


Abstract—Artificial bee colony (ABC) is a relatively new

stochastic algorithm with competitive performance and minimal

tuning parameter. This paper proposes a hybrid ABC algorithm

with differential evolution (DE), but without additional

parameters. DE is a well-known efficient evolutionary algorithm

with proven records but its parameter setting is complicated.

This proposed hybrid algorithm called ABCDE incorporates the

powerful mutation strategies of DE into ABC, in order to

increase convergence while diversity is not compromised. The

performance of ABCDE is evaluated against both original ABC

and opposition-based DE (ODE), a recent DE variant with high

performance. The experiment uses twelve widely accepted

non-linear benchmark functions with various characteristics,

such as difficult landscape, multimodality, shift and rotation, to

evaluate the ABCDE’s performance on many complex functions.

The experimental results demonstrate a superior performance

of ABCDE against original ABC and ODE.

Index Terms—Artificial bee colony, hybridization,

differential evolution.

I. INTRODUCTION

Artificial bee colony (ABC) algorithm [1] is a

biological-inspired population-based stochastic algorithm,

recently proposed by D. Karaboga, which mimics the

foraging behavior of honey bee swarm. Performance of ABC

algorithm has been demonstrated to be competitive to other

population-based algorithms with an advantage of simplicity

and having fewer control parameters [2], [3]. Thus ABC has

been applied to solve different optimization problems such as

machining process [4], scheduling [5], structural design

problem [6] and power electric [7]. The ABC employed in

this work is a hybrid with differential evolution (DE) in order

to increase exploitation, the ability of searching near a

candidate solution. DE is a very efficient evolutionary

algorithm proposed by Storn and Price [8], whose

performance has been improved and widely accepted in many

areas from engineering and science to finance and economic

since [9]. The hybridization in this work increases ABC’s

exploitation without additional algorithmic parameters.

Performance of the proposed hybrid algorithm, namely

ABCDE, is evaluated using a set of widely accepted

benchmark of nonlinear minimization problems with different

characteristics including multimodality, shift and rotation.

The remainder of the paper has the following structure.

Section II presents background of ABC and overview of DE

and ANN. Section III describes the proposed hybrid ABCDE

Manuscript received October 1, 2014; revised December 23, 2014.

C. Worasucheep is with the King Mongkut University of Technology

Thonburi, Bangkok, Thailand (e-mail: chukiat.wor@kmutt.ac.th).

whose performance is evaluated using benchmark functions in

Section IV. Section V concludes the paper with some future

works.

II. BACKGROUND

Without loss of generality, this paper considers

minimization problems only.

A. Artificial Bee Colony

Artificial Bee Colony (ABC) algorithm is a relatively new

population-based algorithm proposed by D. Karaboga in

2005 to solve continuous problems [1]. ABC is modeled from

the foraging behavior of honey bee colony that consists of

three different groups of bees: employed bees, onlooker bees

and scout bees. The employed bees search food sources

around the hive and carry information about food source

positions. Onlooker bees are waiting in the hive for the

information shared by the employed bees about their found

food sources, given that each employed bee carries

information of one different food source. An onlooker bee

evaluates the information showed by the dancing employed

bees and choose a food source according to the probability

proportional to the quality, the amount of nectar, of that food

source. Once an onlooker is attracted to one food source

information, it updates food information, keeps only the better

one, and shares its information on the dance platform. If a

food source could not be improved by the employed or

onlooker bees in a certain time (called as abandon limit), the

employed bee abandons this food source and becomes a scout

bee exploring a new food source.

In ABC algorithm, there are N food sources, each of which

is a candidate solution whose position is represented as xi (i =

1,…, N) of D dimensional vector, where D is the number of

optimization variables. Initially, the population of solutions is

created and each xi is randomized with D-dimensional

real-value vector:

, min, max, min,(0,1)()i j j j jx x rand x x   (1)

where j= 1,2,…,D. xmin, j and xmax, j are the lower and upper

bounds of the dimension j, respectively. rand(0,1) is a random

number drawn from a uniform distribution in a range of 0 and

1. Fitness values of all solutions, representing quality of the

food sources, are then evaluated. Similar to other

population-based algorithms, ABC is an iterative process and

the following steps will be executed repeatedly until some

termination criteria is met.

Each employed bee xi generates a new food source vi in the

neighborhood of its current position by using the following

search equation:

A Hybrid Artificial Bee Colony with Differential

Evolution

Chukiat Worasucheep

International Journal of Machine Learning and Computing, Vol. 5, No. 3, June 2015

179DOI: 10.7763/IJMLC.2015.V5.504

, , , , ,(),i j i j i j i j k jv x x x   (2)

where k = {1, 2,…, N} and j = {1, 2, …, D} are randomly

chosen indexes; k has to be different from i .  i , j is a random

number in the range [-1, 1]. The new food source vi will be

evaluated and compared to xi. If vi is better than xi, the

employed bee will memorize the new food source vi and

forget the previous one; otherwise xi is retained.

