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Abstract—Artificial bee colony (ABC) is a relatively new 

stochastic algorithm with competitive performance and minimal 

tuning parameter. This paper proposes a hybrid ABC algorithm 

with differential evolution (DE), but without additional 

parameters. DE is a well-known efficient evolutionary algorithm 

with proven records but its parameter setting is complicated. 

This proposed hybrid algorithm called ABCDE incorporates the 

powerful mutation strategies of DE into ABC, in order to 

increase convergence while diversity is not compromised. The 

performance of ABCDE is evaluated against both original ABC 

and opposition-based DE (ODE), a recent DE variant with high 

performance. The experiment uses twelve widely accepted 

non-linear benchmark functions with various characteristics, 

such as difficult landscape, multimodality, shift and rotation, to 

evaluate the ABCDE’s performance on many complex functions. 

The experimental results demonstrate a superior performance 

of ABCDE against original ABC and ODE. 

 
Index Terms—Artificial bee colony, hybridization, 

differential evolution.  

 

I. INTRODUCTION 

Artificial bee colony (ABC) algorithm [1] is a 

biological-inspired population-based stochastic algorithm, 

recently proposed by D. Karaboga, which mimics the 

foraging behavior of honey bee swarm. Performance of ABC 

algorithm has been demonstrated to be competitive to other 

population-based algorithms with an advantage of simplicity 

and having fewer control parameters [2], [3]. Thus ABC has 

been applied to solve different optimization problems such as 

machining process [4], scheduling [5], structural design 

problem [6] and power electric [7]. The ABC employed in 

this work is a hybrid with differential evolution (DE) in order 

to increase exploitation, the ability of searching near a 

candidate solution. DE is a very efficient evolutionary 

algorithm proposed by Storn and Price [8], whose 

performance has been improved and widely accepted in many 

areas from engineering and science to finance and economic 

since [9]. The hybridization in this work increases ABC’s 

exploitation without additional algorithmic parameters. 

Performance of the proposed hybrid algorithm, namely 

ABCDE, is evaluated using a set of widely accepted 

benchmark of nonlinear minimization problems with different 

characteristics including multimodality, shift and rotation. 

The remainder of the paper has the following structure. 

Section II presents background of ABC and overview of DE 

and ANN. Section III describes the proposed hybrid ABCDE 
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whose performance is evaluated using benchmark functions in 

Section IV. Section V concludes the paper with some future 

works. 

 

II. BACKGROUND 

Without loss of generality, this paper considers 

minimization problems only. 

A. Artificial Bee Colony 

Artificial Bee Colony (ABC) algorithm is a relatively new 

population-based algorithm proposed by D. Karaboga in 

2005 to solve continuous problems [1]. ABC is modeled from 

the foraging behavior of honey bee colony that consists of 

three different groups of bees: employed bees, onlooker bees 

and scout bees.  The employed bees search food sources 

around the hive and carry information about food source 

positions. Onlooker bees are waiting in the hive for the 

information shared by the employed bees about their found 

food sources, given that each employed bee carries 

information of one different food source. An onlooker bee 

evaluates the information showed by the dancing employed 

bees and choose a food source according to the probability 

proportional to the quality, the amount of nectar, of that food 

source. Once an onlooker is attracted to one food source 

information, it updates food information, keeps only the better 

one, and shares its information on the dance platform. If a 

food source could not be improved by the employed or 

onlooker bees in a certain time (called as abandon limit), the 

employed bee abandons this food source and becomes a scout 

bee exploring a new food source. 

