor's method 0.8987 0.9290 0.9390 0.9595 

The proposed 

method 
0.9207 0.9475 0.9546 0.9750 

mix-4 

HMTseg 0.8652 0.8843 0.7319 0.7768 

Mor's method 0.9502 0.9570 0.9597 0.9659 

The proposed 

method 
0.9561 0.9629 0.9650 0.9716 

mix-5 

HMTseg 0.7808 0.7549 0.4817 0.4372 

Mor's method 0.8788 0.8963 0.9039 0.9197 

The proposed 

method 
0.8979 0.9149 0.9181 0.9318 

 

Because the CHMT model enhances the clustering property 

in wavelet domain with connecting extended adjacent nodes, 

the segmentation results in Table I shows that CHMT model 

method has better correction rates than HMT model. 

Obviously, the images in Fig. 7-Fig. 10 show that CHMT 

model method in the smooth region has more precise 

segmentation results. In Table III, the final segmentation 

using boundary refinement gets better correction rates than 

intescale fusion in HMTseg. After improving the raw 

segmentations by CHMT model, the boundary refinement 

method can get superior correction rates from the better raw 

segmentations. The experiment results also show the 

goodness of multiscale segmentation. The finer scales image 

usually have less correction rates because the small windows 

with little information for computing statistic model. Contrary, 

the appropriate coarser scales have more correction rates. 

Using boundary refinement to combine the raw segmentation 

results from coarser to finer scales, the good segmentation 

results at coarser scales can refine the raw segmentation 

results. 

 

    
(a)                        (b)                         (c)                        (d) 

Fig. 11. The final segmentation results of image (a) “mix-2”, (b) “mix-3”, (c) 

“mix-4”, and (d) “mix-5” by Mor’s method. 

    
(a)                        (b)                         (c)                        (d) 

Fig. 12. The final segmentation results of image (a) “mix-2”, (b) “mix-3”, (c) 

“mix-4”, and (d) “mix-5” by the proposed method. 

 

Two 256256 aerial photos: land region and water region 

were used for practically testing as shown in Fig. 13(a) and 

14(a). Fig. 13(b) and Fig. 14(b) show the results from Mor’s 

method. Fig. 13 (c) and Fig. 14(c) show the results from the 

proposed method. We can see that there are more white labels 

in the water region in Fig. 13(b) and Fig. 14(b). So the final 

segmentation results show that the performance of the 

proposed method is better. 
 

   
(a)                       (b)                       (c) 

Fig. 13. The test aerial photo, (a) “aerial-1”, and the final segmentation from 

(b) Mor’ method and (c) the proposed method. 

 

   
(a)                       (b)                       (c) 

Fig. 14. The test aerial photo, (a) “aerial-2”, and the final segmentation from 

(b) Mor’ method and (c) the proposed method. 

 

V. CONCLUSIONS 

In this paper, we use the proposed CHMT model combining 

the multiscale boundary refinement method to segment 

textures. By adding extended coefficients associated with 

wavelet coefficients in every scale, the CHMT model holds 

persistence properties as the HMT model and enhances the 

clustering properties in wavelet domain. The experiments 

showed that the proposed method uses more parameters and 

more computation costs but get better segmentation 

performance than HMTseg and Mor’s methods. 

There are still some tasks for future research. We will study 

more appropriate wavelet model that include shift invariant 

property and high frequency information to fit the real image 

data more precisely. The boundaries between textures are  the 

critical regions that usually make the performance worse. So 

the performance of classification in boundary regions must be 

improved. For more real image applications, the parallel 

computation for reducing executed time is also an important 

issue. 
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