After all employed bees complete their searches, they

return to the dancing area in the hive and share information to

the onlooker bees. An onlooker chooses a food source

depending on the probability value associated with the food

source pi. In original ABC, roulette wheel selection method is

employed as follows.

1
,

N

i i jj
p fit fit


  (3)

where fiti is the fitness value of solution i. The higher value the

fiti is, the more probability that the i-th food source is selected.

Once an onlooker selects its food source, it produces a

modification on the xi by using equation (2) and evaluates the

new food source. Similar to the case of the employed bee, an

onlooker replaces the selected food source with the new one if

the new one is better.

If a food source xi cannot be improved by the bees for a

predetermined number of times, called abandon limit, the

food source is abandoned and could be newly produced by a

scout bee using equation (1).

B. Improved Variants of ABC

It is widely known that both exploration (diversification)

and exploitation (intensification) are necessary for any

population-based search algorithms. Unfortunately, they are

contradict to each other and both must be well balanced

during the search for good performance. The original ABC is

well known for its exploration but poor at exploitation[10],

[11]. Thus many techniques have been employed to enhance

the convergence and performance reliability of ABC. Some of

them include local search [5], Tagushi method [6], orthogonal

learning strategy [11], multi-strategy ensemble [12]. Kang et

al.’s Rosenbrock ABC algorithm [13] used a modified

Rosenbrock’s rotational direction method to implement the

exploitation phase to assist ABC in solving complex problems.

Bose et al. [14] proposed the idea of decentralization of

attraction from super-fit members along with neighborhood

information and wider exploration of search space and

applied it to optimal filter design problems.

In additions, hybridization with other well-known

population-based algorithms such as particle swarm

optimization (PSO) or differential evolution (DE), have been

proposed to enhance the performance of ABC [7], [15].

Inspired by PSO, the gbest-guided ABC exploits the

information of global best solution into the search equation to

improve the exploitation [10]. Inspired by DE/best/1, the

modified ABC searches only around the best solution to

improve the exploitation [11] in addition to an improved

initialization with chaotic system and opposition-based

learning. A new probability parameter is added for balancing

of the exploration and exploitation. More recently, a hybrid

ABC with DE integrates a modified DE into the modified

gbest-guided ABC to further accelerate the convergence [16].

A catastrophe-like scheme is used to prevent stagnation at the

later stage of evolution by abruptly initializing some worse

individuals of the population. Despite its promising

performance, this hybrid ABC has four additional parameters:

two for the improved search equations and two for the

stagnation prevention scheme. Yang et al. [17], applied the

mutation and crossover strategies of DE to the employed bees

to enforce their exploration ability while onlooker bees keep

their original updating strategy to retain the exploitation

ability. Li and Yin proposed another simple hybrid ABC and

DE where the DE operation works as main structure and ABC

works only when the solution created by DE operator does not

make an improvement [18]. Unfortunately, a comprehensive

simulation of the algorithms as proposed in Yang et al. [17]

and Li and Yin [18] did not achieve a comparable results as

reported, therefore, both algorithms are not included in this

study for a comparative analysis.

C. Differential Evolution

Differential evolution is a population-based stochastic

search algorithm that evolves a population of candidate

solutions, called vectors, towards global optima. Firstly, a

population of vectors are randomly initialized within the

search space and evaluated with the objective function

provided. Then each vector, so-called target vector,

undergoes three operations in sequence: mutation, crossover

and replacement [8].

1) Mutation. A base vector is first selected from a randomly

chosen or the best vector of the population. Then the

difference(s) of one or sometimes two pairs of randomly

chosen vectors are scaled and added to the basis vector to

produce a mutant vector.

2) Crossover. To enhance the potential diversity of the

population, the mutant vector exchanges its components with

the target vector to form a trial vector.

3) Selection. The new trial vector and the corresponding

target vector will be compared to keep only one of them to

survive. If the trial vector has an equal or better value of the

fitness value, it replaces the target vector in the next

generation; otherwise the target vector is retained. This

selection is thus in a greedy way and the overall fitness value

will keep better or remain the same [19].

There exist abundant methods developed so far to create

the base vector and the difference vectors, which correspond

to different mutation strategies. One of the most widely used

mutation strategy is DE/rand/1, meaning that one randomly

chosen vector is used as the base vector and one pair of

randomly chosen vectors are used to create the difference

vector in mutation. This strategy provides a moderate to good

performance for a wide range of problems. Another popular

strategy is DE/best/1 which is similar to DE/rand/1 except that

the currently best vector is selected to be the base vector.

DE/best/1 strategy yields a good convergence for simple

unimodal problems. Many more strategies can be found in a

recent survey [9].