In ABC algorithm, there are N food sources, each of which 

is a candidate solution whose position is represented as xi (i = 

1,…, N) of D dimensional vector, where D is the number of 

optimization variables. Initially, the population of solutions is 

created and each xi is randomized with D-dimensional 

real-value vector: 

, min, max, min,(0,1)( )i j j j jx x rand x x              (1) 

where j= 1,2,…,D. xmin, j and xmax, j are the lower and upper 

bounds of the dimension j, respectively. rand(0,1) is a random 

number drawn from a uniform distribution in a range of 0 and 

1. Fitness values of all solutions, representing quality of the 

food sources, are then evaluated. Similar to other 

population-based algorithms, ABC is an iterative process and 

the following steps will be executed repeatedly until some 

termination criteria is met. 

Each employed bee xi generates a new food source vi in the 

neighborhood of its current position by using the following 

search equation: 
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, , , , ,( ),i j i j i j i j k jv x x x                         (2) 

where k = {1, 2,…, N} and j = {1, 2, …, D} are randomly 

chosen indexes; k has to be different from i .  i , j  is a random 

number in the range [-1, 1]. The new food source vi will be 

evaluated and compared to xi. If vi is better than xi, the 

employed bee will memorize the new food source vi and 

forget the previous one; otherwise xi is retained.  

After all employed bees complete their searches, they 

return to the dancing area in the hive and share information to 

the onlooker bees. An onlooker chooses a food source 

depending on the probability value associated with the food 

source pi. In original ABC, roulette wheel selection method is 

employed as follows.  

1
,

N

i i jj
p fit fit


                             (3) 

where fiti is the fitness value of solution i. The higher value the 

fiti is, the more probability that the i-th food source is selected. 

Once an onlooker selects its food source, it produces a 

modification on the xi by using equation (2) and evaluates the 

new food source. Similar to the case of the employed bee, an 

onlooker replaces the selected food source with the new one if 

the new one is better. 

If a food source xi cannot be improved by the bees for a 

predetermined number of times, called abandon limit, the 

food source is abandoned and could be newly produced by a 

scout bee using equation (1). 

B. Improved Variants of ABC 

It is widely known that both exploration (diversification) 

and exploitation (intensification) are necessary for any 

population-based search algorithms. Unfortunately, they are 

contradict to each other and both must be well balanced 

during the search for good performance. The original ABC is 

well known for its exploration but poor at exploitation[10], 

[11]. Thus many techniques have been employed to enhance 

the convergence and performance reliability of ABC. Some of 

them include local search [5], Tagushi method [6], orthogonal 

learning strategy [11], multi-strategy ensemble [12]. Kang et 

al.’s Rosenbrock ABC algorithm [13] used a modified 

Rosenbrock’s rotational direction method to implement the 

exploitation phase to assist ABC in solving complex problems. 

Bose et al. [14] proposed the idea of decentralization of 

attraction from super-fit members along with neighborhood 

information and wider exploration of search space and 

applied it to optimal filter design problems. 

In additions, hybridization with other well-known 

population-based algorithms such as particle swarm 

optimization (PSO) or differential evolution (DE), have been 

proposed to enhance the performance of ABC [7], [15]. 

Inspired by PSO, the gbest-guided ABC exploits the 

information of global best solution into the search equation to 

improve the exploitation [10]. Inspired by DE/best/1, the 

modified ABC searches only around the best solution to 

improve the exploitation [11] in addition to an improved 

initialization with chaotic system and opposition-based 

learning. A new probability parameter is added for balancing 

of the exploration and exploitation. More recently, a hybrid 

ABC with DE integrates a modified DE into the modified 

gbest-guided ABC to further accelerate the convergence [16]. 

A catastrophe-like scheme is used to prevent stagnation at the 

later stage of evolution by abruptly initializing some worse 

individuals of the population. Despite its promising 

performance, this hybrid ABC has four additional parameters: 

two for the improved search equations and two for the 

stagnation prevention scheme. Yang et al. [17], applied the 

mutation and crossover strategies of DE to the employed bees 

to enforce their exploration ability while onlooker bees keep 

their original updating strategy to retain the exploitation 

ability. Li and Yin proposed another simple hybrid ABC and 

DE where the DE operation works as main structure and ABC 

works only when the solution created by DE operator does not 

make an improvement [18]. Unfortunately, a comprehensive 

simulation of the algorithms as proposed in Yang et al. [17] 

and Li and Yin [18] did not achieve a comparable results as 

reported, therefore, both algorithms are not included in this 

study for a comparative analysis. 

C. Differential Evolution 

Differential evolution is a population-based stochastic 

search algorithm that evolves a population of candidate 

solutions, called vectors, towards global optima. Firstly, a 

population of vectors are randomly initialized within the 

search space and evaluated with the objective function 

provided. Then each vector, so-called target vector, 

undergoes three operations in sequence: mutation, crossover 

and replacement [8]. 

1) Mutation. A base vector is first selected from a randomly 

chosen or the best vector of the population. Then the 

difference(s) of one or sometimes two pairs of randomly 

chosen vectors are scaled and added to the basis vector to 

produce a mutant vector. 

2) Crossover. To enhance the potential diversity of the 

population, the mutant vector exchanges its components with 

the target vector to form a trial vector. 

3) Selection. The new trial vector and the corresponding 

target vector will be compared to keep only one of them to 

survive. If the trial vector has an equal or better value of the 

fitness value, it replaces the target vector in the next 

generation; otherwise the target vector is retained. This 

selection is thus in a greedy way and the overall fitness value 

will keep better or remain the same [19]. 

There exist abundant methods developed so far to create 

the base vector and the difference vectors, which correspond 

to different mutation strategies. One of the most widely used 

mutation strategy is DE/rand/1, meaning that one randomly 

chosen vector is used as the base vector and one pair of 

randomly chosen vectors are used to create the difference 

vector in mutation. This strategy provides a moderate to good 

performance for a wide range of problems. Another popular 

strategy is DE/best/1 which is similar to DE/rand/1 except that 

the currently best vector is selected to be the base vector. 

DE/best/1 strategy yields a good convergence for simple 

unimodal problems. Many more strategies can be found in a 

recent survey [9]. 

An interesting mutation strategy is DE/current-to-rand/1 

which is rotationally invariant and has superior performance 

on difficult problems [9], [19]. DE/current-to-rand/1 replaces 

the binomial crossover operator with the rotationally invariant 

arithmetic line recombination operator to generate the trial 
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vector by linearly combining the target vector and the 

corresponding trial vector as follows: 

1 2 3( ) ( )i i i r i r ru x k x x F x x                   (4) 

where
iu and 

ix are the trial vector and the target vector. r1, r2 

and r3 are indexes of vector randomly chosen and r1 ≠r2 ≠r3≠i. 

ki and F are the combination coefficients, which are 

recommended to be a random value from a uniform 

distribution between 0 and 1. 

 

III. THE PROPOSED HYBRID ABCDE 

The original ABC is well known for its exploration but 

poor at exploitation [10], [11]. This is mainly because of the 

following three reasons found in the search equation (2). 

Firstly, this equation is used by both the employed bees and 

the onlooker bees. Thus no variety search behavior can be 

anticipated. Secondly, the new food source is created 

depending on the k-th member, which is selected only with a 

random. No directional improvement can be foreseen at this 

point. And third, the original ABC modified only one 

dimension, say the j-th dimension, at a time. Updates on more 

dimensions can expect higher diversity improvement. 