An interesting mutation strategy is DE/current-to-rand/1

which is rotationally invariant and has superior performance

on difficult problems [9], [19]. DE/current-to-rand/1 replaces

the binomial crossover operator with the rotationally invariant

arithmetic line recombination operator to generate the trial

International Journal of Machine Learning and Computing, Vol. 5, No. 3, June 2015

180

vector by linearly combining the target vector and the

corresponding trial vector as follows:

1 2 3() ()i i i r i r ru x k x x F x x       (4)

where
iu and

ix are the trial vector and the target vector. r1, r2

and r3 are indexes of vector randomly chosen and r1 ≠r2 ≠r3≠i.

ki and F are the combination coefficients, which are

recommended to be a random value from a uniform

distribution between 0 and 1.

III. THE PROPOSED HYBRID ABCDE

The original ABC is well known for its exploration but

poor at exploitation [10], [11]. This is mainly because of the

following three reasons found in the search equation (2).

Firstly, this equation is used by both the employed bees and

the onlooker bees. Thus no variety search behavior can be

anticipated. Secondly, the new food source is created

depending on the k-th member, which is selected only with a

random. No directional improvement can be foreseen at this

point. And third, the original ABC modified only one

dimension, say the j-th dimension, at a time. Updates on more

dimensions can expect higher diversity improvement.

Algorithm 1: Hybrid ABCDE algorithm

Given objective function f and dimension D

Set running parameter MAXNFC

Create and randomly initialize all solutions xi, i = 1..PS

Designate the bee with minimumf (xi) as best

Set triali = 0, i = 1..PS

Set limit = 0.6 DPS

nfc = 0

while Stop condition is not satisfied, i.e. nfc<= MAXNFC do

 // the employed bee phase

 Randomly create F[0, 1]

 for i = 1 toPSdo

 Create random integer numbers

r1r2r3

 Randomly create k [0, 1]

 Generate and evaluate a new food source vi according to

equation (5)

 nfc = nfc + 1

 if f (vi) <f (xi) then

 xi = vi, triali = 0

 Designate xi as the best bee iff (xi) <f (xbest)

 else

 triali = triali + 1

 end if

 end for

 if nfc> MAXNFC then

 break

 end if

 // the onlooker phase

 Calculate the probability values pi for the solutions pi according

to equation (3)

 for i = 1 toPSdo

 Create two random integer numbers src, dest [0, PS]

srcdestf (xdest) <f (xsrc)

 Randomly create F [0, 1]

 Generate and evaluate a new solution vi according to

equation (6)

 nfc = nfc + 1

 if f (vi) <f (xi) then

 xi = vi, triali = 0

 Designate xi as the best bee iff (xi) <f (xbest)

 else

 triali = triali + 1

 end if

 end for

 // the scout bees

 for i = 1 toPSdo

 if triali> limit then

 Randomly initialize the bee xi with equation (1)

 Evaluate the bee

 nfc = nfc + 1

 end for

endwhile

TABLE I: THE BENCHMARK PROBLEMS (FMIN: KNOWN OPTIMUM VALUE, U: UNIMODAL, M: MULTIMODAL,

S: SEPARABLE, N: NON-SEPARABLE, SH: SHIFTED, RO: ROTATED)

Group Subgroup Function Search range fmin Type Sh/Ro

Basic

f1 Sphere [-50, 50]D 0 US -

 f2 Quartic with noise [-1.28, 1.28]D 0 US -

 f3 Rosenbrock [-30, 30]D 0 MN -

 f4 Ackley [-32, 32]D 0 MN -

 f5 Griewank [-600, 600]D 0 MN -

 f6 Rastrigin [-5.12, 5.12]D 0 MS -

Complex CEC05 f7 Shifted Sphere [-100, 100]D -450 US Sh

 f8 Shifted Rosenbrock [-100, 100]D 390 MN Sh

 f9 Shifted Rastrigin [-5, 5]D -330 MS Sh

 CEC13 f10 Rotated Ackley [-100, 100]D -700 MN Ro

 f11 Rotated Griewank [-100, 100]D -500 MN Ro

 f12 Rotated Expanded Griewank plus Rosenbrock [-100, 100]D 500 MN Ro

To address the first two reasons, we apply the search

equation of DE/current-to-rand, which is rotationally

invariant [9], [19] for the employed bees. The employed bees

use the following equation (5) instead of (2).

1 2 3() ()i i i r i r ru x k x x F x x       (5)

where r1, r2 andr3 are indexes of food sources randomly

chosen and r1 ≠r2 ≠r3 ≠i. ki,j is a random value from a uniform

distribution between 0 and 1. F is a random value from a

uniform distribution between 0 and 1, created once for each

iteration.

For the onlooker bees, we apply a different DE variant for a

International Journal of Machine Learning and Computing, Vol. 5, No. 3, June 2015

181

r1, r2,r3 [0, PS]

different search behavior. DE/best/1 provides a fast

convergence on a wide range of characteristics of functions.

DE/rand/2/dir [20] provides performances of similar quality

with DE/rand/1 but is slightly faster to converge than

DE/rand/1 on multimodal and separable functions [9].

Therefore, inspired by DE/best/1 and DE/rand/2/dir, the

search is around the bee with the best fitness value and the

objective function information is incorporated to guide the

direction as in the following way:

, , , ,()i j best j dest j src jv x F x x   (6)

where xbest denotes the bee with the currently best fitness value.

xsrc and xdest are the bees chosen with random such that

() ()dest srcf x f x , for a minimization problem. F is a

random value from a uniform distribution between 0 and 1.

In addition, after the roulette wheel selection method is

performed, the probability for the bee with best fitness (pbest)

is set to 1.0 so as to guarantee that the best bee will be updated

with the new onlooker equation (6).

All the modifications described here do not introduce

additional algorithmic parameters, and hence the strength of

the ABC algorithm is retained.

For the third weakness of equation (2) mentioned earlier,

we do not make any improvement in this work. The common

idea is to have more dimensions be altered in an iteration,

controlled with a newly-introduced probability parameter. By

this way the solution is generated more like the crossover

operator of DE rather than the ABC algorithm, and hence we

leave for further investigation in next work.

IV. PERFORMANCE EVALUATION

A. Experimentation Setup

Twelve benchmark functions are used in the following

experiment to evaluate the performance of the proposed

hybrid ABCDE algorithm. All these functions are scalable

minimization problems widely used in literature and have

various characteristics. Table I summarizes their brief

characteristics and search ranges. The first six functions are

basic unimodal and more difficult multimodal functions. The

Sphere function (f1) is for testing an algorithm’s convergence

speed on a very simple function. Function 2 is irregular from

being altered with the addition of noise. The Rosenbrock

function (f3) has a very narrow valley from local optimum to

global optimum. It is considered a multimodal function at a

higher dimension than 3 [21]. The Rastrigin function (f6)

contains a huge number of local optima dispersed throughout

the search space.

Functions 7 to 12 are more difficult forms of selected basic

functions by having axis rotation or their optimum shifted.

Functions 7 to 9 are selected from the special session and

competition held under the IEEE Congress on Evolutionary

Computation (CEC) 2005 while functions 9 to 12 are selected

from CEC 2013. Details of the benchmark set are given in the

corresponding technical reports [22], [23].

The experiment is conducted on all these 12 functions at 30

dimensions (or the number of decision variables). The

maximum number of function evaluations (MAXNFC) is set

to 200000. All experiments were run 60 times independently.

Mean, s.d., highest value and lowest values of the final fitness

obtained from 60 runs by the proposed ABCDE are compared

with those by original ABC as well as opposition-based DE

(ODE) [24]. ODE is a state-of-the-art DE enhanced with the

opposition-based learning in population initialization,

generation jumping, and local improvement. Despite its

simple implementation, performance of ODE was

comprehensively proven using a large set of complex

benchmark functions [24].

Population size (PS) is known to have some impact to the

search diversity and on the performance of population-based

algorithms. PS for ABCDE and ABC are set equally to 20 and

60. PS for a DE is recommended widely from 3D to 10D [8],

[9]. In this experiment, we tested ODE at 60, 90, 120, 150 and

180 to investigate the results and found that the overall best

results are obtained from PS = 60 and 90, and thus will only

be reported in the next section. Other important parameters

for ODE are as follows: CR = 0.85, F = 0.5, and jumping rate

JR = 0.3, as recommended [24]. The abandon limit for both

ABC and ABCDE is set to 0.6 PSD as recommended [11].

All algorithms are implemented in Java 7 using NetBeans

IDE 7.3 and executed on a computer running Windows 7 SP1

with an Intel i7 Quad Core 3.40 GHz.

B. Comparison Results and Discussions

Table II lists the means, standard deviations (s.d.), the

lowest and the highest fitness obtained from running each

algorithm for 60 times. Any values smaller than 1e-80 are

reported as 0. The lowest mean and s.d. values indicate best

performance of algorithm for that function and are

highlighted in bold. Table III summarizes statistical ranking

of final fitness values obtained for each benchmark function; a

lower-number rank is better. To rank algorithms for each

function, the two-tailed Wilcoxon signed-rank test, a

well-known nonparametric statistical hypothesis test, is

conducted to test the difference in final fitness values

obtained from a pair of algorithms at 0.05 significant level.

An algorithm j is ranked better than algorithm k (rj<rk) if the

Wilcoxon signed-rank test result of algorithms j against k gets

a p-value below 0.05. Two algorithms are ranked equally if

the Wilcoxon signed-rank test result is not significant. Then

the ranks of each algorithm are averaged by function groups: a

group of six basic functions and a group of six complex

functions (with shift and rotation) as well as all twelve

functions, to obtain the Average Aggregated Ranks (AAR). A

lower value of AAR means that such algorithm performs

better. The last column (#1) in Table III indicates the number

of functions, in which each algorithm gets the first rank. A

higher value of #1 means the algorithm is better.