 

Algorithm 1: Hybrid ABCDE algorithm 

Given objective function f and dimension D 

Set running parameter MAXNFC 

Create and randomly initialize all solutions xi, i = 1..PS 

Designate the bee with minimumf (xi) as best 

Set triali = 0, i = 1..PS 

Set limit = 0.6 DPS 

nfc = 0 

while Stop condition is not satisfied, i.e. nfc<= MAXNFC do 

 // the employed bee phase 

 Randomly create F[0, 1] 

 for i = 1 toPSdo 

  Create random integer numbers 

r1r2r3 

  Randomly create k [0, 1] 

  Generate and evaluate a new food source vi according to 

equation (5) 

  nfc = nfc + 1 

  if f (vi) <f (xi) then 

   xi = vi, triali = 0 

   Designate xi as the best bee iff (xi) <f (xbest) 

  else 

   triali = triali + 1 

  end if 

 end for 

 if nfc> MAXNFC then 

  break 

 end if 

 // the onlooker phase 

 Calculate the probability values pi for the solutions pi according 

to equation (3) 

 for i = 1 toPSdo 

  Create two random integer numbers src, dest [0, PS] 

srcdestf (xdest) <f (xsrc) 

  Randomly create F [0, 1] 

  Generate and evaluate a new solution vi according to 

equation (6) 

  nfc = nfc + 1 

  if f (vi) <f (xi) then 

   xi = vi, triali = 0 

   Designate xi as the best bee iff (xi) <f (xbest) 

  else 

   triali = triali + 1 

  end if 

 end for 

 // the scout bees 

 for i = 1 toPSdo 

  if triali> limit then 

   Randomly initialize the bee xi with equation (1) 

   Evaluate the bee 

   nfc = nfc + 1 

 end for 

endwhile 

 
 

TABLE I: THE BENCHMARK PROBLEMS (FMIN: KNOWN OPTIMUM VALUE, U: UNIMODAL, M: MULTIMODAL,  

S: SEPARABLE, N: NON-SEPARABLE, SH: SHIFTED, RO: ROTATED) 

Group Subgroup Function Search range fmin Type Sh/Ro 

Basic 
 

f1 Sphere [-50, 50]D 0 US - 

  f2 Quartic with noise [-1.28, 1.28]D 0 US - 

  f3 Rosenbrock [-30, 30]D 0 MN - 

  f4 Ackley [-32, 32]D 0 MN - 

  f5 Griewank [-600, 600]D 0 MN - 

  f6 Rastrigin [-5.12, 5.12]D 0 MS - 

Complex CEC05 f7 Shifted Sphere [-100, 100]D -450 US Sh 

  f8 Shifted Rosenbrock [-100, 100]D 390 MN Sh 

  f9 Shifted Rastrigin [-5, 5]D -330 MS Sh 

 CEC13 f10 Rotated Ackley [-100, 100]D -700 MN Ro 

  f11 Rotated Griewank [-100, 100]D -500 MN Ro 

  f12 Rotated Expanded Griewank plus Rosenbrock [-100, 100]D 500 MN Ro 

 

To address the first two reasons, we apply the search 

equation of DE/current-to-rand, which is rotationally 

invariant [9], [19] for the employed bees. The employed bees 

use the following equation (5) instead of (2). 

1 2 3( ) ( )i i i r i r ru x k x x F x x                      (5) 

where r1, r2 andr3 are indexes of food sources randomly 

chosen and r1 ≠r2 ≠r3 ≠i. ki,j  is a random value from a uniform 

distribution between 0 and 1. F is a random value from a 

uniform distribution between 0 and 1, created once for each 

iteration. 

For the onlooker bees, we apply a different DE variant for a 
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different search behavior. DE/best/1 provides a fast 

convergence on a wide range of characteristics of functions. 

DE/rand/2/dir [20] provides performances of similar quality 

with DE/rand/1 but is slightly faster to converge than 

DE/rand/1 on multimodal and separable functions [9]. 

Therefore, inspired by DE/best/1 and DE/rand/2/dir, the 

search is around the bee with the best fitness value and the 

objective function information is incorporated to guide the 

direction as in the following way: 

, , , ,( )i j best j dest j src jv x F x x                      (6) 

where xbest denotes the bee with the currently best fitness value. 

xsrc and xdest are the bees chosen with random such that 

( ) ( )dest srcf x f x , for a minimization problem. F is a 

random value from a uniform distribution between 0 and 1. 