Fig. 1 and Fig. 2 display the average convergence graphs of

all algorithms-PS’s for each function. To avoid overcrowding

in the graphs, the convergence graphs of ODE with PS = 60

(ODE-60) are omitted since it has a lower performance in

overall compared to ODE-90.

Last column in Table II shows the running time (in seconds)

for 60 runs of each algorithm as a comparison. It is clear that

International Journal of Machine Learning and Computing, Vol. 5, No. 3, June 2015

182

ODE took a longer average time than ABC and ABCDE to

finish its running (with MAXNFC) in every function. This is

due to the overhead time for sorting in the ODE’s

opposition-based learning. In addition, we notice that on

average ABCDE and ABC took about the same time to run.

1) Basic functions

From Table II and Fig. 1 (a) and (b), both ABCDE and

ODE clearly outperforms original ABC on basic unimodal

functions (f1 and f2). ABCDE with PS = 20 (ABCDE-20) has

the fastest convergence in f1, but ODE wins in the case of

noisy function (f2).

Functions f3 to f6 are more difficult multimodal functions.

ABCDE clearly outperforms ODE and beats original ABC in

f3 Rosenbrock and f6 Rastrigin functions which are very

challenging. Every algorithm can achieve a minimum value of

0 for Griewank function. Although on average ODE-90 is

better than all ABC variants in Ackley and Griewank

functions, ODE-60 performs the worst. ABCDE performs

better than ABC in both functions.

Considering the AAR columns in Table III, we can observe

that ABCDE achieves the top two best AARBAS, i.e. 2.33 and

2.67 for ABCDE-20 and ABCDE-60, respectively.

From Fig. 1, we can see that ABCDE-20 converges fastest

for 5 out of 6 functions. The improved solution generations of

both employed bees and onlooker bees significantly

accelerate their convergence, while the main structure of bee

colony algorithm and its abandon limit help preserve the

exploration capability.

2) Complex functions

For shifted functions (f7 – f9) according to Table III, both

ABC and ABCDE perform equally in terms of rank regardless

of population size and clearly beat ODE. For rotated functions

(f10 – f12), the winners are ABC-60 and ABCDE-20 with

equal AARCPX of 1.17.

From Fig. 2, the convergence of ODE is faster than other

algorithms only in f11 Rotated Griewank function. However,

ABCDE-20 converges the fastest for 3 out of 6 complex

functions.

In summary for all twelve functions, ABCDE-20 achieved

the best (lowest) AAR (= 1.75) as well as the highest number

of #1 (= 7). This confirms the competitiveness of the

proposed hybrid ABCDE.

TABLE II: BASIC STATISTICS OF THE RESULTS AND RUNNING TIME (IN SECONDS)