In addition, after the roulette wheel selection method is 

performed, the probability for the bee with best fitness (pbest) 

is set to 1.0 so as to guarantee that the best bee will be updated 

with the new onlooker equation (6). 

All the modifications described here do not introduce 

additional algorithmic parameters, and hence the strength of 

the ABC algorithm is retained. 

For the third weakness of equation (2) mentioned earlier, 

we do not make any improvement in this work. The common 

idea is to have more dimensions be altered in an iteration, 

controlled with a newly-introduced probability parameter. By 

this way the solution is generated more like the crossover 

operator of DE rather than the ABC algorithm, and hence we 

leave for further investigation in next work. 

 

IV. PERFORMANCE EVALUATION 

A. Experimentation Setup 

Twelve benchmark functions are used in the following 

experiment to evaluate the performance of the proposed 

hybrid ABCDE algorithm. All these functions are scalable 

minimization problems widely used in literature and have 

various characteristics. Table I summarizes their brief 

characteristics and search ranges. The first six functions are 

basic unimodal and more difficult multimodal functions. The 

Sphere function (f1) is for testing an algorithm’s convergence 

speed on a very simple function. Function 2 is irregular from 

being altered with the addition of noise. The Rosenbrock 

function (f3) has a very narrow valley from local optimum to 

global optimum. It is considered a multimodal function at a 

higher dimension than 3 [21]. The Rastrigin function (f6) 

contains a huge number of local optima dispersed throughout 

the search space. 

Functions 7 to 12 are more difficult forms of selected basic 

functions by having axis rotation or their optimum shifted. 

Functions 7 to 9 are selected from the special session and 

competition held under the IEEE Congress on Evolutionary 

Computation (CEC) 2005 while functions 9 to 12 are selected 

from CEC 2013. Details of the benchmark set are given in the 

corresponding technical reports [22], [23]. 

The experiment is conducted on all these 12 functions at 30 

dimensions (or the number of decision variables). The 

maximum number of function evaluations (MAXNFC) is set 

to 200000. All experiments were run 60 times independently. 

Mean, s.d., highest value and lowest values of the final fitness 

obtained from 60 runs by the proposed ABCDE are compared 

with those by original ABC as well as opposition-based DE 

(ODE) [24]. ODE is a state-of-the-art DE enhanced with the 

opposition-based learning in population initialization, 

generation jumping, and local improvement. Despite its 

simple implementation, performance of ODE was 

comprehensively proven using a large set of complex 

benchmark functions [24]. 

Population size (PS) is known to have some impact to the 

search diversity and on the performance of population-based 

algorithms. PS for ABCDE and ABC are set equally to 20 and 

60. PS for a DE is recommended widely from 3D to 10D [8], 

[9]. In this experiment, we tested ODE at 60, 90, 120, 150 and 

180 to investigate the results and found that the overall best 

results are obtained from PS = 60 and 90, and thus will only 

be reported in the next section. Other important parameters 

for ODE are as follows: CR = 0.85, F = 0.5, and jumping rate 

JR = 0.3, as recommended [24]. The abandon limit for both 

ABC and ABCDE is set to 0.6 PSD as recommended [11]. 

All algorithms are implemented in Java 7 using NetBeans 

IDE 7.3 and executed on a computer running Windows 7 SP1 

with an Intel i7 Quad Core 3.40 GHz. 

B. Comparison Results and Discussions 

Table II lists the means, standard deviations (s.d.), the 

lowest and the highest fitness obtained from running each 

algorithm for 60 times. Any values smaller than 1e-80 are 

reported as 0. The lowest mean and s.d. values indicate best 

performance of algorithm for that function and are 

highlighted in bold. Table III summarizes statistical ranking 

of final fitness values obtained for each benchmark function; a 

lower-number rank is better. To rank algorithms for each 

function, the two-tailed Wilcoxon signed-rank test, a 

well-known nonparametric statistical hypothesis test, is 

conducted to test the difference in final fitness values 

obtained from a pair of algorithms at 0.05 significant level. 

An algorithm j is ranked better than algorithm k (rj<rk) if the 

Wilcoxon signed-rank test result of algorithms j against k gets 

a p-value below 0.05. Two algorithms are ranked equally if 

the Wilcoxon signed-rank test result is not significant. Then 

the ranks of each algorithm are averaged by function groups: a 

group of six basic functions and a group of six complex 

functions (with shift and rotation) as well as all twelve 

functions, to obtain the Average Aggregated Ranks (AAR). A 

lower value of AAR means that such algorithm performs 

better. The last column (#1) in Table III indicates the number 

of functions, in which each algorithm gets the first rank. A 

higher value of #1 means the algorithm is better. 

Fig. 1 and Fig. 2 display the average convergence graphs of 

all algorithms-PS’s for each function. To avoid overcrowding 

in the graphs, the convergence graphs of ODE with PS = 60 

(ODE-60) are omitted since it has a lower performance in 

overall compared to ODE-90. 

Last column in Table II shows the running time (in seconds) 

for 60 runs of each algorithm as a comparison. It is clear that 
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ODE took a longer average time than ABC and ABCDE to 

finish its running (with MAXNFC) in every function. This is 

due to the overhead time for sorting in the ODE’s 

opposition-based learning. In addition, we notice that on 

average ABCDE and ABC took about the same time to run. 

1) Basic functions 

From Table II and Fig. 1 (a) and (b), both ABCDE and 

ODE clearly outperforms original ABC on basic unimodal 

functions (f1 and f2). ABCDE with PS = 20 (ABCDE-20) has 

the fastest convergence in f1, but ODE wins in the case of 

noisy function (f2). 

Functions f3 to f6 are more difficult multimodal functions. 

ABCDE clearly outperforms ODE and beats original ABC in 

f3 Rosenbrock and f6 Rastrigin functions which are very 

challenging. Every algorithm can achieve a minimum value of 

0 for Griewank function. Although on average ODE-90 is 

better than all ABC variants in Ackley and Griewank 

functions, ODE-60 performs the worst. ABCDE performs 

better than ABC in both functions. 

Considering the AAR columns in Table III, we can observe 

that ABCDE achieves the top two best AARBAS, i.e. 2.33 and 

2.67 for ABCDE-20 and ABCDE-60, respectively. 

From Fig. 1, we can see that ABCDE-20 converges fastest 

for 5 out of 6 functions. The improved solution generations of 

both employed bees and onlooker bees significantly 

accelerate their convergence, while the main structure of bee 

colony algorithm and its abandon limit help preserve the 

exploration capability. 

2) Complex functions 

For shifted functions (f7 – f9) according to Table III, both 

ABC and ABCDE perform equally in terms of rank regardless 

of population size and clearly beat ODE. For rotated functions 

(f10 – f12), the winners are ABC-60 and ABCDE-20 with 

equal AARCPX of 1.17. 

From Fig. 2, the convergence of ODE is faster than other 

algorithms only in f11 Rotated Griewank function. However, 

ABCDE-20 converges the fastest for 3 out of 6 complex 

functions. 

In summary for all twelve functions, ABCDE-20 achieved 

the best (lowest) AAR (= 1.75) as well as the highest number 

of #1 (= 7). This confirms the competitiveness of the 

proposed hybrid ABCDE. 