 ANY VALUES SMALLER THAN 1E-80 ARE REPORTED AS 0

Algo. PS Mean s.d. Lowest Highest Time

f1 ABC 20 5.924E-78 3.182E-77 0 2.456E-76 1.04

 60 2.883E-23 8.286E-23 1.212E-25 6.250E-22 1.08

 ABCDE 20 0 0 0 0 1.03

 60 1.165E-35 4.207E-35 2.131E-39 2.486E-34 1.05

 ODE 60 1.665E-04 1.274E-03 0 9.954E-03 5.02

 90 0 0 0 0 5.40

f2 ABC 20 5.486E-02 1.069E-02 2.977E-02 7.998E-02 6.88

 60 6.526E-02 1.449E-02 4.075E-02 1.123E-01 6.96

 ABCDE 20 2.903E-02 6.534E-03 1.201E-02 4.300E-02 7.01

 60 2.431E-02 4.746E-03 1.255E-02 3.737E-02 7.03

 ODE 60 6.588E-04 2.848E-04 3.475E-04 2.319E-03 14.02

 90 9.450E-04 2.841E-04 3.765E-04 1.598E-03 14.11

f3 ABC 20 0.260 0.303 2.72E-02 1.877 12.35

 60 0.438 1.192 4.74E-03 9.005 12.47

 ABCDE 20 0.494 1.472 7.58E-05 10.028 12.53

 60 0.183 0.298 5.67E-03 1.597 12.59

 ODE 60 27.143 0.529 2.54E+01 27.969 23.02

 90 26.805 0.416 25.595 27.689 23.12

f4 ABC 20 4.266E-11 2.915E-11 1.030E-11 1.299E-10 4.02

 60 3.946E-14 4.228E-15 2.887E-14 5.018E-14 4.10

 ABCDE 20 3.147E-14 2.817E-15 2.887E-14 3.952E-14 3.99

 60 3.183E-14 3.122E-15 2.176E-14 3.952E-14 4.03

 ODE 60 2.078E-06 1.239E-05 3.997E-15 9.386E-05 10.02

 90 3.997E-15 3.155E-30 3.997E-15 3.997E-15 10.08

f5 ABC 20 5.351E-11 3.366E-10 0 2.620E-09 3.92

 60 6.077E-09 4.029E-08 0 3.130E-07 4.02

 ABCDE 20 4.003E-09 1.080E-08 0 5.907E-08 4.02

 60 3.574E-08 1.994E-07 0 1.552E-06 4.05

 ODE 60 8.008E-04 2.790E-03 0 1.232E-02 10.02

 90 0 0 0 0 10.05

f6 ABC 20 2.43E-13 8.29E-13 0 6.01E-12 3.52

 60 0 0 0 0 3.59

 ABCDE 20 0 0 0 0 4.04

 60 0 0 0 0 4.13

 ODE 60 61.137 43.580 2.985 140.020 10.50

 90 79.979 42.117 6.965 135.869 10.52

f7 ABC 20 -450 0 -450 -450 0.53

International Journal of Machine Learning and Computing, Vol. 5, No. 3, June 2015

183

Algo. PS Mean s.d. Lowest Highest Time

 60 -450 0 -450 -450 0.58

 ABCDE 20 -450 0 -450 -450 1.02

 60 -450 0 -450 -450 1.08

 ODE 60 -449.992 0.0403 -450 -449.715 5.52

 90 -450 0 -450 -450 5.55

f8 ABC 20 395.234 6.088 390.668 428.030 0.52

 60 399.310 13.346 390.037 448.613 0.55

 ABCDE 20 400.095 14.787 390.005 448.380 1.03

 60 393.631 6.723 390.049 427.358 1.09

 ODE 60 2.22E+06 1.51E+07 416.494 1.18E+08 5.11

 90 2.90E+04 2.13E+05 414.890 1.67E+06 5.50

f9 ABC 20 -330 0 -330 -330 4.00

 60 -330 0 -330 -330 4.07

 ABCDE 20 -330 0 -330 -330 4.01

 60 -330 0 -330 -330 4.09

 ODE 60 -254.038 43.933 -317.833 -187.514 10.01

 90 -246.656 42.790 -316.071 -179.829 10.50

f10 ABC 20 -679.029 0.053 -679.186 -678.932 55.93

 60 -679.047 0.054 -679.204 -678.954 57.60

 ABCDE 20 -679.042 0.045 -679.215 -678.972 56.01

 60 -679.041 0.051 -679.168 -678.953 57.69

 ODE 60 -679.044 0.056 -679.241 -678.941 76.94

 90 -679.032 0.051 -679.181 -678.939 78.97

f11 ABC 20 -493.331 1.757 -497.818 -488.195 15.13

 60 -498.937 0.248 -499.515 -498.415 15.47

 ABCDE 20 -499.535 0.281 -499.922 -498.764 15.44

 60 -497.398 0.686 -498.554 -495.624 15.59

 ODE 60 -499.290 0.664 -499.971 -497.192 23.70

 90 -499.944 0.075 -500.000 -499.483 24.15

f12 ABC 20 18011.0 2628.9 13160.6 22328.5 7.31

 60 20245.9 2985.1 13113.6 25769.6 7.81

 ABCDE 20 20352.9 3470.1 13079.9 27297.3 7.33

 60 23668.0 2780.6 18127.2 30102.9 7.95

 ODE 60 34353.0 24.6 34343.9 34485.2 14.29

 90 34348.4 2.5 34344.9 34358.3 14.31

 (a) (b) (c)

 (d) (e) (f)

Fig. 1. Average convergence performance of ABC, ABCDE and ODE from running of 60 times for minimization of basic functions. The number after dash (-)

indicates population size.

1E-80

1E-74

1E-68

1E-62

1E-56

1E-50

1E-44

1E-38

1E-32

1E-26

1E-20

1E-14

1E-08

0.01

10000

0 50000 100000 150000 200000

f1 Sphere

ABC-20

ABC-60

ABCDE-20

ABCDE-60

ODE-90
1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

0 50000 100000 150000 200000

f2 Quartic with noise

ABC-20

ABC-60

ABCDE-20

ABCDE-60

ODE-90

0.1

1

10

100

1000

10000

100000

0 50000 100000 150000 200000

f3 Rosenbrock

ABC-20

ABC-60

ABCDE-20

ABCDE-60

ODE-90

1E-15

1E-13

1E-11

1E-09

1E-07

1E-05

1E-03

1E-01

1E+01

0 50000 100000 150000 200000

f4 Ackley

ABC-20

ABC-60

ABCDE-20

ABCDE-60

ODE-90

1E-18

1E-16

1E-14

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

1E+02

0 50000 100000 150000 200000

f5 Griewank

ABC-20 ABC-60

ABCDE-20 ABCDE-60

ODE-90
1E-17

1E-15

1E-13

1E-11

1E-09

1E-07

1E-05

1E-03

1E-01

1E+01

1E+03

0 50000 100000 150000 200000

f6 Rastrigin

ABC-20

ABC-60

ABCDE-20

ABCDE-60

ODE-90

International Journal of Machine Learning and Computing, Vol. 5, No. 3, June 2015

184

TABLE III: RANKS OF THE ALGORITHMS FOR EACH FUNCTION

THE LAST COLUMN INDICATES THE NUMBER OF FUNCTIONS THE ALGORITHM CAN ACHIEVE THE FIRST RANK

Algorithm PS Basic Complex AAR #1

 f1 f2 f3 f4 f5 f6 AARBAS f7 f8 f9 f10 f11 f12 AARCPX

ABC 20 3 5 2 5 2 4 3.50 1 1 1 1 6 1 1.83 2.67 5

 60 5 5 4 2 3 1 3.33 1 1 1 1 1 2 1.17 2.25 6

ABCDE 20 1 3 4 2 3 1 2.33 1 1 1 1 1 2 1.17 1.75 7

 60 4 3 1 2 5 1 2.67 1 1 1 1 5 4 2.17 2.42 6

ODE 60 6 1 6 6 6 5 5.00 6 5 5 1 1 5 3.83 4.42 3

 90 1 2 6 4 1 5 3.17 1 5 6 1 1 5 3.17 3.17 5

 (a) (b) (c)

 (d) (e) (f)

Fig. 2. Average convergence performance of ABC, ABCDE and ODE from running of 60 times for minimization of complex functions.

The number after dash (-) indicates population size.

V. CONCLUSION

This paper proposes a hybrid Artificial Bee Colony

algorithm with Differential Evolution, called ABCDE. The

proposed ABCDE takes advantage of some advance DE’s

mutation strategies to speed up search convergence while the

exploration capability is still maintained and no additional

parameters are introduced. An experiment is conducted to

evaluate the performance of ABCDE against original ABC

and ODE, a highly competent DE, with twelve widely

accepted benchmark of non-linear minimization problems.

The experimental results indicate that the proposed ABCDE

has a significant improved convergence speed not only on

simple unimodal and multimodal functions but also on rotated

and shifted functions. Future works include a more systematic

hybridization of ABC with DE, PSO and other meta-heuristic

algorithms with an application of optimizing neural networks

for financial applications.

REFERENCES

[1] D. Karaboga, “An idea based on honey bee swarm for numerical

optimization,” Erciyes University, Kayseri, Turkey, Technical

Report-TR06, 2005.

[2] D. Karaboga and B. Basturk, “On the performance of Artificial Bee

Colony (ABC) algorithm,” Applied Soft Computing, vol. 8, pp.

687–697, 2008.

[3] D. Karaboga and B. Akay, “A comparative study of Artificial Bee

Colony algorithm,” Applied Mathematics and Computation, vol. 214,

pp. 108–132, 2009.

[4] S. Samanta and S. Chakraborty, “Parametric optimization of some

non-traditional machining processes using Artificial Bee Colony

algorithm,” Engineering Applications of Artificial Intelligence, vol. 24,

pp. 946–957, 2011.

[5] S. Sundar and A. Singh, “A swarm intelligence approach to early/tardy

scheduling problem,” Swarm and Evolutionary Computation, vol. 4,

no. 1, pp. 25–32, 2012.

[6] A. R. Yildiz, “A new hybrid Artificial Bee Colony algorithm for robust

optimal design and manufacturing,” Applied Soft Computing, vol. 13,

no. 5, pp. 2906–2912, 2013.

[7] P. Lu, J. Zhou, H. Zhang, R. Zhang, and C. Wang, “Chaotic differential

bee colony optimization algorithm for dynamic economic dispatch

problem with valve-point effects,” Electrical Power and Energy

Systems, vol. 62, pp. 130–143, 2014.

[8] R. Storn and K. Price, “Differential evolution — A simple and efficient

heuristic for global optimization over continuous spaces,” Journal of

Global Optimization, vol. 11, no. 4, pp. 341–359, 1997.

[9] S. Das and P. N. Suganthan, “Differential evolution — A survey of the

state-of-the-art,” IEEE Trans. Evolutionary Computation, vol. 15, no.

1, pp. 4–31, Feb. 2011.

[10] G. Zhu and S. Kwong, “Gbest-guided Artificial Bee Colony algorithm

for numerical function optimization,” Applied Mathematics and

Computation, vol. 217, no. 7, pp. 3166–3173, Dec. 2010.