 
TABLE II: BASIC STATISTICS OF THE RESULTS AND RUNNING TIME (IN SECONDS) 

 ANY VALUES SMALLER THAN 1E-80 ARE REPORTED AS 0 

# Algo. PS Mean s.d. Lowest Highest Time 

f1 ABC 20 5.924E-78 3.182E-77 0 2.456E-76 1.04 

  60 2.883E-23 8.286E-23 1.212E-25 6.250E-22 1.08 

 ABCDE 20 0 0 0 0 1.03 

  60 1.165E-35 4.207E-35 2.131E-39 2.486E-34 1.05 

 ODE 60 1.665E-04 1.274E-03 0 9.954E-03 5.02 

  90 0 0 0 0 5.40 

f2 ABC 20 5.486E-02 1.069E-02 2.977E-02 7.998E-02 6.88 

  60 6.526E-02 1.449E-02 4.075E-02 1.123E-01 6.96 

 ABCDE 20 2.903E-02 6.534E-03 1.201E-02 4.300E-02 7.01 

  60 2.431E-02 4.746E-03 1.255E-02 3.737E-02 7.03 

 ODE 60 6.588E-04 2.848E-04 3.475E-04 2.319E-03 14.02 

  90 9.450E-04 2.841E-04 3.765E-04 1.598E-03 14.11 

f3 ABC 20 0.260 0.303 2.72E-02 1.877 12.35 

  60 0.438 1.192 4.74E-03 9.005 12.47 

 ABCDE 20 0.494 1.472 7.58E-05 10.028 12.53 

  60 0.183 0.298 5.67E-03 1.597 12.59 

 ODE 60 27.143 0.529 2.54E+01 27.969 23.02 

  90 26.805 0.416 25.595 27.689 23.12 

f4 ABC 20 4.266E-11 2.915E-11 1.030E-11 1.299E-10 4.02 

  60 3.946E-14 4.228E-15 2.887E-14 5.018E-14 4.10 

 ABCDE 20 3.147E-14 2.817E-15 2.887E-14 3.952E-14 3.99 

  60 3.183E-14 3.122E-15 2.176E-14 3.952E-14 4.03 

 ODE 60 2.078E-06 1.239E-05 3.997E-15 9.386E-05 10.02 

  90 3.997E-15 3.155E-30 3.997E-15 3.997E-15 10.08 

f5 ABC 20 5.351E-11 3.366E-10 0 2.620E-09 3.92 

  60 6.077E-09 4.029E-08 0 3.130E-07 4.02 

 ABCDE 20 4.003E-09 1.080E-08 0 5.907E-08 4.02 

  60 3.574E-08 1.994E-07 0 1.552E-06 4.05 

 ODE 60 8.008E-04 2.790E-03 0 1.232E-02 10.02 

  90 0 0 0 0 10.05 

f6 ABC 20 2.43E-13 8.29E-13 0 6.01E-12 3.52 

  60 0 0 0 0 3.59 

 ABCDE 20 0 0 0 0 4.04 

  60 0 0 0 0 4.13 

 ODE 60 61.137 43.580 2.985 140.020 10.50 

  90 79.979 42.117 6.965 135.869 10.52 

f7 ABC 20 -450 0 -450 -450 0.53 
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# Algo. PS Mean s.d. Lowest Highest Time 

  60 -450 0 -450 -450 0.58 

 ABCDE 20 -450 0 -450 -450 1.02 

  60 -450 0 -450 -450 1.08 

 ODE 60 -449.992 0.0403 -450 -449.715 5.52 

  90 -450 0 -450 -450 5.55 

f8 ABC 20 395.234 6.088 390.668 428.030 0.52 

  60 399.310 13.346 390.037 448.613 0.55 

 ABCDE 20 400.095 14.787 390.005 448.380 1.03 

  60 393.631 6.723 390.049 427.358 1.09 

 ODE 60 2.22E+06 1.51E+07 416.494 1.18E+08 5.11 

  90 2.90E+04 2.13E+05 414.890 1.67E+06 5.50 

f9 ABC 20 -330 0 -330 -330 4.00 

  60 -330 0 -330 -330 4.07 

 ABCDE 20 -330 0 -330 -330 4.01 

  60 -330 0 -330 -330 4.09 

 ODE 60 -254.038 43.933 -317.833 -187.514 10.01 

  90 -246.656 42.790 -316.071 -179.829 10.50 

f10 ABC 20 -679.029 0.053 -679.186 -678.932 55.93 

  60 -679.047 0.054 -679.204 -678.954 57.60 

 ABCDE 20 -679.042 0.045 -679.215 -678.972 56.01 

  60 -679.041 0.051 -679.168 -678.953 57.69 

 ODE 60 -679.044 0.056 -679.241 -678.941 76.94 

  90 -679.032 0.051 -679.181 -678.939 78.97 

f11 ABC 20 -493.331 1.757 -497.818 -488.195 15.13 

  60 -498.937 0.248 -499.515 -498.415 15.47 

 ABCDE 20 -499.535 0.281 -499.922 -498.764 15.44 

  60 -497.398 0.686 -498.554 -495.624 15.59 

 ODE 60 -499.290 0.664 -499.971 -497.192 23.70 

  90 -499.944 0.075 -500.000 -499.483 24.15 

f12 ABC 20 18011.0 2628.9 13160.6 22328.5 7.31 

  60 20245.9 2985.1 13113.6 25769.6 7.81 

 ABCDE 20 20352.9 3470.1 13079.9 27297.3 7.33 

  60 23668.0 2780.6 18127.2 30102.9 7.95 

 ODE 60 34353.0 24.6 34343.9 34485.2 14.29 

  90 34348.4 2.5 34344.9 34358.3 14.31 

 

 
 (a) (b) (c) 

 
 (d) (e) (f) 

Fig. 1. Average convergence performance of ABC, ABCDE and ODE from running of 60 times for minimization of basic functions. The number after dash (-) 

indicates population size. 
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TABLE III: RANKS OF THE ALGORITHMS FOR EACH FUNCTION 

THE LAST COLUMN INDICATES THE NUMBER OF FUNCTIONS THE ALGORITHM CAN ACHIEVE THE FIRST RANK 

Algorithm PS   Basic     Complex   AAR #1 

  f1 f2 f3 f4 f5 f6 AARBAS f7 f8 f9 f10 f11 f12 AARCPX   

ABC 20 3 5 2 5 2 4 3.50 1 1 1 1 6 1 1.83 2.67 5 

  60 5 5 4 2 3 1 3.33 1 1 1 1 1 2 1.17 2.25 6 

ABCDE 20 1 3 4 2 3 1 2.33 1 1 1 1 1 2 1.17 1.75 7 

  60 4 3 1 2 5 1 2.67 1 1 1 1 5 4 2.17 2.42 6 

ODE 60 6 1 6 6 6 5 5.00 6 5 5 1 1 5 3.83 4.42 3 

 90 1 2 6 4 1 5 3.17 1 5 6 1 1 5 3.17 3.17 5 

 

 
 (a) (b) (c) 

 
 (d) (e) (f) 

Fig. 2. Average convergence performance of ABC, ABCDE and ODE from running of 60 times for minimization of complex functions.  

The number after dash (-) indicates population size. 

 

V. CONCLUSION 

This paper proposes a hybrid Artificial Bee Colony 

algorithm with Differential Evolution, called ABCDE. The 

proposed ABCDE takes advantage of some advance DE’s 

mutation strategies to speed up search convergence while the 

exploration capability is still maintained and no additional 

parameters are introduced. An experiment is conducted to 

evaluate the performance of ABCDE against original ABC 

and ODE, a highly competent DE, with twelve widely 

accepted benchmark of non-linear minimization problems. 

The experimental results indicate that the proposed ABCDE 

has a significant improved convergence speed not only on 

simple unimodal and multimodal functions but also on rotated 

and shifted functions. Future works include a more systematic 

hybridization of ABC with DE, PSO and other meta-heuristic 

algorithms with an application of optimizing neural networks 

for financial applications. 
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