-500

-450

-400

-350

-300

-250

0 50000 100000 150000 200000

f7 Shifted Sphere

ABC-20

ABC-60

ABCDE-20

ABCDE-60

ODE-90

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

0 50000 100000 150000 200000

f8 Shifted Rosenbrock

ABC-20

ABC-60

ABCDE-20

ABCDE-60

ODE-90

-350

-300

-250

-200

-150

-100

0 50000 100000 150000 200000

f9 Shifted Rastrigin

ABC-20

ABC-60

ABCDE-20

ABCDE-60

ODE-90

-679.06

-679.04

-679.02

-679.00

-678.98

-678.96

-678.94

0 50000 100000 150000 200000

f10 Rotated Ackley

ABC-20

ABC-60

ABCDE-20

ABCDE-60

ODE-90

-550

-500

-450

-400

-350

-300

-250

-200

-150

-100

-50

0 50000 100000 150000 200000

f11 Rotated Griewank

ABC-20

ABC-60

ABCDE-20

ABCDE-60

ODE-90

15000

20000

25000

30000

35000

40000

45000

0 50000 100000 150000 200000

f12 Rot. Exp. Grie. & Rosen.

ABC-20

ABC-60

ABCDE-20

ABCDE-60

ODE-90

International Journal of Machine Learning and Computing, Vol. 5, No. 3, June 2015

185

[11] W. Gao and S. Liu, “A modified Artificial Bee Colony algorithm,”

Computers and Operation Research, vol. 39, no. 3, pp. 687–697, Mar.

2012.

[12] H. Wang, Z. Wu, S. Rahnamayan, H. Sun, Y. Liu, and J.-S. Pan,

“Multi-strategy ensemble Artificial Bee Colony algorithm,”

Information Sciences, vol. 279, pp. 587-603, 2014.

[13] F. Kang, J. J. Li, and Z. Y. Ma, “Rosenbrock Artificial Bee Colony

algorithm for accurate global optimization of numerical functions,”

Information Sciences, vol. 12, pp. 3508–3531, 2011.

[14] D. Bose, S. Biswas, A. V. Vasilakos, and S. Laha, “Optimal filter

design using an improved artificial bee colony algorithm,” Information

Sciences, vol. 281, pp. 443–461, 2014.

[15] M. S. Kıran and M. Gündüz, “A recombination-based hybridization of

particle swarm optimization and artificial bee colony algorithm for

continuous optimization problems,” Applied Soft Computing, vol. 13,

no. 4, pp. 2188–2203, Apr. 2013.

[16] W. Xiang, S. Ma, and M. An, “hABCDE: A hybrid evolutionary

algorithm based on Artificial Bee Colony algorithm and differential

evolution,” Applied Mathematics and Computation, vol. 238, pp.

370–386, 2014.

[17] J. Yang, W. T. Li, X.-W. Shi, L. Xin, and J. F. Yu, “A hybrid ABC-DE

algorithm and its application for time-modulated arrays pattern

synthesis,” IEEE Transactions on Antennas and Propagation, vol. 61,

no. 11, pp. 5485-5495, Nov. 2013.

[18] X. Li and M. Yin, “Hybrid differential evolution with artificial bee

colony and its application for design of a reconfigurable antenna array

with discrete phase shifters,” Microwaves, Antennas & Propagation,

IET, vol. 6, no. 14, pp. 1573–1582, 2012.

[19] K. V. Price, “An introduction to Differential Evolution,” in New Ideas

in Optimization, D. Corne, M. Dorigo, and F. Glover, Eds. London,

U.K.: McGraw-Hill, 1999, pp. 79–108.

[20] V. Feoktistov and S. Janaqi, “Generalization of the strategies in

Differential Evolution,” in Proc. 18th Parallel and Distributed

Processing Symposium, Apr. 2004, p. 165.

[21] Y. W. Shang and Y. H. Qiu, “A note on the extended Rosenbrock

function,” Evolutionary Computation, vol. 14, no. 1, pp. 119–126,

March 2006.

[22] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. P. Chen, A. Auger,

and S. Tiwari, “Problem definitions and evaluation criteria for the CEC

2005 special session on real-parameter optimization,” Nanyang

Technol. Univ., Singapore, Tech. Rep., IIT Kanpur, Kanpur, India,

KanGAL Rep. #2005005, May 2005.

[23] J. J. Liang, B. Y. Qu, P. N. Suganthan, and A. G. Hernandez-Diaz,

“Problem definitions and evaluation criteria for the CEC 2013 special

session on real-parameter optimization,” Com. Intel. Lab., Zhengzhou

University, Zhengzhou, China, Tech. Rep. 201212 and Nanyang

Technological University, Singapore, Tech. Rep., 2013.

[24] S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama,

“Opposition-based differential evolution,” IEEE Transactions on

Evolutionary Computation, vol. 12, no. 1, pp. 64–79, Jan. 2008.

Chukiat Worasucheep obtained a degree of M.S. in

computer science from Oregon State University, USA.

and has been working with Applied Computer Science,

Faculty of Science, King Mongkut University of

Technology Thonburi, Bangkok, Thailand. His current

research interests are computational intelligence,

particularly in evolutionary computation and swarm

intelligence for financial applications and engineering applications. His

recent book is Modern Operating systems (in Thai) to be published in early

2015.

International Journal of Machine Learning and Computing, Vol. 5, No. 3, June 2015

186

